gup.c 87.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
13
#include <linux/secretmem.h>
14

15
#include <linux/sched/signal.h>
16
#include <linux/rwsem.h>
17
#include <linux/hugetlb.h>
18 19 20
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
21

22
#include <asm/mmu_context.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32
/*
33
 * Return the folio with ref appropriately incremented,
34
 * or NULL if that failed.
35
 */
36
static inline struct folio *try_get_folio(struct page *page, int refs)
37
{
38
	struct folio *folio;
39 40

retry:
41 42
	folio = page_folio(page);
	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
43
		return NULL;
44
	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
45
		return NULL;
46 47

	/*
48 49 50 51
	 * At this point we have a stable reference to the folio; but it
	 * could be that between calling page_folio() and the refcount
	 * increment, the folio was split, in which case we'd end up
	 * holding a reference on a folio that has nothing to do with the page
52
	 * we were given anymore.
53 54
	 * So now that the folio is stable, recheck that the page still
	 * belongs to this folio.
55
	 */
56 57
	if (unlikely(page_folio(page) != folio)) {
		folio_put_refs(folio, refs);
58
		goto retry;
59 60
	}

61
	return folio;
62 63
}

64
/**
65
 * try_grab_folio() - Attempt to get or pin a folio.
66
 * @page:  pointer to page to be grabbed
67
 * @refs:  the value to (effectively) add to the folio's refcount
68 69
 * @flags: gup flags: these are the FOLL_* flag values.
 *
John Hubbard's avatar
John Hubbard committed
70
 * "grab" names in this file mean, "look at flags to decide whether to use
71
 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
John Hubbard's avatar
John Hubbard committed
72 73 74 75 76
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
77
 *    FOLL_GET: folio's refcount will be incremented by @refs.
78
 *
79 80
 *    FOLL_PIN on large folios: folio's refcount will be incremented by
 *    @refs, and its compound_pincount will be incremented by @refs.
81
 *
82
 *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
83
 *    @refs * GUP_PIN_COUNTING_BIAS.
John Hubbard's avatar
John Hubbard committed
84
 *
85 86 87 88
 * Return: The folio containing @page (with refcount appropriately
 * incremented) for success, or NULL upon failure. If neither FOLL_GET
 * nor FOLL_PIN was set, that's considered failure, and furthermore,
 * a likely bug in the caller, so a warning is also emitted.
John Hubbard's avatar
John Hubbard committed
89
 */
90
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
John Hubbard's avatar
John Hubbard committed
91 92
{
	if (flags & FOLL_GET)
93
		return try_get_folio(page, refs);
John Hubbard's avatar
John Hubbard committed
94
	else if (flags & FOLL_PIN) {
95 96
		struct folio *folio;

97
		/*
98 99 100
		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
		 * right zone, so fail and let the caller fall back to the slow
		 * path.
101
		 */
102 103
		if (unlikely((flags & FOLL_LONGTERM) &&
			     !is_pinnable_page(page)))
104 105
			return NULL;

106 107 108 109
		/*
		 * CAUTION: Don't use compound_head() on the page before this
		 * point, the result won't be stable.
		 */
110 111
		folio = try_get_folio(page, refs);
		if (!folio)
112 113
			return NULL;

114
		/*
115
		 * When pinning a large folio, use an exact count to track it.
116
		 *
117 118
		 * However, be sure to *also* increment the normal folio
		 * refcount field at least once, so that the folio really
119
		 * is pinned.  That's why the refcount from the earlier
120
		 * try_get_folio() is left intact.
121
		 */
122 123
		if (folio_test_large(folio))
			atomic_add(refs, folio_pincount_ptr(folio));
124
		else
125 126 127
			folio_ref_add(folio,
					refs * (GUP_PIN_COUNTING_BIAS - 1));
		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
128

129
		return folio;
John Hubbard's avatar
John Hubbard committed
130 131 132 133 134 135
	}

	WARN_ON_ONCE(1);
	return NULL;
}

136
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
137 138
{
	if (flags & FOLL_PIN) {
139 140 141
		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
		if (folio_test_large(folio))
			atomic_sub(refs, folio_pincount_ptr(folio));
142 143 144 145
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}

146 147 148 149 150 151 152
	folio_put_refs(folio, refs);
}

static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
	VM_BUG_ON_PAGE(PageTail(page), page);
	gup_put_folio((struct folio *)page, refs, flags);
153 154
}

John Hubbard's avatar
John Hubbard committed
155 156
/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
157 158
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
John Hubbard's avatar
John Hubbard committed
159 160 161 162 163 164 165
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
166
 * time. Cases: please see the try_grab_folio() documentation, with
167
 * "refs=1".
John Hubbard's avatar
John Hubbard committed
168 169 170 171 172 173 174
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
175 176
	struct folio *folio = page_folio(page);

177
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
178 179
	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
		return false;
John Hubbard's avatar
John Hubbard committed
180

181
	if (flags & FOLL_GET)
182
		folio_ref_inc(folio);
183 184
	else if (flags & FOLL_PIN) {
		/*
185
		 * Similar to try_grab_folio(): be sure to *also*
186 187
		 * increment the normal page refcount field at least once,
		 * so that the page really is pinned.
188
		 */
189 190 191
		if (folio_test_large(folio)) {
			folio_ref_add(folio, 1);
			atomic_add(1, folio_pincount_ptr(folio));
192
		} else {
193
			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
194
		}
195

196
		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
197 198 199
	}

	return true;
John Hubbard's avatar
John Hubbard committed
200 201 202 203 204 205 206 207 208 209 210 211 212
}

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
213
	gup_put_folio(page_folio(page), 1, FOLL_PIN);
John Hubbard's avatar
John Hubbard committed
214 215 216
}
EXPORT_SYMBOL(unpin_user_page);

217 218
static inline struct page *compound_range_next(struct page *start,
		unsigned long npages, unsigned long i, unsigned int *ntails)
219 220 221 222
{
	struct page *next, *page;
	unsigned int nr = 1;

223
	next = nth_page(start, i);
224
	page = compound_head(next);
225
	if (PageHead(page))
226 227
		nr = min_t(unsigned int, npages - i,
			   compound_nr(page) - page_nth(page, next));
228 229

	*ntails = nr;
230
	return page;
231 232
}

233 234
static inline struct page *compound_next(struct page **list,
		unsigned long npages, unsigned long i, unsigned int *ntails)
235 236 237 238 239 240 241 242 243 244 245
{
	struct page *page;
	unsigned int nr;

	page = compound_head(list[i]);
	for (nr = i + 1; nr < npages; nr++) {
		if (compound_head(list[nr]) != page)
			break;
	}

	*ntails = nr - i;
246
	return page;
247 248
}

249
/**
250
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
251
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
252
 * @npages: number of pages in the @pages array.
253
 * @make_dirty: whether to mark the pages dirty
254 255 256 257 258
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
259
 * compound page) dirty, if @make_dirty is true, and if the page was previously
260 261
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
262
 *
263
 * Please see the unpin_user_page() documentation for details.
264
 *
265 266 267
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
268
 * set_page_dirty_lock(), unpin_user_page().
269 270
 *
 */
271 272
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
273
{
274
	unsigned long index;
275 276
	struct page *head;
	unsigned int ntails;
277 278

	if (!make_dirty) {
279
		unpin_user_pages(pages, npages);
280 281 282
		return;
	}

283
	for (index = 0; index < npages; index += ntails) {
284
		head = compound_next(pages, npages, index, &ntails);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
305 306 307
		if (!PageDirty(head))
			set_page_dirty_lock(head);
		put_compound_head(head, ntails, FOLL_PIN);
308
	}
309
}
310
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/**
 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 * gup-pinned page range
 *
 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 * @npages: number of consecutive pages to release.
 * @make_dirty: whether to mark the pages dirty
 *
 * "gup-pinned page range" refers to a range of pages that has had one of the
 * pin_user_pages() variants called on that page.
 *
 * For the page ranges defined by [page .. page+npages], make that range (or
 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 * page range was previously listed as clean.
 *
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
 * set_page_dirty_lock(), unpin_user_page().
 *
 */
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
				      bool make_dirty)
{
	unsigned long index;
	struct page *head;
	unsigned int ntails;

340
	for (index = 0; index < npages; index += ntails) {
341
		head = compound_range_next(page, npages, index, &ntails);
342 343 344 345 346 347 348
		if (make_dirty && !PageDirty(head))
			set_page_dirty_lock(head);
		put_compound_head(head, ntails, FOLL_PIN);
	}
}
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);

349
/**
350
 * unpin_user_pages() - release an array of gup-pinned pages.
351 352 353
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
354
 * For each page in the @pages array, release the page using unpin_user_page().
355
 *
356
 * Please see the unpin_user_page() documentation for details.
357
 */
358
void unpin_user_pages(struct page **pages, unsigned long npages)
359 360
{
	unsigned long index;
361 362
	struct page *head;
	unsigned int ntails;
363

364 365 366 367 368 369 370
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
371

372
	for (index = 0; index < npages; index += ntails) {
373
		head = compound_next(pages, npages, index, &ntails);
374
		put_compound_head(head, ntails, FOLL_PIN);
375
	}
376
}
377
EXPORT_SYMBOL(unpin_user_pages);
378

379 380 381 382 383 384 385 386 387 388 389
/*
 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 * cache bouncing on large SMP machines for concurrent pinned gups.
 */
static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
{
	if (!test_bit(MMF_HAS_PINNED, mm_flags))
		set_bit(MMF_HAS_PINNED, mm_flags);
}

390
#ifdef CONFIG_MMU
391 392
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
393
{
394 395 396 397 398 399 400 401
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
402 403
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
404 405 406
		return ERR_PTR(-EFAULT);
	return NULL;
}
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

432
/*
433 434
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
435 436 437
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
438 439
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
440 441
}

442
static struct page *follow_page_pte(struct vm_area_struct *vma,
443 444
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
445 446 447 448 449
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
450
	int ret;
451

452 453 454 455
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
456
retry:
457
	if (unlikely(pmd_bad(*pmd)))
458
		return no_page_table(vma, flags);
459 460 461 462 463 464 465 466 467 468 469 470

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
471
		if (pte_none(pte))
472 473 474 475 476 477
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
478
		goto retry;
479
	}
480
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
481
		goto no_page;
482
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
483 484 485
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
486 487

	page = vm_normal_page(vma, address, pte);
John Hubbard's avatar
John Hubbard committed
488
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
489
		/*
John Hubbard's avatar
John Hubbard committed
490 491 492
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
493
		 */
494 495
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
496 497 498 499
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
500 501 502 503 504 505 506 507 508 509 510 511 512
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
513 514
	}

John Hubbard's avatar
John Hubbard committed
515 516 517 518
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
519
	}
520 521 522 523 524 525 526 527 528 529 530 531 532
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
533 534 535 536 537 538 539 540 541 542 543
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
544
out:
545 546 547 548 549
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
550 551 552 553
		return NULL;
	return no_page_table(vma, flags);
}

554 555
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
556 557
				    unsigned int flags,
				    struct follow_page_context *ctx)
558
{
559
	pmd_t *pmd, pmdval;
560 561 562 563
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

564
	pmd = pmd_offset(pudp, address);
565 566 567 568 569 570
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
571
		return no_page_table(vma, flags);
572
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
573 574 575 576
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
577
	}
578
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
579
		page = follow_huge_pd(vma, address,
580
				      __hugepd(pmd_val(pmdval)), flags,
581 582 583 584 585
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
586
retry:
587
	if (!pmd_present(pmdval)) {
588 589 590 591 592 593 594
		/*
		 * Should never reach here, if thp migration is not supported;
		 * Otherwise, it must be a thp migration entry.
		 */
		VM_BUG_ON(!thp_migration_supported() ||
				  !is_pmd_migration_entry(pmdval));

595 596
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
597 598

		pmd_migration_entry_wait(mm, pmd);
599 600 601
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
602
		 * mmap_lock is held in read mode
603 604 605
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
606 607
		goto retry;
	}
608
	if (pmd_devmap(pmdval)) {
609
		ptl = pmd_lock(mm, pmd);
610
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
611 612 613 614
		spin_unlock(ptl);
		if (page)
			return page;
	}
615
	if (likely(!pmd_trans_huge(pmdval)))
616
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
617

618
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
619 620
		return no_page_table(vma, flags);

621
retry_locked:
622
	ptl = pmd_lock(mm, pmd);
623 624 625 626
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
627 628 629 630 631 632 633
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
634 635
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
636
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
637
	}
Yang Shi's avatar
Yang Shi committed
638
	if (flags & FOLL_SPLIT_PMD) {
639 640 641 642 643
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
644
			split_huge_pmd(vma, pmd, address);
645 646
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
Yang Shi's avatar
Yang Shi committed
647
		} else {
Song Liu's avatar
Song Liu committed
648 649 650
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
651 652 653
		}

		return ret ? ERR_PTR(ret) :
654
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
655
	}
656 657
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
658
	ctx->page_mask = HPAGE_PMD_NR - 1;
659
	return page;
660 661
}

662 663
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
664 665
				    unsigned int flags,
				    struct follow_page_context *ctx)
666 667 668 669 670 671 672 673 674
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
675
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
676 677 678 679 680
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
681 682 683 684 685 686 687 688
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
689 690
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
691
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
692 693 694 695 696 697 698
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

699
	return follow_pmd_mask(vma, address, pud, flags, ctx);
700 701 702 703
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
704 705
				    unsigned int flags,
				    struct follow_page_context *ctx)
706 707
{
	p4d_t *p4d;
708
	struct page *page;
709 710 711 712 713 714 715 716

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

717 718 719 720 721 722 723 724
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
725
	return follow_pud_mask(vma, address, p4d, flags, ctx);
726 727 728 729 730 731 732
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
733 734
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
735 736 737
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
738 739 740 741 742 743
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
744 745 746
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
747
static struct page *follow_page_mask(struct vm_area_struct *vma,
748
			      unsigned long address, unsigned int flags,
749
			      struct follow_page_context *ctx)
750 751 752 753 754
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

755
	ctx->page_mask = 0;
756 757 758 759

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
John Hubbard's avatar
John Hubbard committed
760
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
761 762 763 764 765 766 767 768
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

769 770 771 772 773 774
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
775 776 777 778 779 780 781 782
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
783

784 785 786 787 788 789 790 791 792
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

793 794 795
	if (vma_is_secretmem(vma))
		return NULL;

796 797 798 799
	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
800 801
}

802 803 804 805 806
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
807
	p4d_t *p4d;
808 809 810 811 812 813 814 815 816 817 818 819
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
820 821
	if (pgd_none(*pgd))
		return -EFAULT;
822
	p4d = p4d_offset(pgd, address);
823 824
	if (p4d_none(*p4d))
		return -EFAULT;
825
	pud = pud_offset(p4d, address);
826 827
	if (pud_none(*pud))
		return -EFAULT;
828
	pmd = pmd_offset(pud, address);
829
	if (!pmd_present(*pmd))
830 831 832 833 834 835 836 837 838 839 840 841 842 843
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
844
	if (unlikely(!try_grab_page(*page, gup_flags))) {
845 846 847
		ret = -ENOMEM;
		goto unmap;
	}
848 849 850 851 852 853 854
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

855
/*
856 857
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
858
 * is, *@locked will be set to 0 and -EBUSY returned.
859
 */
860
static int faultin_page(struct vm_area_struct *vma,
861
		unsigned long address, unsigned int *flags, int *locked)
862 863
{
	unsigned int fault_flags = 0;
864
	vm_fault_t ret;
865

866 867
	if (*flags & FOLL_NOFAULT)
		return -EFAULT;
868 869
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
870 871
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
872
	if (locked)
873
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
874 875
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
876
	if (*flags & FOLL_TRIED) {
877 878 879 880
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
881 882
		fault_flags |= FAULT_FLAG_TRIED;
	}
883

884
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
885
	if (ret & VM_FAULT_ERROR) {
886 887 888 889
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
890 891 892 893
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
894 895
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
896 897 898 899 900 901 902 903 904 905 906 907 908
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
909
		*flags |= FOLL_COW;
910 911 912
	return 0;
}

913 914 915
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
916 917
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
918 919 920 921

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

922 923 924
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

925 926 927
	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
		return -EOPNOTSUPP;

928 929 930
	if (vma_is_secretmem(vma))
		return -EFAULT;

931
	if (write) {
932 933 934 935 936 937 938 939 940 941 942 943
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
944
			if (!is_cow_mapping(vm_flags))
945 946 947 948 949 950 951 952 953 954 955 956
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
957 958 959 960 961
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
962
		return -EFAULT;
963 964 965
	return 0;
}

966 967 968 969 970 971 972 973 974 975 976
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
977
 * @locked:     whether we're still with the mmap_lock held
978
 *
979 980 981 982 983 984 985
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
986
 * -- 0 return value is possible when the fault would need to be retried.
987 988 989
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
990
 * @vmas are valid only as long as mmap_lock is held.
991
 *
992
 * Must be called with mmap_lock held.  It may be released.  See below.
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1013
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1014 1015
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1016
 *
1017
 * A caller using such a combination of @locked and @gup_flags
1018
 * must therefore hold the mmap_lock for reading only, and recognize
1019 1020
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1021 1022 1023 1024 1025
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1026
static long __get_user_pages(struct mm_struct *mm,
1027 1028
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1029
		struct vm_area_struct **vmas, int *locked)
1030
{
1031
	long ret = 0, i = 0;
1032
	struct vm_area_struct *vma = NULL;
1033
	struct follow_page_context ctx = { NULL };
1034 1035 1036 1037

	if (!nr_pages)
		return 0;

1038 1039
	start = untagged_addr(start);

1040
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1063
					goto out;
1064
				ctx.page_mask = 0;
1065 1066
				goto next_page;
			}
1067

1068
			if (!vma) {
1069 1070 1071
				ret = -EFAULT;
				goto out;
			}
1072 1073 1074 1075
			ret = check_vma_flags(vma, gup_flags);
			if (ret)
				goto out;

1076 1077 1078
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1079
						gup_flags, locked);
1080 1081 1082
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1083
					 * and we've lost mmap_lock.
1084 1085 1086 1087 1088
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					goto out;
				}
1089
				continue;
1090
			}
1091 1092 1093 1094 1095 1096
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1097
		if (fatal_signal_pending(current)) {
1098
			ret = -EINTR;
1099 1100
			goto out;
		}
1101
		cond_resched();
1102 1103

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1104
		if (!page) {
1105
			ret = faultin_page(vma, start, &foll_flags, locked);
1106 1107 1108
			switch (ret) {
			case 0:
				goto retry;
1109 1110
			case -EBUSY:
				ret = 0;
Joe Perches's avatar
Joe Perches committed
1111
				fallthrough;
1112 1113 1114
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1115
				goto out;
1116
			}
1117
			BUG();
1118 1119 1120 1121 1122 1123 1124
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1125 1126
			ret = PTR_ERR(page);
			goto out;
1127
		}
1128 1129 1130 1131
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1132
			ctx.page_mask = 0;
1133 1134
		}
next_page:
1135 1136
		if (vmas) {
			vmas[i] = vma;
1137
			ctx.page_mask = 0;
1138
		}
1139
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1140 1141 1142 1143 1144
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1145
	} while (nr_pages);
1146 1147 1148 1149
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1150 1151
}

1152 1153
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1154
{
1155 1156
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1157
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1158 1159 1160 1161

	if (!(vm_flags & vma->vm_flags))
		return false;

1162 1163
	/*
	 * The architecture might have a hardware protection
1164
	 * mechanism other than read/write that can deny access.
1165 1166 1167
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1168
	 */
1169
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1170 1171
		return false;

1172 1173 1174
	return true;
}

1175
/**
1176 1177 1178 1179
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1180
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1181 1182
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1194
 * get_user_pages() only guarantees to update these in the struct page.
1195 1196 1197 1198 1199 1200
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1201 1202
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1203
 */
1204
int fixup_user_fault(struct mm_struct *mm,
1205 1206
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1207 1208
{
	struct vm_area_struct *vma;
1209
	vm_fault_t ret;
1210

1211 1212
	address = untagged_addr(address);

1213
	if (unlocked)
1214
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1215

1216
retry:
1217 1218 1219 1220
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1221
	if (!vma_permits_fault(vma, fault_flags))
1222 1223
		return -EFAULT;

1224 1225 1226 1227
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1228
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1229
	if (ret & VM_FAULT_ERROR) {
1230 1231 1232 1233
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1234 1235
		BUG();
	}
1236 1237

	if (ret & VM_FAULT_RETRY) {
1238
		mmap_read_lock(mm);
1239 1240 1241
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1242 1243
	}

1244 1245
	return 0;
}
1246
EXPORT_SYMBOL_GPL(fixup_user_fault);
1247

1248 1249 1250 1251
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1252
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1253 1254 1255 1256
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1257
						int *locked,
1258
						unsigned int flags)
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

1270 1271
	if (flags & FOLL_PIN)
		mm_set_has_pinned_flag(&mm->flags);
Peter Xu's avatar
Peter Xu committed
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1283 1284 1285 1286 1287
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1288
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1307 1308 1309 1310
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1311 1312 1313 1314
			if (!pages_done)
				pages_done = ret;
			break;
		}
1315 1316 1317 1318 1319 1320
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1321
		start += ret << PAGE_SHIFT;
1322
		lock_dropped = true;
1323

1324
retry:
1325 1326
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1327 1328 1329 1330
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1331
		 */
1332

1333 1334 1335
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1336
			break;
1337
		}
1338

1339
		ret = mmap_read_lock_killable(mm);
1340 1341 1342 1343 1344 1345
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1346

1347
		*locked = 1;
1348
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1349 1350 1351 1352 1353 1354
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1365 1366
		if (likely(pages))
			pages++;
1367 1368
		start += PAGE_SIZE;
	}
1369
	if (lock_dropped && *locked) {
1370 1371 1372 1373
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1374
		mmap_read_unlock(mm);
1375 1376 1377 1378 1379
		*locked = 0;
	}
	return pages_done;
}

1380 1381 1382 1383 1384
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1385
 * @locked: whether the mmap_lock is still held
1386 1387 1388
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1389 1390
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1391
 *
1392
 * vma->vm_mm->mmap_lock must be held.
1393
 *
1394
 * If @locked is NULL, it may be held for read or write and will
1395 1396
 * be unperturbed.
 *
1397 1398
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1399 1400
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1401
		unsigned long start, unsigned long end, int *locked)
1402 1403 1404 1405 1406
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

1407 1408
	VM_BUG_ON(!PAGE_ALIGNED(start));
	VM_BUG_ON(!PAGE_ALIGNED(end));
1409 1410
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1411
	mmap_assert_locked(mm);
1412

1413 1414 1415 1416
	/*
	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
	 * faultin_page() to break COW, so it has no work to do here.
	 */
1417
	if (vma->vm_flags & VM_LOCKONFAULT)
1418 1419 1420
		return nr_pages;

	gup_flags = FOLL_TOUCH;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1433
	if (vma_is_accessible(vma))
1434 1435 1436 1437 1438 1439
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1440
	return __get_user_pages(mm, start, nr_pages, gup_flags,
1441
				NULL, NULL, locked);
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * faultin_vma_page_range() - populate (prefault) page tables inside the
 *			      given VMA range readable/writable
 *
 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
 *
 * @vma: target vma
 * @start: start address
 * @end: end address
 * @write: whether to prefault readable or writable
 * @locked: whether the mmap_lock is still held
 *
 * Returns either number of processed pages in the vma, or a negative error
 * code on error (see __get_user_pages()).
 *
 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
 * covered by the VMA.
 *
 * If @locked is NULL, it may be held for read or write and will be unperturbed.
 *
 * If @locked is non-NULL, it must held for read only and may be released.  If
 * it's released, *@locked will be set to 0.
 */
long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end, bool write, int *locked)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(!PAGE_ALIGNED(start));
	VM_BUG_ON(!PAGE_ALIGNED(end));
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end > vma->vm_end, vma);
	mmap_assert_locked(mm);

	/*
	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
	 *	       difference with !FOLL_FORCE, because the page is writable
	 *	       in the page table.
	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
	 *		  a poisoned page.
	 * !FOLL_FORCE: Require proper access permissions.
	 */
1489
	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1490 1491 1492 1493
	if (write)
		gup_flags |= FOLL_WRITE;

	/*
1494 1495
	 * We want to report -EINVAL instead of -EFAULT for any permission
	 * problems or incompatible mappings.
1496
	 */
1497 1498 1499
	if (check_vma_flags(vma, gup_flags))
		return -EINVAL;

1500 1501 1502 1503
	return __get_user_pages(mm, start, nr_pages, gup_flags,
				NULL, NULL, locked);
}

1504 1505 1506 1507 1508
/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1509
 * mmap_lock must not be held.
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1528
			mmap_read_lock(mm);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1560
		mmap_read_unlock(mm);
1561 1562
	return ret;	/* 0 or negative error code */
}
1563
#else /* CONFIG_MMU */
1564
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1565 1566 1567 1568 1569 1570
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
1571
	long i;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/**
 * fault_in_writeable - fault in userspace address range for writing
 * @uaddr: start of address range
 * @size: size of address range
 *
 * Returns the number of bytes not faulted in (like copy_to_user() and
 * copy_from_user()).
 */
size_t fault_in_writeable(char __user *uaddr, size_t size)
{
	char __user *start = uaddr, *end;

	if (unlikely(size == 0))
		return 0;
1622 1623
	if (!user_write_access_begin(uaddr, size))
		return size;
1624
	if (!PAGE_ALIGNED(uaddr)) {
1625
		unsafe_put_user(0, uaddr, out);
1626 1627 1628 1629 1630 1631
		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
	}
	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
	if (unlikely(end < start))
		end = NULL;
	while (uaddr != end) {
1632
		unsafe_put_user(0, uaddr, out);
1633 1634 1635 1636
		uaddr += PAGE_SIZE;
	}

out:
1637
	user_write_access_end();
1638 1639 1640 1641 1642 1643
	if (size > uaddr - start)
		return size - (uaddr - start);
	return 0;
}
EXPORT_SYMBOL(fault_in_writeable);

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/*
 * fault_in_safe_writeable - fault in an address range for writing
 * @uaddr: start of address range
 * @size: length of address range
 *
 * Faults in an address range using get_user_pages, i.e., without triggering
 * hardware page faults.  This is primarily useful when we already know that
 * some or all of the pages in the address range aren't in memory.
 *
 * Other than fault_in_writeable(), this function is non-destructive.
 *
 * Note that we don't pin or otherwise hold the pages referenced that we fault
 * in.  There's no guarantee that they'll stay in memory for any duration of
 * time.
 *
 * Returns the number of bytes not faulted in, like copy_to_user() and
 * copy_from_user().
 */
size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
{
	unsigned long start = (unsigned long)untagged_addr(uaddr);
	unsigned long end, nstart, nend;
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma = NULL;
	int locked = 0;

	nstart = start & PAGE_MASK;
	end = PAGE_ALIGN(start + size);
	if (end < nstart)
		end = 0;
	for (; nstart != end; nstart = nend) {
		unsigned long nr_pages;
		long ret;

		if (!locked) {
			locked = 1;
			mmap_read_lock(mm);
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		nend = end ? min(end, vma->vm_end) : vma->vm_end;
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		nr_pages = (nend - nstart) / PAGE_SIZE;
		ret = __get_user_pages_locked(mm, nstart, nr_pages,
					      NULL, NULL, &locked,
					      FOLL_TOUCH | FOLL_WRITE);
		if (ret <= 0)
			break;
		nend = nstart + ret * PAGE_SIZE;
	}
	if (locked)
		mmap_read_unlock(mm);
	if (nstart == end)
		return 0;
	return size - min_t(size_t, nstart - start, size);
}
EXPORT_SYMBOL(fault_in_safe_writeable);

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
/**
 * fault_in_readable - fault in userspace address range for reading
 * @uaddr: start of user address range
 * @size: size of user address range
 *
 * Returns the number of bytes not faulted in (like copy_to_user() and
 * copy_from_user()).
 */
size_t fault_in_readable(const char __user *uaddr, size_t size)
{
	const char __user *start = uaddr, *end;
	volatile char c;

	if (unlikely(size == 0))
		return 0;
1722 1723
	if (!user_read_access_begin(uaddr, size))
		return size;
1724
	if (!PAGE_ALIGNED(uaddr)) {
1725
		unsafe_get_user(c, uaddr, out);
1726 1727 1728 1729 1730 1731
		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
	}
	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
	if (unlikely(end < start))
		end = NULL;
	while (uaddr != end) {
1732
		unsafe_get_user(c, uaddr, out);
1733 1734 1735 1736
		uaddr += PAGE_SIZE;
	}

out:
1737
	user_read_access_end();
1738 1739 1740 1741 1742 1743 1744
	(void)c;
	if (size > uaddr - start)
		return size - (uaddr - start);
	return 0;
}
EXPORT_SYMBOL(fault_in_readable);

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
Ingo Molnar's avatar
Ingo Molnar committed
1755
 * allowing a hole to be left in the corefile to save disk space.
1756
 *
1757
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1758 1759 1760 1761
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1762
	struct mm_struct *mm = current->mm;
1763
	struct page *page;
1764 1765
	int locked = 1;
	int ret;
1766

1767
	if (mmap_read_lock_killable(mm))
1768
		return NULL;
1769 1770 1771 1772 1773
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
	return (ret == 1) ? page : NULL;
1774 1775 1776
}
#endif /* CONFIG_ELF_CORE */

1777
#ifdef CONFIG_MIGRATION
1778 1779 1780 1781 1782 1783 1784
/*
 * Check whether all pages are pinnable, if so return number of pages.  If some
 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
 * pages were migrated, or if some pages were not successfully isolated.
 * Return negative error if migration fails.
 */
static long check_and_migrate_movable_pages(unsigned long nr_pages,
1785 1786
					    struct page **pages,
					    unsigned int gup_flags)
1787
{
1788
	unsigned long isolation_error_count = 0, i;
1789
	struct page *prev_head = NULL;
1790 1791 1792
	LIST_HEAD(movable_page_list);
	bool drain_allow = true;
	int ret = 0;
1793

1794
	for (i = 0; i < nr_pages; i++) {
1795 1796
		struct page *head = compound_head(pages[i]);

1797 1798 1799
		if (head == prev_head)
			continue;
		prev_head = head;
1800 1801 1802 1803

		if (is_pinnable_page(head))
			continue;

1804
		/*
1805
		 * Try to move out any movable page before pinning the range.
1806
		 */
1807 1808 1809 1810 1811
		if (PageHuge(head)) {
			if (!isolate_huge_page(head, &movable_page_list))
				isolation_error_count++;
			continue;
		}
1812

1813 1814 1815 1816 1817 1818 1819 1820
		if (!PageLRU(head) && drain_allow) {
			lru_add_drain_all();
			drain_allow = false;
		}

		if (isolate_lru_page(head)) {
			isolation_error_count++;
			continue;
1821
		}
1822 1823 1824 1825
		list_add_tail(&head->lru, &movable_page_list);
		mod_node_page_state(page_pgdat(head),
				    NR_ISOLATED_ANON + page_is_file_lru(head),
				    thp_nr_pages(head));
1826 1827
	}

1828 1829 1830
	if (!list_empty(&movable_page_list) || isolation_error_count)
		goto unpin_pages;

1831 1832 1833 1834
	/*
	 * If list is empty, and no isolation errors, means that all pages are
	 * in the correct zone.
	 */
1835
	return nr_pages;
1836

1837
unpin_pages:
1838 1839 1840 1841 1842 1843
	if (gup_flags & FOLL_PIN) {
		unpin_user_pages(pages, nr_pages);
	} else {
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);
	}
1844

1845
	if (!list_empty(&movable_page_list)) {
1846 1847 1848 1849 1850
		struct migration_target_control mtc = {
			.nid = NUMA_NO_NODE,
			.gfp_mask = GFP_USER | __GFP_NOWARN,
		};

1851
		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1852
				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1853
				    MR_LONGTERM_PIN, NULL);
1854 1855
		if (ret > 0) /* number of pages not migrated */
			ret = -ENOMEM;
1856 1857
	}

1858 1859 1860
	if (ret && !list_empty(&movable_page_list))
		putback_movable_pages(&movable_page_list);
	return ret;
1861 1862
}
#else
1863
static long check_and_migrate_movable_pages(unsigned long nr_pages,
1864 1865
					    struct page **pages,
					    unsigned int gup_flags)
1866 1867 1868
{
	return nr_pages;
}
1869
#endif /* CONFIG_MIGRATION */
1870

1871
/*
1872 1873
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1874
 */
1875
static long __gup_longterm_locked(struct mm_struct *mm,
1876 1877 1878 1879 1880
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1881
{
1882
	unsigned int flags;
1883
	long rc;
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	if (!(gup_flags & FOLL_LONGTERM))
		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
					       NULL, gup_flags);
	flags = memalloc_pin_save();
	do {
		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
					     NULL, gup_flags);
		if (rc <= 0)
			break;
		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
	} while (!rc);
	memalloc_pin_restore(flags);
1897 1898 1899

	return rc;
}
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

1920
#ifdef CONFIG_MMU
1921
static long __get_user_pages_remote(struct mm_struct *mm,
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1940
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1941 1942 1943 1944
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1945
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1946 1947 1948 1949
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1950
/**
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1975
 * @vmas are valid only as long as mmap_lock is held.
1976
 *
1977
 * Must be called with mmap_lock held for read or write.
1978
 *
1979 1980
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1981 1982 1983 1984
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1985
 * get_user_pages_remote returns, and there may even be a completely different
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1997 1998 1999 2000 2001
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2002 2003 2004
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
2005
 * get_user_pages_remote should be phased out in favor of
2006
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2007
 * should use get_user_pages_remote because it cannot pass
2008 2009
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
2010
long get_user_pages_remote(struct mm_struct *mm,
2011 2012 2013 2014
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
2015
	if (!is_valid_gup_flags(gup_flags))
2016 2017
		return -EINVAL;

2018
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2019
				       pages, vmas, locked);
2020 2021 2022
}
EXPORT_SYMBOL(get_user_pages_remote);

2023
#else /* CONFIG_MMU */
2024
long get_user_pages_remote(struct mm_struct *mm,
2025 2026 2027 2028 2029 2030
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
John Hubbard's avatar
John Hubbard committed
2031

2032
static long __get_user_pages_remote(struct mm_struct *mm,
John Hubbard's avatar
John Hubbard committed
2033 2034 2035 2036 2037 2038
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
2039 2040
#endif /* !CONFIG_MMU */

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
2052 2053 2054 2055
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
2056 2057 2058 2059 2060
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
2061
	if (!is_valid_gup_flags(gup_flags))
2062 2063
		return -EINVAL;

2064
	return __gup_longterm_locked(current->mm, start, nr_pages,
2065 2066 2067
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
2068

2069
/**
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
 * get_user_pages_locked() - variant of get_user_pages()
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * It is suitable to replace the form:
2083
 *
2084
 *      mmap_read_lock(mm);
2085
 *      do_something()
2086
 *      get_user_pages(mm, ..., pages, NULL);
2087
 *      mmap_read_unlock(mm);
2088
 *
2089
 *  to:
2090
 *
2091
 *      int locked = 1;
2092
 *      mmap_read_lock(mm);
2093
 *      do_something()
2094
 *      get_user_pages_locked(mm, ..., pages, &locked);
2095
 *      if (locked)
2096
 *          mmap_read_unlock(mm);
2097 2098 2099 2100 2101
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
2102
 */
2103 2104 2105
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
2106 2107
{
	/*
2108 2109 2110 2111
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
2112
	 */
2113 2114
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2115 2116 2117 2118 2119 2120
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;
2121

2122
	return __get_user_pages_locked(current->mm, start, nr_pages,
2123 2124
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
2125
}
2126
EXPORT_SYMBOL(get_user_pages_locked);
2127 2128

/*
2129
 * get_user_pages_unlocked() is suitable to replace the form:
2130
 *
2131
 *      mmap_read_lock(mm);
2132
 *      get_user_pages(mm, ..., pages, NULL);
2133
 *      mmap_read_unlock(mm);
2134 2135 2136
 *
 *  with:
 *
2137
 *      get_user_pages_unlocked(mm, ..., pages);
2138 2139 2140 2141
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
2142
 */
2143 2144
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
2145 2146
{
	struct mm_struct *mm = current->mm;
2147 2148
	int locked = 1;
	long ret;
2149

2150 2151 2152 2153 2154 2155 2156 2157
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2158

2159
	mmap_read_lock(mm);
2160
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2161
				      &locked, gup_flags | FOLL_TOUCH);
2162
	if (locked)
2163
		mmap_read_unlock(mm);
2164
	return ret;
2165
}
2166
EXPORT_SYMBOL(get_user_pages_unlocked);
2167 2168

/*
2169
 * Fast GUP
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2190
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2191
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2192 2193 2194 2195 2196 2197 2198 2199 2200
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2201
#ifdef CONFIG_HAVE_FAST_GUP
John Hubbard's avatar
John Hubbard committed
2202

2203
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2204
					    unsigned int flags,
2205
					    struct page **pages)
2206 2207 2208 2209 2210
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
John Hubbard's avatar
John Hubbard committed
2211 2212 2213 2214
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2215 2216 2217
	}
}

2218
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2219
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220
			 unsigned int flags, struct page **pages, int *nr)
2221
{
2222 2223
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2224 2225 2226 2227
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2228
		pte_t pte = ptep_get_lockless(ptep);
2229 2230
		struct page *page;
		struct folio *folio;
2231 2232 2233

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2234
		 * path using the pte_protnone check.
2235
		 */
2236 2237 2238
		if (pte_protnone(pte))
			goto pte_unmap;

2239
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2240 2241
			goto pte_unmap;

2242
		if (pte_devmap(pte)) {
2243 2244 2245
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2246 2247
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2248
				undo_dev_pagemap(nr, nr_start, flags, pages);
2249 2250 2251
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2252 2253 2254 2255 2256
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

2257 2258
		folio = try_grab_folio(page, 1, flags);
		if (!folio)
2259 2260
			goto pte_unmap;

2261
		if (unlikely(page_is_secretmem(page))) {
2262
			gup_put_folio(folio, 1, flags);
2263 2264 2265
			goto pte_unmap;
		}

2266
		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2267
			gup_put_folio(folio, 1, flags);
2268 2269 2270
			goto pte_unmap;
		}

2271 2272 2273 2274 2275 2276 2277 2278 2279
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
2280
				gup_put_folio(folio, 1, flags);
2281 2282 2283
				goto pte_unmap;
			}
		}
2284
		folio_set_referenced(folio);
2285 2286 2287 2288 2289 2290 2291
		pages[*nr] = page;
		(*nr)++;
	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2292 2293
	if (pgmap)
		put_dev_pagemap(pgmap);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2305
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2306 2307 2308
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2309
			 unsigned int flags, struct page **pages, int *nr)
2310 2311 2312
{
	return 0;
}
2313
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2314

2315
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2316
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2317 2318
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2319 2320 2321 2322 2323 2324 2325 2326 2327
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2328
			undo_dev_pagemap(nr, nr_start, flags, pages);
2329
			break;
2330 2331 2332
		}
		SetPageReferenced(page);
		pages[*nr] = page;
John Hubbard's avatar
John Hubbard committed
2333 2334
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
2335
			break;
John Hubbard's avatar
John Hubbard committed
2336
		}
2337 2338 2339
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2340

2341
	put_dev_pagemap(pgmap);
2342
	return addr == end;
2343 2344
}

2345
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2346 2347
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2348 2349
{
	unsigned long fault_pfn;
2350 2351 2352
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2353
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2354
		return 0;
2355

2356
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2357
		undo_dev_pagemap(nr, nr_start, flags, pages);
2358 2359 2360
		return 0;
	}
	return 1;
2361 2362
}

2363
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2364 2365
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2366 2367
{
	unsigned long fault_pfn;
2368 2369 2370
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2371
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2372
		return 0;
2373

2374
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2375
		undo_dev_pagemap(nr, nr_start, flags, pages);
2376 2377 2378
		return 0;
	}
	return 1;
2379 2380
}
#else
2381
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2382 2383
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2384 2385 2386 2387 2388
{
	BUILD_BUG();
	return 0;
}

2389
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2390 2391
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2392 2393 2394 2395 2396 2397
{
	BUILD_BUG();
	return 0;
}
#endif

2398 2399 2400 2401 2402
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

2403 2404
	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
		pages[nr] = nth_page(page, nr);
2405 2406 2407 2408

	return nr;
}

2409 2410 2411 2412 2413 2414 2415 2416 2417
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2418 2419
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2420 2421
{
	unsigned long pte_end;
2422 2423
	struct page *page;
	struct folio *folio;
2424 2425 2426 2427 2428 2429 2430
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2431
	pte = huge_ptep_get(ptep);
2432

2433
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2434 2435 2436 2437 2438
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

2439
	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2440
	refs = record_subpages(page, addr, end, pages + *nr);
2441

2442 2443
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2444 2445 2446
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2447
		gup_put_folio(folio, refs, flags);
2448 2449 2450
		return 0;
	}

2451
	*nr += refs;
2452
	folio_set_referenced(folio);
2453 2454 2455 2456
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2457
		unsigned int pdshift, unsigned long end, unsigned int flags,
2458 2459 2460 2461 2462 2463 2464 2465 2466
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2467
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2468 2469 2470 2471 2472 2473 2474
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2475
		unsigned int pdshift, unsigned long end, unsigned int flags,
2476 2477 2478 2479 2480 2481
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2482
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2483 2484
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2485
{
2486 2487
	struct page *page;
	struct folio *folio;
2488 2489
	int refs;

2490
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2491 2492
		return 0;

2493 2494 2495
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2496 2497
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2498
	}
2499

2500
	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2501
	refs = record_subpages(page, addr, end, pages + *nr);
2502

2503 2504
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2505 2506 2507
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2508
		gup_put_folio(folio, refs, flags);
2509 2510 2511
		return 0;
	}

2512
	*nr += refs;
2513
	folio_set_referenced(folio);
2514 2515 2516 2517
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2518 2519
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2520
{
2521 2522
	struct page *page;
	struct folio *folio;
2523 2524
	int refs;

2525
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2526 2527
		return 0;

2528 2529 2530
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2531 2532
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2533
	}
2534

2535
	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2536
	refs = record_subpages(page, addr, end, pages + *nr);
2537

2538 2539
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2540 2541 2542
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2543
		gup_put_folio(folio, refs, flags);
2544 2545 2546
		return 0;
	}

2547
	*nr += refs;
2548
	folio_set_referenced(folio);
2549 2550 2551
	return 1;
}

2552
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2553
			unsigned long end, unsigned int flags,
2554 2555 2556
			struct page **pages, int *nr)
{
	int refs;
2557 2558
	struct page *page;
	struct folio *folio;
2559

2560
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2561 2562
		return 0;

2563
	BUILD_BUG_ON(pgd_devmap(orig));
2564

2565
	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2566
	refs = record_subpages(page, addr, end, pages + *nr);
2567

2568 2569
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2570 2571 2572
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2573
		gup_put_folio(folio, refs, flags);
2574 2575 2576
		return 0;
	}

2577
	*nr += refs;
2578
	folio_set_referenced(folio);
2579 2580 2581
	return 1;
}

2582
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2583
		unsigned int flags, struct page **pages, int *nr)
2584 2585 2586 2587
{
	unsigned long next;
	pmd_t *pmdp;

2588
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2589
	do {
2590
		pmd_t pmd = READ_ONCE(*pmdp);
2591 2592

		next = pmd_addr_end(addr, end);
2593
		if (!pmd_present(pmd))
2594 2595
			return 0;

Yu Zhao's avatar
Yu Zhao committed
2596 2597
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2598 2599 2600 2601 2602
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2603
			if (pmd_protnone(pmd))
2604 2605
				return 0;

2606
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2607 2608 2609
				pages, nr))
				return 0;

2610 2611 2612 2613 2614 2615
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2616
					 PMD_SHIFT, next, flags, pages, nr))
2617
				return 0;
2618
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2619
			return 0;
2620 2621 2622 2623 2624
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2625
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2626
			 unsigned int flags, struct page **pages, int *nr)
2627 2628 2629 2630
{
	unsigned long next;
	pud_t *pudp;

2631
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2632
	do {
2633
		pud_t pud = READ_ONCE(*pudp);
2634 2635

		next = pud_addr_end(addr, end);
Qiujun Huang's avatar
Qiujun Huang committed
2636
		if (unlikely(!pud_present(pud)))
2637
			return 0;
2638
		if (unlikely(pud_huge(pud))) {
2639
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2640 2641 2642 2643
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2644
					 PUD_SHIFT, next, flags, pages, nr))
2645
				return 0;
2646
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2647 2648 2649 2650 2651 2652
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2653
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2654
			 unsigned int flags, struct page **pages, int *nr)
2655 2656 2657 2658
{
	unsigned long next;
	p4d_t *p4dp;

2659
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2660 2661 2662 2663 2664 2665 2666 2667 2668
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2669
					 P4D_SHIFT, next, flags, pages, nr))
2670
				return 0;
2671
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2672 2673 2674 2675 2676 2677
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2678
static void gup_pgd_range(unsigned long addr, unsigned long end,
2679
		unsigned int flags, struct page **pages, int *nr)
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2692
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2693 2694 2695 2696
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2697
					 PGDIR_SHIFT, next, flags, pages, nr))
2698
				return;
2699
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2700 2701 2702
			return;
	} while (pgdp++, addr = next, addr != end);
}
2703 2704 2705 2706 2707 2708
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2709 2710 2711

#ifndef gup_fast_permitted
/*
2712
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2713 2714
 * we need to fall back to the slow version:
 */
2715
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2716
{
2717
	return true;
2718 2719 2720
}
#endif

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2731
		mmap_read_lock(current->mm);
2732
		ret = __gup_longterm_locked(current->mm,
2733 2734
					    start, nr_pages,
					    pages, NULL, gup_flags);
2735
		mmap_read_unlock(current->mm);
2736 2737 2738 2739 2740 2741 2742 2743
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2744 2745 2746 2747 2748 2749 2750
static unsigned long lockless_pages_from_mm(unsigned long start,
					    unsigned long end,
					    unsigned int gup_flags,
					    struct page **pages)
{
	unsigned long flags;
	int nr_pinned = 0;
2751
	unsigned seq;
2752 2753 2754 2755 2756

	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
	    !gup_fast_permitted(start, end))
		return 0;

2757 2758 2759 2760 2761 2762
	if (gup_flags & FOLL_PIN) {
		seq = raw_read_seqcount(&current->mm->write_protect_seq);
		if (seq & 1)
			return 0;
	}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	/*
	 * Disable interrupts. The nested form is used, in order to allow full,
	 * general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being freed
	 * from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
	 * that come from THPs splitting.
	 */
	local_irq_save(flags);
	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
	local_irq_restore(flags);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787

	/*
	 * When pinning pages for DMA there could be a concurrent write protect
	 * from fork() via copy_page_range(), in this case always fail fast GUP.
	 */
	if (gup_flags & FOLL_PIN) {
		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
			unpin_user_pages(pages, nr_pinned);
			return 0;
		}
	}
2788 2789 2790 2791 2792
	return nr_pinned;
}

static int internal_get_user_pages_fast(unsigned long start,
					unsigned long nr_pages,
2793 2794
					unsigned int gup_flags,
					struct page **pages)
2795
{
2796 2797 2798
	unsigned long len, end;
	unsigned long nr_pinned;
	int ret;
2799

2800
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2801
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2802
				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2803 2804
		return -EINVAL;

2805 2806
	if (gup_flags & FOLL_PIN)
		mm_set_has_pinned_flag(&current->mm->flags);
Peter Xu's avatar
Peter Xu committed
2807

2808
	if (!(gup_flags & FOLL_FAST_ONLY))
2809
		might_lock_read(&current->mm->mmap_lock);
2810

2811
	start = untagged_addr(start) & PAGE_MASK;
2812 2813
	len = nr_pages << PAGE_SHIFT;
	if (check_add_overflow(start, len, &end))
2814
		return 0;
2815
	if (unlikely(!access_ok((void __user *)start, len)))
2816
		return -EFAULT;
2817

2818 2819 2820
	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
		return nr_pinned;
2821

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	/* Slow path: try to get the remaining pages with get_user_pages */
	start += nr_pinned << PAGE_SHIFT;
	pages += nr_pinned;
	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
				      pages);
	if (ret < 0) {
		/*
		 * The caller has to unpin the pages we already pinned so
		 * returning -errno is not an option
		 */
		if (nr_pinned)
			return nr_pinned;
		return ret;
2835
	}
2836
	return ret + nr_pinned;
2837
}
2838

2839 2840 2841 2842 2843 2844 2845 2846
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2859 2860
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2861
{
2862
	int nr_pinned;
2863 2864 2865
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2866 2867 2868
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2869
	 */
2870
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2871

2872 2873
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2874 2875

	/*
2876 2877 2878 2879
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2880
	 */
2881 2882
	if (nr_pinned < 0)
		nr_pinned = 0;
2883 2884 2885

	return nr_pinned;
}
2886
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2887

2888 2889
/**
 * get_user_pages_fast() - pin user pages in memory
John Hubbard's avatar
John Hubbard committed
2890 2891 2892 2893 2894
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2895
 *
2896
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
2907
	if (!is_valid_gup_flags(gup_flags))
2908 2909
		return -EINVAL;

2910 2911 2912 2913 2914 2915 2916
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2917 2918
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2919
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2920 2921 2922 2923

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
John Hubbard's avatar
John Hubbard committed
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2935
 * see Documentation/core-api/pin_user_pages.rst for further details.
2936 2937 2938 2939
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
John Hubbard's avatar
John Hubbard committed
2940 2941 2942 2943 2944 2945
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2946 2947 2948
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2949
/*
2950 2951
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2985
/**
2986
 * pin_user_pages_remote() - pin pages of a remote process
2987
 *
John Hubbard's avatar
John Hubbard committed
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3006
 * see Documentation/core-api/pin_user_pages.rst for details.
3007
 */
3008
long pin_user_pages_remote(struct mm_struct *mm,
3009 3010 3011 3012
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
John Hubbard's avatar
John Hubbard committed
3013 3014 3015 3016 3017
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
3018
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
John Hubbard's avatar
John Hubbard committed
3019
				       pages, vmas, locked);
3020 3021 3022 3023 3024 3025
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
John Hubbard's avatar
John Hubbard committed
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3039
 * see Documentation/core-api/pin_user_pages.rst for details.
3040 3041 3042 3043 3044
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
John Hubbard's avatar
John Hubbard committed
3045 3046 3047 3048 3049
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
3050
	return __gup_longterm_locked(current->mm, start, nr_pages,
John Hubbard's avatar
John Hubbard committed
3051
				     pages, vmas, gup_flags);
3052 3053
}
EXPORT_SYMBOL(pin_user_pages);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

/*
 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
 * Behavior is the same, except that this one sets FOLL_PIN and rejects
 * FOLL_GET.
 */
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
{
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
3095
	return __get_user_pages_locked(current->mm, start, nr_pages,
3096 3097 3098 3099
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(pin_user_pages_locked);