device.c 71.4 KB
Newer Older
1 2 3
// SPDX-License-Identifier: GPL-2.0

/*
4
 * Copyright 2016-2022 HabanaLabs, Ltd.
5 6 7
 * All Rights Reserved.
 */

8 9
#define pr_fmt(fmt)			"habanalabs: " fmt

10
#include <uapi/drm/habanalabs_accel.h>
11 12 13
#include "habanalabs.h"

#include <linux/pci.h>
14
#include <linux/hwmon.h>
15
#include <linux/vmalloc.h>
16

17 18
#include <trace/events/habanalabs.h>

19 20 21
#define HL_RESET_DELAY_USEC			10000	/* 10ms */

#define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC	5
22

23 24 25 26 27 28
enum dma_alloc_type {
	DMA_ALLOC_COHERENT,
	DMA_ALLOC_CPU_ACCESSIBLE,
	DMA_ALLOC_POOL,
};

29 30
#define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788

31 32 33
/*
 * hl_set_dram_bar- sets the bar to allow later access to address
 *
34
 * @hdev: pointer to habanalabs device structure.
35
 * @addr: the address the caller wants to access.
36
 * @region: the PCI region.
37
 * @new_bar_region_base: the new BAR region base address.
38 39 40 41 42 43 44 45 46
 *
 * @return: the old BAR base address on success, U64_MAX for failure.
 *	    The caller should set it back to the old address after use.
 *
 * In case the bar space does not cover the whole address space,
 * the bar base address should be set to allow access to a given address.
 * This function can be called also if the bar doesn't need to be set,
 * in that case it just won't change the base.
 */
47 48
static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
				u64 *new_bar_region_base)
49 50
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
51
	u64 bar_base_addr, old_base;
52

53 54 55 56 57
	if (is_power_of_2(prop->dram_pci_bar_size))
		bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
	else
		bar_base_addr = DIV_ROUND_DOWN_ULL(addr, prop->dram_pci_bar_size) *
				prop->dram_pci_bar_size;
58

59 60 61
	old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);

	/* in case of success we need to update the new BAR base */
62 63
	if ((old_base != U64_MAX) && new_bar_region_base)
		*new_bar_region_base = bar_base_addr;
64

65 66
	return old_base;
}
67

68 69
int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
70 71
{
	struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
72
	u64 old_base = 0, rc, bar_region_base = region->region_base;
73
	void __iomem *acc_addr;
74

75
	if (set_dram_bar) {
76
		old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
77 78 79 80
		if (old_base == U64_MAX)
			return -EIO;
	}

81
	acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
82
			(addr - bar_region_base);
83

84
	switch (acc_type) {
85
	case DEBUGFS_READ8:
86
		*val = readb(acc_addr);
87 88
		break;
	case DEBUGFS_WRITE8:
89
		writeb(*val, acc_addr);
90
		break;
91
	case DEBUGFS_READ32:
92
		*val = readl(acc_addr);
93 94
		break;
	case DEBUGFS_WRITE32:
95
		writel(*val, acc_addr);
96 97
		break;
	case DEBUGFS_READ64:
98
		*val = readq(acc_addr);
99 100
		break;
	case DEBUGFS_WRITE64:
101
		writeq(*val, acc_addr);
102 103 104
		break;
	}

105 106
	if (set_dram_bar) {
		rc = hl_set_dram_bar(hdev, old_base, region, NULL);
107 108 109 110 111 112 113
		if (rc == U64_MAX)
			return -EIO;
	}

	return 0;
}

114
static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
115 116
					gfp_t flag, enum dma_alloc_type alloc_type,
					const char *caller)
117
{
118
	void *ptr = NULL;
119 120 121 122 123 124 125 126 127 128 129 130 131

	switch (alloc_type) {
	case DMA_ALLOC_COHERENT:
		ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
		break;
	case DMA_ALLOC_CPU_ACCESSIBLE:
		ptr = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
		break;
	case DMA_ALLOC_POOL:
		ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
		break;
	}

132 133 134 135
	if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
		trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
						caller);

136 137 138 139
	return ptr;
}

static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
140 141
					dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
					const char *caller)
142
{
143 144 145
	/* this is needed to avoid warning on using freed pointer */
	u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;

146 147 148 149 150 151 152 153 154 155 156
	switch (alloc_type) {
	case DMA_ALLOC_COHERENT:
		hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
		break;
	case DMA_ALLOC_CPU_ACCESSIBLE:
		hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, cpu_addr);
		break;
	case DMA_ALLOC_POOL:
		hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
		break;
	}
157

158
	trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
159 160
}

161 162
void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
					gfp_t flag, const char *caller)
163
{
164
	return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
165 166
}

167 168
void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
					dma_addr_t dma_handle, const char *caller)
169
{
170
	hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
171 172
}

173 174
void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
						dma_addr_t *dma_handle, const char *caller)
175
{
176
	return hl_dma_alloc_common(hdev, size, dma_handle, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
177 178
}

179 180
void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
						const char *caller)
181
{
182
	hl_asic_dma_free_common(hdev, size, vaddr, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
183 184
}

185 186
void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
					dma_addr_t *dma_handle, const char *caller)
187
{
188
	return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
189 190
}

191 192
void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
					const char *caller)
193
{
194
	hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct scatterlist *sg;
	int rc, i;

	rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
	if (rc)
		return rc;

	/* Shift to the device's base physical address of host memory if necessary */
	if (prop->device_dma_offset_for_host_access)
		for_each_sgtable_dma_sg(sgt, sg, i)
			sg->dma_address += prop->device_dma_offset_for_host_access;

	return 0;
}

void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct scatterlist *sg;
	int i;

	/* Cancel the device's base physical address of host memory if necessary */
	if (prop->device_dma_offset_for_host_access)
		for_each_sgtable_dma_sg(sgt, sg, i)
			sg->dma_address -= prop->device_dma_offset_for_host_access;

	dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242
/*
 * hl_access_cfg_region - access the config region
 *
 * @hdev: pointer to habanalabs device structure
 * @addr: the address to access
 * @val: the value to write from or read to
 * @acc_type: the type of access (read/write 64/32)
 */
int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
	enum debugfs_access_type acc_type)
{
	struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
	u32 val_h, val_l;

243 244 245 246 247
	if (!IS_ALIGNED(addr, sizeof(u32))) {
		dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
		return -EINVAL;
	}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	switch (acc_type) {
	case DEBUGFS_READ32:
		*val = RREG32(addr - cfg_region->region_base);
		break;
	case DEBUGFS_WRITE32:
		WREG32(addr - cfg_region->region_base, *val);
		break;
	case DEBUGFS_READ64:
		val_l = RREG32(addr - cfg_region->region_base);
		val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);

		*val = (((u64) val_h) << 32) | val_l;
		break;
	case DEBUGFS_WRITE64:
		WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
		WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
		break;
265 266 267
	default:
		dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
		return -EOPNOTSUPP;
268
	}
269

270 271 272 273 274 275 276 277 278 279 280 281
	return 0;
}

/*
 * hl_access_dev_mem - access device memory
 *
 * @hdev: pointer to habanalabs device structure
 * @region_type: the type of the region the address belongs to
 * @addr: the address to access
 * @val: the value to write from or read to
 * @acc_type: the type of access (r/w, 32/64)
 */
282 283
int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
			u64 addr, u64 *val, enum debugfs_access_type acc_type)
284 285 286 287 288 289 290
{
	switch (region_type) {
	case PCI_REGION_CFG:
		return hl_access_cfg_region(hdev, addr, val, acc_type);
	case PCI_REGION_SRAM:
	case PCI_REGION_DRAM:
		return hl_access_sram_dram_region(hdev, addr, val, acc_type,
291
				region_type, (region_type == PCI_REGION_DRAM));
292 293 294 295 296 297 298
	default:
		return -EFAULT;
	}

	return 0;
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
{
	va_list args;
	int str_size;

	va_start(args, fmt);
	/* Calculate formatted string length. Assuming each string is null terminated, hence
	 * increment result by 1
	 */
	str_size = vsnprintf(NULL, 0, fmt, args) + 1;
	va_end(args);

	if ((e->actual_size + str_size) < e->allocated_buf_size) {
		va_start(args, fmt);
		vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
		va_end(args);
	}

	/* Need to update the size even when not updating destination buffer to get the exact size
	 * of all input strings
	 */
	e->actual_size += str_size;
}

323 324 325 326
enum hl_device_status hl_device_status(struct hl_device *hdev)
{
	enum hl_device_status status;

327
	if (hdev->reset_info.in_reset) {
328
		if (hdev->reset_info.in_compute_reset)
329 330 331 332
			status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
		else
			status = HL_DEVICE_STATUS_IN_RESET;
	} else if (hdev->reset_info.needs_reset) {
333
		status = HL_DEVICE_STATUS_NEEDS_RESET;
334
	} else if (hdev->disabled) {
335
		status = HL_DEVICE_STATUS_MALFUNCTION;
336
	} else if (!hdev->init_done) {
337
		status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
338
	} else {
339
		status = HL_DEVICE_STATUS_OPERATIONAL;
340
	}
341 342

	return status;
Oded Gabbay's avatar
Oded Gabbay committed
343
}
344

345 346 347 348 349 350 351 352 353 354 355
bool hl_device_operational(struct hl_device *hdev,
		enum hl_device_status *status)
{
	enum hl_device_status current_status;

	current_status = hl_device_status(hdev);
	if (status)
		*status = current_status;

	switch (current_status) {
	case HL_DEVICE_STATUS_IN_RESET:
356
	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
357 358 359 360
	case HL_DEVICE_STATUS_MALFUNCTION:
	case HL_DEVICE_STATUS_NEEDS_RESET:
		return false;
	case HL_DEVICE_STATUS_OPERATIONAL:
361
	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
362 363 364 365 366
	default:
		return true;
	}
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
bool hl_ctrl_device_operational(struct hl_device *hdev,
		enum hl_device_status *status)
{
	enum hl_device_status current_status;

	current_status = hl_device_status(hdev);
	if (status)
		*status = current_status;

	switch (current_status) {
	case HL_DEVICE_STATUS_MALFUNCTION:
		return false;
	case HL_DEVICE_STATUS_IN_RESET:
	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
	case HL_DEVICE_STATUS_NEEDS_RESET:
	case HL_DEVICE_STATUS_OPERATIONAL:
	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
	default:
		return true;
	}
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static void print_idle_status_mask(struct hl_device *hdev, const char *message,
					u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
{
	u32 pad_width[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {};

	BUILD_BUG_ON(HL_BUSY_ENGINES_MASK_EXT_SIZE != 4);

	pad_width[3] = idle_mask[3] ? 16 : 0;
	pad_width[2] = idle_mask[2] || pad_width[3] ? 16 : 0;
	pad_width[1] = idle_mask[1] || pad_width[2] ? 16 : 0;
	pad_width[0] = idle_mask[0] || pad_width[1] ? 16 : 0;

	dev_err(hdev->dev, "%s (mask %0*llx_%0*llx_%0*llx_%0*llx)\n",
		message, pad_width[3], idle_mask[3], pad_width[2], idle_mask[2],
		pad_width[1], idle_mask[1], pad_width[0], idle_mask[0]);
}

406 407
static void hpriv_release(struct kref *ref)
{
408
	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
409
	bool reset_device, device_is_idle = true;
410 411 412 413 414 415 416
	struct hl_fpriv *hpriv;
	struct hl_device *hdev;

	hpriv = container_of(ref, struct hl_fpriv, refcount);

	hdev = hpriv->hdev;

417 418
	hdev->asic_funcs->send_device_activity(hdev, false);

419 420
	put_pid(hpriv->taskpid);

421 422
	hl_debugfs_remove_file(hpriv);

423
	mutex_destroy(&hpriv->ctx_lock);
424 425
	mutex_destroy(&hpriv->restore_phase_mutex);

426 427 428 429 430
	/* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
	 * reset that waits for device release.
	 */
	reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;

431 432 433 434
	/* Check the device idle status and reset if not idle.
	 * Skip it if already in reset, or if device is going to be reset in any case.
	 */
	if (!hdev->reset_info.in_reset && !reset_device && hdev->pdev && !hdev->pldm)
435 436
		device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
							HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
437
	if (!device_is_idle) {
438 439
		print_idle_status_mask(hdev, "device is not idle after user context is closed",
					idle_mask);
440 441
		reset_device = true;
	}
442

443 444 445 446 447 448 449 450 451 452 453 454 455
	/* We need to remove the user from the list to make sure the reset process won't
	 * try to kill the user process. Because, if we got here, it means there are no
	 * more driver/device resources that the user process is occupying so there is
	 * no need to kill it
	 *
	 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
	 * a race between the release and opening the device again. We don't want to let
	 * a user open the device while there a reset is about to happen.
	 */
	mutex_lock(&hdev->fpriv_list_lock);
	list_del(&hpriv->dev_node);
	mutex_unlock(&hdev->fpriv_list_lock);

456
	if (reset_device) {
457
		hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
458
	} else {
459
		/* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
460 461 462 463 464
		int rc = hdev->asic_funcs->scrub_device_mem(hdev);

		if (rc)
			dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
	}
465

466
	/* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
467
	 * thread, we don't care because the in_reset is marked so if a user will try to open
468
	 * the device it will fail on that, even if compute_ctx is false.
469 470
	 */
	mutex_lock(&hdev->fpriv_list_lock);
471
	hdev->is_compute_ctx_active = false;
472 473
	mutex_unlock(&hdev->fpriv_list_lock);

474 475
	hdev->compute_ctx_in_release = 0;

476
	/* release the eventfd */
477
	if (hpriv->notifier_event.eventfd)
478 479 480 481
		eventfd_ctx_put(hpriv->notifier_event.eventfd);

	mutex_destroy(&hpriv->notifier_event.lock);

482
	kfree(hpriv);
483 484 485 486 487 488 489
}

void hl_hpriv_get(struct hl_fpriv *hpriv)
{
	kref_get(&hpriv->refcount);
}

490
int hl_hpriv_put(struct hl_fpriv *hpriv)
491
{
492
	return kref_put(&hpriv->refcount, hpriv_release);
493 494
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
static void compose_device_in_use_info(char **buf, size_t *buf_size, const char *fmt, ...)
{
	struct va_format vaf;
	va_list args;
	int size;

	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;

	size = snprintf(*buf, *buf_size, "%pV", &vaf);
	if (size >= *buf_size)
		size = *buf_size;

	*buf += size;
	*buf_size -= size;

	va_end(args);
}

static void print_device_in_use_info(struct hl_device *hdev, const char *message)
{
	u32 active_cs_num, dmabuf_export_cnt;
	char buf[64], *buf_ptr = buf;
	size_t buf_size = sizeof(buf);
	bool unknown_reason = true;

	active_cs_num = hl_get_active_cs_num(hdev);
	if (active_cs_num) {
		unknown_reason = false;
		compose_device_in_use_info(&buf_ptr, &buf_size, " [%u active CS]", active_cs_num);
	}

	dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt);
	if (dmabuf_export_cnt) {
		unknown_reason = false;
		compose_device_in_use_info(&buf_ptr, &buf_size, " [%u exported dma-buf]",
						dmabuf_export_cnt);
	}

	if (unknown_reason)
		compose_device_in_use_info(&buf_ptr, &buf_size, " [unknown reason]");

	dev_notice(hdev->dev, "%s%s\n", message, buf);
}

541 542 543 544 545 546 547 548 549 550 551
/*
 * hl_device_release - release function for habanalabs device
 *
 * @inode: pointer to inode structure
 * @filp: pointer to file structure
 *
 * Called when process closes an habanalabs device
 */
static int hl_device_release(struct inode *inode, struct file *filp)
{
	struct hl_fpriv *hpriv = filp->private_data;
552 553 554 555 556 557 558 559 560
	struct hl_device *hdev = hpriv->hdev;

	filp->private_data = NULL;

	if (!hdev) {
		pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
		put_pid(hpriv->taskpid);
		return 0;
	}
561

562
	hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
563
	hl_mem_mgr_fini(&hpriv->mem_mgr);
564

565 566
	hdev->compute_ctx_in_release = 1;

567
	if (!hl_hpriv_put(hpriv)) {
568
		print_device_in_use_info(hdev, "User process closed FD but device still in use");
569 570
		hl_device_reset(hdev, HL_DRV_RESET_HARD);
	}
571

572
	hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif;
573

574 575 576
	return 0;
}

577 578 579
static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
{
	struct hl_fpriv *hpriv = filp->private_data;
580
	struct hl_device *hdev = hpriv->hdev;
581 582 583

	filp->private_data = NULL;

584 585 586 587
	if (!hdev) {
		pr_err("Closing FD after device was removed\n");
		goto out;
	}
588

589
	mutex_lock(&hdev->fpriv_ctrl_list_lock);
590
	list_del(&hpriv->dev_node);
591
	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
592
out:
593
	/* release the eventfd */
594
	if (hpriv->notifier_event.eventfd)
595 596 597
		eventfd_ctx_put(hpriv->notifier_event.eventfd);

	mutex_destroy(&hpriv->notifier_event.lock);
598 599
	put_pid(hpriv->taskpid);

600 601 602 603 604
	kfree(hpriv);

	return 0;
}

605 606 607 608 609 610
/*
 * hl_mmap - mmap function for habanalabs device
 *
 * @*filp: pointer to file structure
 * @*vma: pointer to vm_area_struct of the process
 *
611
 * Called when process does an mmap on habanalabs device. Call the relevant mmap
612 613 614 615 616
 * function at the end of the common code.
 */
static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct hl_fpriv *hpriv = filp->private_data;
617
	struct hl_device *hdev = hpriv->hdev;
618
	unsigned long vm_pgoff;
619

620 621 622 623 624
	if (!hdev) {
		pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
		return -ENODEV;
	}

625 626 627
	vm_pgoff = vma->vm_pgoff;

	switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
628
	case HL_MMAP_TYPE_BLOCK:
629
		vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
630
		return hl_hw_block_mmap(hpriv, vma);
631

632
	case HL_MMAP_TYPE_CB:
633
	case HL_MMAP_TYPE_TS_BUFF:
634
		return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
635
	}
636
	return -EINVAL;
637 638
}

639 640 641
static const struct file_operations hl_ops = {
	.owner = THIS_MODULE,
	.open = hl_device_open,
642 643 644 645
	.release = hl_device_release,
	.mmap = hl_mmap,
	.unlocked_ioctl = hl_ioctl,
	.compat_ioctl = hl_ioctl
646 647
};

648 649 650 651 652 653 654 655
static const struct file_operations hl_ctrl_ops = {
	.owner = THIS_MODULE,
	.open = hl_device_open_ctrl,
	.release = hl_device_release_ctrl,
	.unlocked_ioctl = hl_ioctl_control,
	.compat_ioctl = hl_ioctl_control
};

656 657 658 659 660
static void device_release_func(struct device *dev)
{
	kfree(dev);
}

661
/*
662
 * device_init_cdev - Initialize cdev and device for habanalabs device
663 664
 *
 * @hdev: pointer to habanalabs device structure
665
 * @class: pointer to the class object of the device
666
 * @minor: minor number of the specific device
667 668
 * @fpos: file operations to install for this device
 * @name: name of the device as it will appear in the filesystem
669 670
 * @cdev: pointer to the char device object that will be initialized
 * @dev: pointer to the device object that will be initialized
671
 *
672
 * Initialize a cdev and a Linux device for habanalabs's device.
673
 */
674
static int device_init_cdev(struct hl_device *hdev, struct class *class,
675 676 677
				int minor, const struct file_operations *fops,
				char *name, struct cdev *cdev,
				struct device **dev)
678
{
679 680
	cdev_init(cdev, fops);
	cdev->owner = THIS_MODULE;
681 682 683 684 685 686 687

	*dev = kzalloc(sizeof(**dev), GFP_KERNEL);
	if (!*dev)
		return -ENOMEM;

	device_initialize(*dev);
	(*dev)->devt = MKDEV(hdev->major, minor);
688
	(*dev)->class = class;
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	(*dev)->release = device_release_func;
	dev_set_drvdata(*dev, hdev);
	dev_set_name(*dev, "%s", name);

	return 0;
}

static int device_cdev_sysfs_add(struct hl_device *hdev)
{
	int rc;

	rc = cdev_device_add(&hdev->cdev, hdev->dev);
	if (rc) {
		dev_err(hdev->dev,
			"failed to add a char device to the system\n");
		return rc;
705 706
	}

707 708 709 710 711
	rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
	if (rc) {
		dev_err(hdev->dev,
			"failed to add a control char device to the system\n");
		goto delete_cdev_device;
712 713
	}

714 715 716 717 718 719 720 721
	/* hl_sysfs_init() must be done after adding the device to the system */
	rc = hl_sysfs_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize sysfs\n");
		goto delete_ctrl_cdev_device;
	}

	hdev->cdev_sysfs_created = true;
722 723 724

	return 0;

725 726 727 728 729 730 731 732 733
delete_ctrl_cdev_device:
	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
delete_cdev_device:
	cdev_device_del(&hdev->cdev, hdev->dev);
	return rc;
}

static void device_cdev_sysfs_del(struct hl_device *hdev)
{
734 735
	if (!hdev->cdev_sysfs_created)
		goto put_devices;
736 737 738 739

	hl_sysfs_fini(hdev);
	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
	cdev_device_del(&hdev->cdev, hdev->dev);
740 741 742 743

put_devices:
	put_device(hdev->dev);
	put_device(hdev->dev_ctrl);
744 745
}

746 747 748
static void device_hard_reset_pending(struct work_struct *work)
{
	struct hl_device_reset_work *device_reset_work =
749
		container_of(work, struct hl_device_reset_work, reset_work.work);
750
	struct hl_device *hdev = device_reset_work->hdev;
751
	u32 flags;
752 753
	int rc;

754
	flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
755 756

	rc = hl_device_reset(hdev, flags);
757

758
	if ((rc == -EBUSY) && !hdev->device_fini_pending) {
759 760 761 762 763 764 765 766 767 768 769 770 771 772
		struct hl_ctx *ctx = hl_get_compute_ctx(hdev);

		if (ctx) {
			/* The read refcount value should subtracted by one, because the read is
			 * protected with hl_get_compute_ctx().
			 */
			dev_info(hdev->dev,
				"Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
				kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
			hl_ctx_put(ctx);
		} else {
			dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
				HL_PENDING_RESET_PER_SEC);
		}
773

774 775
		queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
					msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
776 777 778
	}
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792
static void device_release_watchdog_func(struct work_struct *work)
{
	struct hl_device_reset_work *device_release_watchdog_work =
				container_of(work, struct hl_device_reset_work, reset_work.work);
	struct hl_device *hdev = device_release_watchdog_work->hdev;
	u32 flags;

	dev_dbg(hdev->dev, "Device wasn't released in time. Initiate device reset.\n");

	flags = device_release_watchdog_work->flags | HL_DRV_RESET_FROM_WD_THR;

	hl_device_reset(hdev, flags);
}

793 794 795 796 797 798 799 800 801 802
/*
 * device_early_init - do some early initialization for the habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Install the relevant function pointers and call the early_init function,
 * if such a function exists
 */
static int device_early_init(struct hl_device *hdev)
{
803 804
	int i, rc;
	char workq_name[32];
805

806 807
	switch (hdev->asic_type) {
	case ASIC_GOYA:
808
		goya_set_asic_funcs(hdev);
809
		strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
810
		break;
811 812
	case ASIC_GAUDI:
		gaudi_set_asic_funcs(hdev);
813
		strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
814
		break;
815 816 817 818
	case ASIC_GAUDI_SEC:
		gaudi_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
		break;
819 820 821 822
	case ASIC_GAUDI2:
		gaudi2_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
		break;
823 824 825 826
	case ASIC_GAUDI2B:
		gaudi2_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
		break;
827
		break;
828 829 830 831 832 833
	default:
		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
			hdev->asic_type);
		return -EINVAL;
	}

834 835 836 837
	rc = hdev->asic_funcs->early_init(hdev);
	if (rc)
		return rc;

838 839 840 841
	rc = hl_asid_init(hdev);
	if (rc)
		goto early_fini;

842 843
	if (hdev->asic_prop.completion_queues_count) {
		hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
844
				sizeof(struct workqueue_struct *),
845
				GFP_KERNEL);
846 847 848 849 850 851 852
		if (!hdev->cq_wq) {
			rc = -ENOMEM;
			goto asid_fini;
		}
	}

	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
853
		snprintf(workq_name, 32, "hl-free-jobs-%u", (u32) i);
854
		hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
855
		if (hdev->cq_wq[i] == NULL) {
856 857 858 859
			dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
			rc = -ENOMEM;
			goto free_cq_wq;
		}
860 861
	}

862
	hdev->eq_wq = create_singlethread_workqueue("hl-events");
863 864 865 866 867 868
	if (hdev->eq_wq == NULL) {
		dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
		rc = -ENOMEM;
		goto free_cq_wq;
	}

869 870 871 872 873 874 875 876
	hdev->cs_cmplt_wq = alloc_workqueue("hl-cs-completions", WQ_UNBOUND, 0);
	if (!hdev->cs_cmplt_wq) {
		dev_err(hdev->dev,
			"Failed to allocate CS completions workqueue\n");
		rc = -ENOMEM;
		goto free_eq_wq;
	}

877 878
	hdev->ts_free_obj_wq = alloc_workqueue("hl-ts-free-obj", WQ_UNBOUND, 0);
	if (!hdev->ts_free_obj_wq) {
879
		dev_err(hdev->dev,
880
			"Failed to allocate Timestamp registration free workqueue\n");
881
		rc = -ENOMEM;
882
		goto free_cs_cmplt_wq;
883 884
	}

885 886
	hdev->prefetch_wq = alloc_workqueue("hl-prefetch", WQ_UNBOUND, 0);
	if (!hdev->prefetch_wq) {
887 888 889 890 891
		dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
		rc = -ENOMEM;
		goto free_ts_free_wq;
	}

892 893 894 895
	hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info),
					GFP_KERNEL);
	if (!hdev->hl_chip_info) {
		rc = -ENOMEM;
896
		goto free_prefetch_wq;
897 898
	}

899 900
	rc = hl_mmu_if_set_funcs(hdev);
	if (rc)
901
		goto free_chip_info;
902

903
	hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
904

905 906
	hdev->reset_wq = create_singlethread_workqueue("hl_device_reset");
	if (!hdev->reset_wq) {
907 908 909 910 911
		rc = -ENOMEM;
		dev_err(hdev->dev, "Failed to create device reset WQ\n");
		goto free_cb_mgr;
	}

912
	INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
913 914 915
	hdev->device_reset_work.hdev = hdev;
	hdev->device_fini_pending = 0;

916 917 918 919
	INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
				device_release_watchdog_func);
	hdev->device_release_watchdog_work.hdev = hdev;

920
	mutex_init(&hdev->send_cpu_message_lock);
921
	mutex_init(&hdev->debug_lock);
922 923
	INIT_LIST_HEAD(&hdev->cs_mirror_list);
	spin_lock_init(&hdev->cs_mirror_lock);
924
	spin_lock_init(&hdev->reset_info.lock);
925
	INIT_LIST_HEAD(&hdev->fpriv_list);
926
	INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
927
	mutex_init(&hdev->fpriv_list_lock);
928
	mutex_init(&hdev->fpriv_ctrl_list_lock);
929
	mutex_init(&hdev->clk_throttling.lock);
930

931
	return 0;
932

933
free_cb_mgr:
934
	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
935 936
free_chip_info:
	kfree(hdev->hl_chip_info);
937 938
free_prefetch_wq:
	destroy_workqueue(hdev->prefetch_wq);
939 940
free_ts_free_wq:
	destroy_workqueue(hdev->ts_free_obj_wq);
941 942
free_cs_cmplt_wq:
	destroy_workqueue(hdev->cs_cmplt_wq);
943 944
free_eq_wq:
	destroy_workqueue(hdev->eq_wq);
945
free_cq_wq:
946 947 948 949
	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		if (hdev->cq_wq[i])
			destroy_workqueue(hdev->cq_wq[i]);
	kfree(hdev->cq_wq);
950 951
asid_fini:
	hl_asid_fini(hdev);
952 953 954 955 956
early_fini:
	if (hdev->asic_funcs->early_fini)
		hdev->asic_funcs->early_fini(hdev);

	return rc;
957 958 959 960 961 962 963 964 965 966
}

/*
 * device_early_fini - finalize all that was done in device_early_init
 *
 * @hdev: pointer to habanalabs device structure
 *
 */
static void device_early_fini(struct hl_device *hdev)
{
967 968
	int i;

969
	mutex_destroy(&hdev->debug_lock);
970
	mutex_destroy(&hdev->send_cpu_message_lock);
971

972
	mutex_destroy(&hdev->fpriv_list_lock);
973
	mutex_destroy(&hdev->fpriv_ctrl_list_lock);
974

975 976
	mutex_destroy(&hdev->clk_throttling.lock);

977
	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
978

979 980
	kfree(hdev->hl_chip_info);

981
	destroy_workqueue(hdev->prefetch_wq);
982
	destroy_workqueue(hdev->ts_free_obj_wq);
983
	destroy_workqueue(hdev->cs_cmplt_wq);
984
	destroy_workqueue(hdev->eq_wq);
985
	destroy_workqueue(hdev->reset_wq);
986 987 988 989

	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		destroy_workqueue(hdev->cq_wq[i]);
	kfree(hdev->cq_wq);
990

991 992
	hl_asid_fini(hdev);

993 994
	if (hdev->asic_funcs->early_fini)
		hdev->asic_funcs->early_fini(hdev);
995 996
}

997 998 999 1000
static void hl_device_heartbeat(struct work_struct *work)
{
	struct hl_device *hdev = container_of(work, struct hl_device,
						work_heartbeat.work);
1001 1002
	struct hl_info_fw_err_info info = {0};
	u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
1003

1004
	if (!hl_device_operational(hdev, NULL))
1005 1006 1007 1008 1009
		goto reschedule;

	if (!hdev->asic_funcs->send_heartbeat(hdev))
		goto reschedule;

1010 1011 1012
	if (hl_device_operational(hdev, NULL))
		dev_err(hdev->dev, "Device heartbeat failed!\n");

1013 1014 1015 1016
	info.err_type = HL_INFO_FW_HEARTBEAT_ERR;
	info.event_mask = &event_mask;
	hl_handle_fw_err(hdev, &info);
	hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask);
1017 1018 1019 1020

	return;

reschedule:
1021 1022 1023 1024 1025 1026
	/*
	 * prev_reset_trigger tracks consecutive fatal h/w errors until first
	 * heartbeat immediately post reset.
	 * If control reached here, then at least one heartbeat work has been
	 * scheduled since last reset/init cycle.
	 * So if the device is not already in reset cycle, reset the flag
1027
	 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
1028 1029 1030
	 * status for at least one heartbeat. From this point driver restarts
	 * tracking future consecutive fatal errors.
	 */
1031
	if (!hdev->reset_info.in_reset)
1032
		hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1033

1034 1035 1036 1037
	schedule_delayed_work(&hdev->work_heartbeat,
			usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * device_late_init - do late stuff initialization for the habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Do stuff that either needs the device H/W queues to be active or needs
 * to happen after all the rest of the initialization is finished
 */
static int device_late_init(struct hl_device *hdev)
{
	int rc;

1050 1051 1052 1053 1054 1055 1056 1057 1058
	if (hdev->asic_funcs->late_init) {
		rc = hdev->asic_funcs->late_init(hdev);
		if (rc) {
			dev_err(hdev->dev,
				"failed late initialization for the H/W\n");
			return rc;
		}
	}

1059 1060
	hdev->high_pll = hdev->asic_prop.high_pll;

1061 1062 1063 1064 1065 1066
	if (hdev->heartbeat) {
		INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
		schedule_delayed_work(&hdev->work_heartbeat,
				usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
	}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	hdev->late_init_done = true;

	return 0;
}

/*
 * device_late_fini - finalize all that was done in device_late_init
 *
 * @hdev: pointer to habanalabs device structure
 *
 */
static void device_late_fini(struct hl_device *hdev)
{
	if (!hdev->late_init_done)
		return;

1083 1084
	if (hdev->heartbeat)
		cancel_delayed_work_sync(&hdev->work_heartbeat);
1085 1086 1087 1088 1089 1090 1091

	if (hdev->asic_funcs->late_fini)
		hdev->asic_funcs->late_fini(hdev);

	hdev->late_init_done = false;
}

1092
int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
1093
{
1094
	u64 max_power, curr_power, dc_power, dividend, divisor;
1095
	int rc;
1096

1097
	max_power = hdev->max_power;
1098
	dc_power = hdev->asic_prop.dc_power_default;
1099 1100 1101 1102 1103
	divisor = max_power - dc_power;
	if (!divisor) {
		dev_warn(hdev->dev, "device utilization is not supported\n");
		return -EOPNOTSUPP;
	}
1104
	rc = hl_fw_cpucp_power_get(hdev, &curr_power);
1105

1106 1107
	if (rc)
		return rc;
1108

1109
	curr_power = clamp(curr_power, dc_power, max_power);
1110

1111
	dividend = (curr_power - dc_power) * 100;
1112
	*utilization = (u32) div_u64(dividend, divisor);
1113

1114
	return 0;
1115 1116
}

1117
int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	int rc = 0;

	mutex_lock(&hdev->debug_lock);

	if (!enable) {
		if (!hdev->in_debug) {
			dev_err(hdev->dev,
				"Failed to disable debug mode because device was not in debug mode\n");
			rc = -EFAULT;
			goto out;
		}

1131
		if (!hdev->reset_info.hard_reset_pending)
1132
			hdev->asic_funcs->halt_coresight(hdev, ctx);
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		hdev->in_debug = 0;

		goto out;
	}

	if (hdev->in_debug) {
		dev_err(hdev->dev,
			"Failed to enable debug mode because device is already in debug mode\n");
		rc = -EFAULT;
		goto out;
	}

	hdev->in_debug = 1;

out:
	mutex_unlock(&hdev->debug_lock);

	return rc;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void take_release_locks(struct hl_device *hdev)
{
	/* Flush anyone that is inside the critical section of enqueue
	 * jobs to the H/W
	 */
	hdev->asic_funcs->hw_queues_lock(hdev);
	hdev->asic_funcs->hw_queues_unlock(hdev);

	/* Flush processes that are sending message to CPU */
	mutex_lock(&hdev->send_cpu_message_lock);
	mutex_unlock(&hdev->send_cpu_message_lock);

	/* Flush anyone that is inside device open */
	mutex_lock(&hdev->fpriv_list_lock);
	mutex_unlock(&hdev->fpriv_list_lock);
1169 1170
	mutex_lock(&hdev->fpriv_ctrl_list_lock);
	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1171 1172
}

1173 1174
static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
				bool skip_wq_flush)
1175 1176 1177 1178 1179 1180 1181 1182 1183
{
	if (hard_reset)
		device_late_fini(hdev);

	/*
	 * Halt the engines and disable interrupts so we won't get any more
	 * completions from H/W and we won't have any accesses from the
	 * H/W to the host machine
	 */
1184
	hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
1185 1186

	/* Go over all the queues, release all CS and their jobs */
1187
	hl_cs_rollback_all(hdev, skip_wq_flush);
1188

1189
	/* flush the MMU prefetch workqueue */
1190
	flush_workqueue(hdev->prefetch_wq);
1191

1192 1193 1194 1195 1196 1197
	/* Release all pending user interrupts, each pending user interrupt
	 * holds a reference to user context
	 */
	hl_release_pending_user_interrupts(hdev);
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * hl_device_suspend - initiate device suspend
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Puts the hw in the suspend state (all asics).
 * Returns 0 for success or an error on failure.
 * Called at driver suspend.
 */
int hl_device_suspend(struct hl_device *hdev)
{
1209 1210
	int rc;

1211 1212
	pci_save_state(hdev->pdev);

1213
	/* Block future CS/VM/JOB completion operations */
1214 1215 1216
	spin_lock(&hdev->reset_info.lock);
	if (hdev->reset_info.in_reset) {
		spin_unlock(&hdev->reset_info.lock);
1217 1218 1219
		dev_err(hdev->dev, "Can't suspend while in reset\n");
		return -EIO;
	}
1220 1221
	hdev->reset_info.in_reset = 1;
	spin_unlock(&hdev->reset_info.lock);
1222 1223 1224 1225

	/* This blocks all other stuff that is not blocked by in_reset */
	hdev->disabled = true;

1226
	take_release_locks(hdev);
1227

1228 1229 1230 1231 1232
	rc = hdev->asic_funcs->suspend(hdev);
	if (rc)
		dev_err(hdev->dev,
			"Failed to disable PCI access of device CPU\n");

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	/* Shut down the device */
	pci_disable_device(hdev->pdev);
	pci_set_power_state(hdev->pdev, PCI_D3hot);

	return 0;
}

/*
 * hl_device_resume - initiate device resume
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Bring the hw back to operating state (all asics).
 * Returns 0 for success or an error on failure.
 * Called at driver resume.
 */
int hl_device_resume(struct hl_device *hdev)
{
	int rc;

	pci_set_power_state(hdev->pdev, PCI_D0);
	pci_restore_state(hdev->pdev);
1255
	rc = pci_enable_device_mem(hdev->pdev);
1256 1257 1258 1259 1260 1261
	if (rc) {
		dev_err(hdev->dev,
			"Failed to enable PCI device in resume\n");
		return rc;
	}

1262 1263
	pci_set_master(hdev->pdev);

1264 1265
	rc = hdev->asic_funcs->resume(hdev);
	if (rc) {
1266 1267 1268 1269 1270
		dev_err(hdev->dev, "Failed to resume device after suspend\n");
		goto disable_device;
	}


1271 1272 1273
	/* 'in_reset' was set to true during suspend, now we must clear it in order
	 * for hard reset to be performed
	 */
1274
	spin_lock(&hdev->reset_info.lock);
1275
	hdev->reset_info.in_reset = 0;
1276
	spin_unlock(&hdev->reset_info.lock);
1277

1278
	rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
1279 1280 1281
	if (rc) {
		dev_err(hdev->dev, "Failed to reset device during resume\n");
		goto disable_device;
1282 1283
	}

1284
	return 0;
1285 1286 1287 1288 1289 1290

disable_device:
	pci_clear_master(hdev->pdev);
	pci_disable_device(hdev->pdev);

	return rc;
1291 1292
}

1293
static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1294 1295
{
	struct task_struct *task = NULL;
1296 1297 1298
	struct list_head *fd_list;
	struct hl_fpriv	*hpriv;
	struct mutex *fd_lock;
1299
	u32 pending_cnt;
1300

1301 1302
	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1303

1304 1305 1306
	/* Giving time for user to close FD, and for processes that are inside
	 * hl_device_open to finish
	 */
1307
	if (!list_empty(fd_list))
1308 1309
		ssleep(1);

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	if (timeout) {
		pending_cnt = timeout;
	} else {
		if (hdev->process_kill_trial_cnt) {
			/* Processes have been already killed */
			pending_cnt = 1;
			goto wait_for_processes;
		} else {
			/* Wait a small period after process kill */
			pending_cnt = HL_PENDING_RESET_PER_SEC;
		}
	}

1323
	mutex_lock(fd_lock);
1324 1325 1326 1327

	/* This section must be protected because we are dereferencing
	 * pointers that are freed if the process exits
	 */
1328
	list_for_each_entry(hpriv, fd_list, dev_node) {
1329
		task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1330
		if (task) {
1331 1332
			dev_info(hdev->dev, "Killing user process pid=%d\n",
				task_pid_nr(task));
1333
			send_sig(SIGKILL, task, 1);
1334
			usleep_range(1000, 10000);
1335 1336

			put_task_struct(task);
1337
		} else {
1338 1339 1340 1341 1342 1343 1344
			/*
			 * If we got here, it means that process was killed from outside the driver
			 * right after it started looping on fd_list and before get_pid_task, thus
			 * we don't need to kill it.
			 */
			dev_dbg(hdev->dev,
				"Can't get task struct for user process, assuming process was killed from outside the driver\n");
1345 1346 1347
		}
	}

1348
	mutex_unlock(fd_lock);
1349

1350 1351 1352 1353 1354 1355 1356
	/*
	 * We killed the open users, but that doesn't mean they are closed.
	 * It could be that they are running a long cleanup phase in the driver
	 * e.g. MMU unmappings, or running other long teardown flow even before
	 * our cleanup.
	 * Therefore we need to wait again to make sure they are closed before
	 * continuing with the reset.
1357 1358
	 */

1359
wait_for_processes:
1360
	while ((!list_empty(fd_list)) && (pending_cnt)) {
1361 1362
		dev_dbg(hdev->dev,
			"Waiting for all unmap operations to finish before hard reset\n");
1363 1364 1365 1366 1367 1368

		pending_cnt--;

		ssleep(1);
	}

1369
	/* All processes exited successfully */
1370
	if (list_empty(fd_list))
1371
		return 0;
1372

1373 1374 1375
	/* Give up waiting for processes to exit */
	if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
		return -ETIME;
1376

1377
	hdev->process_kill_trial_cnt++;
1378

1379
	return -EBUSY;
1380 1381
}

1382
static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1383
{
1384
	struct list_head *fd_list;
1385
	struct hl_fpriv *hpriv;
1386
	struct mutex *fd_lock;
1387

1388 1389 1390 1391 1392
	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;

	mutex_lock(fd_lock);
	list_for_each_entry(hpriv, fd_list, dev_node)
1393
		hpriv->hdev = NULL;
1394
	mutex_unlock(fd_lock);
1395 1396
}

1397 1398 1399 1400
static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
{
	u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;

1401 1402 1403 1404
	/* No consecutive mechanism when user context exists */
	if (hdev->is_compute_ctx_active)
		return;

1405 1406 1407 1408 1409 1410
	/*
	 * 'reset cause' is being updated here, because getting here
	 * means that it's the 1st time and the last time we're here
	 * ('in_reset' makes sure of it). This makes sure that
	 * 'reset_cause' will continue holding its 1st recorded reason!
	 */
1411
	if (flags & HL_DRV_RESET_HEARTBEAT) {
1412
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1413 1414
		cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
	} else if (flags & HL_DRV_RESET_TDR) {
1415
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1416 1417
		cur_reset_trigger = HL_DRV_RESET_TDR;
	} else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1418
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1419
		cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1420
	} else {
1421
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1422 1423 1424 1425 1426 1427 1428
	}

	/*
	 * If reset cause is same twice, then reset_trigger_repeated
	 * is set and if this reset is due to a fatal FW error
	 * device is set to an unstable state.
	 */
1429 1430 1431
	if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
		hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
		hdev->reset_info.reset_trigger_repeated = 0;
1432
	} else {
1433
		hdev->reset_info.reset_trigger_repeated = 1;
1434 1435 1436 1437 1438 1439 1440 1441
	}

	/* If reset is due to heartbeat, device CPU is no responsive in
	 * which case no point sending PCI disable message to it.
	 *
	 * If F/W is performing the reset, no need to send it a message to disable
	 * PCI access
	 */
1442 1443
	if ((flags & HL_DRV_RESET_HARD) &&
			!(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1444 1445 1446 1447 1448 1449 1450 1451 1452
		/* Disable PCI access from device F/W so he won't send
		 * us additional interrupts. We disable MSI/MSI-X at
		 * the halt_engines function and we can't have the F/W
		 * sending us interrupts after that. We need to disable
		 * the access here because if the device is marked
		 * disable, the message won't be send. Also, in case
		 * of heartbeat, the device CPU is marked as disable
		 * so this message won't be sent
		 */
1453
		if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0))
1454 1455 1456 1457 1458
			dev_warn(hdev->dev,
				"Failed to disable PCI access by F/W\n");
	}
}

1459 1460 1461 1462
/*
 * hl_device_reset - reset the device
 *
 * @hdev: pointer to habanalabs device structure
1463
 * @flags: reset flags.
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
 *
 * Block future CS and wait for pending CS to be enqueued
 * Call ASIC H/W fini
 * Flush all completions
 * Re-initialize all internal data structures
 * Call ASIC H/W init, late_init
 * Test queues
 * Enable device
 *
 * Returns 0 for success or an error on failure.
 */
1475
int hl_device_reset(struct hl_device *hdev, u32 flags)
1476
{
1477
	bool hard_reset, from_hard_reset_thread, fw_reset, hard_instead_soft = false,
1478 1479
			reset_upon_device_release = false, schedule_hard_reset = false,
			delay_reset, from_dev_release, from_watchdog_thread;
1480
	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1481
	struct hl_ctx *ctx;
1482 1483 1484
	int i, rc;

	if (!hdev->init_done) {
1485
		dev_err(hdev->dev, "Can't reset before initialization is done\n");
1486 1487 1488
		return 0;
	}

1489 1490 1491
	hard_reset = !!(flags & HL_DRV_RESET_HARD);
	from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
	fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1492
	from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1493
	delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1494
	from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
1495

1496 1497 1498 1499 1500
	if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
		dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
		return 0;
	}

1501
	if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
1502
		hard_instead_soft = true;
1503 1504 1505
		hard_reset = true;
	}

1506
	if (hdev->reset_upon_device_release && from_dev_release) {
1507 1508 1509 1510 1511 1512
		if (hard_reset) {
			dev_crit(hdev->dev,
				"Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
			return -EINVAL;
		}

1513 1514
		reset_upon_device_release = true;

1515 1516 1517
		goto do_reset;
	}

1518
	if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1519 1520 1521 1522 1523
		hard_instead_soft = true;
		hard_reset = true;
	}

	if (hard_instead_soft)
1524
		dev_dbg(hdev->dev, "Doing hard-reset instead of compute reset\n");
1525 1526

do_reset:
1527 1528 1529 1530
	/* Re-entry of reset thread */
	if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
		goto kill_processes;

1531 1532 1533 1534 1535 1536 1537
	/*
	 * Prevent concurrency in this function - only one reset should be
	 * done at any given time. Only need to perform this if we didn't
	 * get from the dedicated hard reset thread
	 */
	if (!from_hard_reset_thread) {
		/* Block future CS/VM/JOB completion operations */
1538 1539
		spin_lock(&hdev->reset_info.lock);
		if (hdev->reset_info.in_reset) {
1540 1541
			/* We only allow scheduling of a hard reset during compute reset */
			if (hard_reset && hdev->reset_info.in_compute_reset)
1542
				hdev->reset_info.hard_reset_schedule_flags = flags;
1543
			spin_unlock(&hdev->reset_info.lock);
1544
			return 0;
1545
		}
1546 1547

		/* This still allows the completion of some KDMA ops
1548
		 * Update this before in_reset because in_compute_reset implies we are in reset
1549
		 */
1550
		hdev->reset_info.in_compute_reset = !hard_reset;
1551

1552
		hdev->reset_info.in_reset = 1;
1553

1554
		spin_unlock(&hdev->reset_info.lock);
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		/* Cancel the device release watchdog work if required.
		 * In case of reset-upon-device-release while the release watchdog work is
		 * scheduled, do hard-reset instead of compute-reset.
		 */
		if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
			hdev->reset_info.watchdog_active = 0;
			if (!from_watchdog_thread)
				cancel_delayed_work_sync(
						&hdev->device_release_watchdog_work.reset_work);

			if (from_dev_release) {
1567
				hdev->reset_info.in_compute_reset = 0;
1568 1569 1570 1571 1572 1573
				flags |= HL_DRV_RESET_HARD;
				flags &= ~HL_DRV_RESET_DEV_RELEASE;
				hard_reset = true;
			}
		}

1574 1575 1576
		if (delay_reset)
			usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);

1577
		handle_reset_trigger(hdev, flags);
1578

1579 1580 1581
		/* This also blocks future CS/VM/JOB completion operations */
		hdev->disabled = true;

1582
		take_release_locks(hdev);
1583

1584 1585
		if (hard_reset)
			dev_info(hdev->dev, "Going to reset device\n");
1586
		else if (reset_upon_device_release)
1587
			dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1588
		else
1589
			dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1590 1591 1592 1593
	}

again:
	if ((hard_reset) && (!from_hard_reset_thread)) {
1594
		hdev->reset_info.hard_reset_pending = true;
1595

1596
		hdev->process_kill_trial_cnt = 0;
1597

1598
		hdev->device_reset_work.flags = flags;
1599

1600
		/*
1601 1602
		 * Because the reset function can't run from heartbeat work,
		 * we need to call the reset function from a dedicated work.
1603
		 */
1604
		queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
1605 1606 1607 1608

		return 0;
	}

1609
	cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
1610

1611
kill_processes:
1612 1613 1614 1615 1616
	if (hard_reset) {
		/* Kill processes here after CS rollback. This is because the
		 * process can't really exit until all its CSs are done, which
		 * is what we do in cs rollback
		 */
1617
		rc = device_kill_open_processes(hdev, 0, false);
1618 1619 1620 1621

		if (rc == -EBUSY) {
			if (hdev->device_fini_pending) {
				dev_crit(hdev->dev,
1622 1623
					"%s Failed to kill all open processes, stopping hard reset\n",
					dev_name(&(hdev)->pdev->dev));
1624 1625 1626 1627 1628 1629 1630
				goto out_err;
			}

			/* signal reset thread to reschedule */
			return rc;
		}

1631 1632
		if (rc) {
			dev_crit(hdev->dev,
1633 1634
				"%s Failed to kill all open processes, stopping hard reset\n",
				dev_name(&(hdev)->pdev->dev));
1635 1636
			goto out_err;
		}
1637

1638 1639 1640 1641 1642 1643
		/* Flush the Event queue workers to make sure no other thread is
		 * reading or writing to registers during the reset
		 */
		flush_workqueue(hdev->eq_wq);
	}

1644
	/* Reset the H/W. It will be in idle state after this returns */
1645
	hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1646

1647
	if (hard_reset) {
1648
		hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1649

1650
		/* Release kernel context */
1651
		if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1652
			hdev->kernel_ctx = NULL;
1653

1654
		hl_vm_fini(hdev);
1655
		hl_mmu_fini(hdev);
1656
		hl_eq_reset(hdev, &hdev->event_queue);
1657
	}
1658 1659 1660 1661 1662 1663

	/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
	hl_hw_queue_reset(hdev, hard_reset);
	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		hl_cq_reset(hdev, &hdev->completion_queue[i]);

1664
	/* Make sure the context switch phase will run again */
1665 1666 1667 1668 1669
	ctx = hl_get_compute_ctx(hdev);
	if (ctx) {
		atomic_set(&ctx->thread_ctx_switch_token, 1);
		ctx->thread_ctx_switch_wait_token = 0;
		hl_ctx_put(ctx);
1670 1671
	}

1672 1673 1674
	/* Finished tear-down, starting to re-initialize */

	if (hard_reset) {
1675
		hdev->device_cpu_disabled = false;
1676
		hdev->reset_info.hard_reset_pending = false;
1677

1678 1679 1680
		if (hdev->reset_info.reset_trigger_repeated &&
				(hdev->reset_info.prev_reset_trigger ==
						HL_DRV_RESET_FW_FATAL_ERR)) {
1681 1682 1683 1684
			/* if there 2 back to back resets from FW,
			 * ensure driver puts the driver in a unusable state
			 */
			dev_crit(hdev->dev,
1685 1686
				"%s Consecutive FW fatal errors received, stopping hard reset\n",
				dev_name(&(hdev)->pdev->dev));
1687 1688 1689 1690
			rc = -EIO;
			goto out_err;
		}

1691 1692
		if (hdev->kernel_ctx) {
			dev_crit(hdev->dev,
1693 1694
				"%s kernel ctx was alive during hard reset, something is terribly wrong\n",
				dev_name(&(hdev)->pdev->dev));
1695 1696 1697 1698
			rc = -EBUSY;
			goto out_err;
		}

1699 1700 1701 1702 1703 1704 1705
		rc = hl_mmu_init(hdev);
		if (rc) {
			dev_err(hdev->dev,
				"Failed to initialize MMU S/W after hard reset\n");
			goto out_err;
		}

1706 1707 1708 1709 1710
		/* Allocate the kernel context */
		hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
						GFP_KERNEL);
		if (!hdev->kernel_ctx) {
			rc = -ENOMEM;
1711
			hl_mmu_fini(hdev);
1712 1713 1714
			goto out_err;
		}

1715
		hdev->is_compute_ctx_active = false;
1716 1717 1718 1719 1720 1721 1722

		rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
		if (rc) {
			dev_err(hdev->dev,
				"failed to init kernel ctx in hard reset\n");
			kfree(hdev->kernel_ctx);
			hdev->kernel_ctx = NULL;
1723
			hl_mmu_fini(hdev);
1724 1725 1726 1727
			goto out_err;
		}
	}

1728 1729 1730 1731 1732 1733
	/* Device is now enabled as part of the initialization requires
	 * communication with the device firmware to get information that
	 * is required for the initialization itself
	 */
	hdev->disabled = false;

1734 1735 1736 1737 1738 1739 1740
	/* F/W security enabled indication might be updated after hard-reset */
	if (hard_reset) {
		rc = hl_fw_read_preboot_status(hdev);
		if (rc)
			goto out_err;
	}

1741 1742
	rc = hdev->asic_funcs->hw_init(hdev);
	if (rc) {
1743
		dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1744 1745 1746
		goto out_err;
	}

1747 1748
	/* If device is not idle fail the reset process */
	if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1749 1750
						HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
		print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
1751 1752 1753 1754
		rc = -EIO;
		goto out_err;
	}

1755 1756 1757
	/* Check that the communication with the device is working */
	rc = hdev->asic_funcs->test_queues(hdev);
	if (rc) {
1758
		dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1759 1760 1761 1762 1763 1764
		goto out_err;
	}

	if (hard_reset) {
		rc = device_late_init(hdev);
		if (rc) {
1765
			dev_err(hdev->dev, "Failed late init after hard reset\n");
1766 1767 1768
			goto out_err;
		}

1769 1770
		rc = hl_vm_init(hdev);
		if (rc) {
1771
			dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1772 1773 1774
			goto out_err;
		}

1775 1776
		if (!hdev->asic_prop.fw_security_enabled)
			hl_fw_set_max_power(hdev);
1777
	} else {
1778
		rc = hdev->asic_funcs->compute_reset_late_init(hdev);
1779
		if (rc) {
1780 1781 1782 1783
			if (reset_upon_device_release)
				dev_err(hdev->dev,
					"Failed late init in reset after device release\n");
			else
1784
				dev_err(hdev->dev, "Failed late init after compute reset\n");
1785 1786 1787 1788
			goto out_err;
		}
	}

1789 1790 1791
	rc = hdev->asic_funcs->scrub_device_mem(hdev);
	if (rc) {
		dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
1792
		goto out_err;
1793 1794
	}

1795
	spin_lock(&hdev->reset_info.lock);
1796
	hdev->reset_info.in_compute_reset = 0;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	/* Schedule hard reset only if requested and if not already in hard reset.
	 * We keep 'in_reset' enabled, so no other reset can go in during the hard
	 * reset schedule
	 */
	if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
		schedule_hard_reset = true;
	else
		hdev->reset_info.in_reset = 0;

	spin_unlock(&hdev->reset_info.lock);

1809
	hdev->reset_info.needs_reset = false;
1810

1811
	if (hard_reset)
1812 1813 1814
		dev_info(hdev->dev,
			 "Successfully finished resetting the %s device\n",
			 dev_name(&(hdev)->pdev->dev));
1815
	else
1816 1817 1818
		dev_dbg(hdev->dev,
			"Successfully finished resetting the %s device\n",
			dev_name(&(hdev)->pdev->dev));
1819 1820

	if (hard_reset) {
1821
		hdev->reset_info.hard_reset_cnt++;
1822

1823 1824 1825 1826 1827 1828
		/* After reset is done, we are ready to receive events from
		 * the F/W. We can't do it before because we will ignore events
		 * and if those events are fatal, we won't know about it and
		 * the device will be operational although it shouldn't be
		 */
		hdev->asic_funcs->enable_events_from_fw(hdev);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	} else {
		if (!reset_upon_device_release)
			hdev->reset_info.compute_reset_cnt++;

		if (schedule_hard_reset) {
			dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
			flags = hdev->reset_info.hard_reset_schedule_flags;
			hdev->reset_info.hard_reset_schedule_flags = 0;
			hdev->disabled = true;
			hard_reset = true;
			handle_reset_trigger(hdev, flags);
			goto again;
		}
1842 1843
	}

1844 1845 1846 1847
	return 0;

out_err:
	hdev->disabled = true;
1848 1849

	spin_lock(&hdev->reset_info.lock);
1850
	hdev->reset_info.in_compute_reset = 0;
1851 1852

	if (hard_reset) {
1853 1854 1855
		dev_err(hdev->dev,
			"%s Failed to reset! Device is NOT usable\n",
			dev_name(&(hdev)->pdev->dev));
1856
		hdev->reset_info.hard_reset_cnt++;
1857
	} else if (reset_upon_device_release) {
1858
		spin_unlock(&hdev->reset_info.lock);
1859
		dev_err(hdev->dev, "Failed to reset device after user release\n");
1860 1861
		flags |= HL_DRV_RESET_HARD;
		flags &= ~HL_DRV_RESET_DEV_RELEASE;
1862 1863
		hard_reset = true;
		goto again;
1864
	} else {
1865
		spin_unlock(&hdev->reset_info.lock);
1866 1867
		dev_err(hdev->dev, "Failed to do compute reset\n");
		hdev->reset_info.compute_reset_cnt++;
1868
		flags |= HL_DRV_RESET_HARD;
1869 1870 1871 1872
		hard_reset = true;
		goto again;
	}

1873
	hdev->reset_info.in_reset = 0;
1874

1875 1876
	spin_unlock(&hdev->reset_info.lock);

1877 1878 1879
	return rc;
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/*
 * hl_device_cond_reset() - conditionally reset the device.
 * @hdev: pointer to habanalabs device structure.
 * @reset_flags: reset flags.
 * @event_mask: events to notify user about.
 *
 * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
 * unless another reset precedes it.
 */
int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
{
	struct hl_ctx *ctx = NULL;

	/* Device release watchdog is only for hard reset */
	if (!(flags & HL_DRV_RESET_HARD) && hdev->asic_prop.allow_inference_soft_reset)
		goto device_reset;

	/* F/W reset cannot be postponed */
	if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
		goto device_reset;

	/* Device release watchdog is relevant only if user exists and gets a reset notification */
	if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
		dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
		goto device_reset;
	}

	ctx = hl_get_compute_ctx(hdev);
	if (!ctx || !ctx->hpriv->notifier_event.eventfd)
		goto device_reset;

	/* Schedule the device release watchdog work unless reset is already in progress or if the
	 * work is already scheduled.
	 */
	spin_lock(&hdev->reset_info.lock);
	if (hdev->reset_info.in_reset) {
		spin_unlock(&hdev->reset_info.lock);
		goto device_reset;
	}

	if (hdev->reset_info.watchdog_active)
		goto out;

	hdev->device_release_watchdog_work.flags = flags;
	dev_dbg(hdev->dev, "Device is going to be reset in %u sec unless being released\n",
		hdev->device_release_watchdog_timeout_sec);
	schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
				msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
	hdev->reset_info.watchdog_active = 1;
out:
	spin_unlock(&hdev->reset_info.lock);

	hl_notifier_event_send_all(hdev, event_mask);

	hl_ctx_put(ctx);

1936 1937
	hl_abort_waitings_for_completion(hdev);

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	return 0;

device_reset:
	if (event_mask)
		hl_notifier_event_send_all(hdev, event_mask);
	if (ctx)
		hl_ctx_put(ctx);

	return hl_device_reset(hdev, flags);
}

1949
static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
1950 1951
{
	mutex_lock(&notifier_event->lock);
1952 1953
	notifier_event->events_mask |= event_mask;

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (notifier_event->eventfd)
		eventfd_signal(notifier_event->eventfd, 1);

	mutex_unlock(&notifier_event->lock);
}

/*
 * hl_notifier_event_send_all - notify all user processes via eventfd
 *
 * @hdev: pointer to habanalabs device structure
1964
 * @event_mask: the occurred event/s
1965 1966
 * Returns 0 for success or an error on failure.
 */
1967
void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
1968 1969 1970
{
	struct hl_fpriv	*hpriv;

1971 1972 1973 1974 1975
	if (!event_mask) {
		dev_warn(hdev->dev, "Skip sending zero event");
		return;
	}

1976 1977 1978
	mutex_lock(&hdev->fpriv_list_lock);

	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
1979
		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1980 1981 1982 1983 1984 1985 1986

	mutex_unlock(&hdev->fpriv_list_lock);

	/* control device */
	mutex_lock(&hdev->fpriv_ctrl_list_lock);

	list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
1987
		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1988 1989 1990 1991

	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
}

1992
static int create_cdev(struct hl_device *hdev)
1993
{
1994
	char *name;
1995
	int rc;
1996

1997 1998 1999
	hdev->cdev_idx = hdev->id / 2;

	name = kasprintf(GFP_KERNEL, "hl%d", hdev->cdev_idx);
2000 2001
	if (!name) {
		rc = -ENOMEM;
2002
		goto out_err;
2003
	}
2004

2005
	/* Initialize cdev and device structures */
2006
	rc = device_init_cdev(hdev, hdev->hclass, hdev->id, &hl_ops, name,
2007 2008 2009
				&hdev->cdev, &hdev->dev);

	kfree(name);
2010 2011

	if (rc)
2012
		goto out_err;
2013

2014
	name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->cdev_idx);
2015 2016
	if (!name) {
		rc = -ENOMEM;
2017
		goto free_dev;
2018 2019
	}

2020
	/* Initialize cdev and device structures for control device */
2021
	rc = device_init_cdev(hdev, hdev->hclass, hdev->id_control, &hl_ctrl_ops,
2022 2023 2024 2025 2026
				name, &hdev->cdev_ctrl, &hdev->dev_ctrl);

	kfree(name);

	if (rc)
2027
		goto free_dev;
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	return 0;

free_dev:
	put_device(hdev->dev);
out_err:
	return rc;
}

/*
 * hl_device_init - main initialization function for habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Allocate an id for the device, do early initialization and then call the
 * ASIC specific initialization functions. Finally, create the cdev and the
 * Linux device to expose it to the user
 */
2046
int hl_device_init(struct hl_device *hdev)
2047 2048 2049 2050
{
	int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
	bool add_cdev_sysfs_on_err = false;

2051
	rc = create_cdev(hdev);
2052 2053 2054
	if (rc)
		goto out_disabled;

2055 2056 2057
	/* Initialize ASIC function pointers and perform early init */
	rc = device_early_init(hdev);
	if (rc)
2058
		goto free_dev;
2059

2060 2061
	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
				hdev->asic_prop.user_interrupt_count;
2062 2063

	if (user_interrupt_cnt) {
2064 2065
		hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
						GFP_KERNEL);
2066 2067 2068 2069 2070 2071
		if (!hdev->user_interrupt) {
			rc = -ENOMEM;
			goto early_fini;
		}
	}

2072 2073 2074 2075 2076 2077
	/*
	 * Start calling ASIC initialization. First S/W then H/W and finally
	 * late init
	 */
	rc = hdev->asic_funcs->sw_init(hdev);
	if (rc)
2078
		goto free_usr_intr_mem;
2079

2080 2081 2082 2083

	/* initialize completion structure for multi CS wait */
	hl_multi_cs_completion_init(hdev);

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	/*
	 * Initialize the H/W queues. Must be done before hw_init, because
	 * there the addresses of the kernel queue are being written to the
	 * registers of the device
	 */
	rc = hl_hw_queues_create(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize kernel queues\n");
		goto sw_fini;
	}

2095 2096
	cq_cnt = hdev->asic_prop.completion_queues_count;

2097 2098 2099 2100 2101
	/*
	 * Initialize the completion queues. Must be done before hw_init,
	 * because there the addresses of the completion queues are being
	 * passed as arguments to request_irq
	 */
2102 2103 2104 2105
	if (cq_cnt) {
		hdev->completion_queue = kcalloc(cq_cnt,
				sizeof(*hdev->completion_queue),
				GFP_KERNEL);
2106

2107 2108 2109 2110 2111 2112
		if (!hdev->completion_queue) {
			dev_err(hdev->dev,
				"failed to allocate completion queues\n");
			rc = -ENOMEM;
			goto hw_queues_destroy;
		}
2113 2114
	}

2115 2116 2117
	for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
		rc = hl_cq_init(hdev, &hdev->completion_queue[i],
				hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
2118 2119 2120 2121 2122
		if (rc) {
			dev_err(hdev->dev,
				"failed to initialize completion queue\n");
			goto cq_fini;
		}
2123
		hdev->completion_queue[i].cq_idx = i;
2124 2125
	}

2126
	hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
2127
					sizeof(struct hl_cs *), GFP_KERNEL);
2128 2129 2130 2131 2132
	if (!hdev->shadow_cs_queue) {
		rc = -ENOMEM;
		goto cq_fini;
	}

2133 2134 2135 2136 2137 2138 2139 2140
	/*
	 * Initialize the event queue. Must be done before hw_init,
	 * because there the address of the event queue is being
	 * passed as argument to request_irq
	 */
	rc = hl_eq_init(hdev, &hdev->event_queue);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize event queue\n");
2141
		goto free_shadow_cs_queue;
2142 2143
	}

2144 2145 2146 2147 2148 2149 2150
	/* MMU S/W must be initialized before kernel context is created */
	rc = hl_mmu_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
		goto eq_fini;
	}

2151 2152 2153 2154
	/* Allocate the kernel context */
	hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
	if (!hdev->kernel_ctx) {
		rc = -ENOMEM;
2155
		goto mmu_fini;
2156 2157
	}

2158
	hdev->is_compute_ctx_active = false;
2159

2160 2161
	hdev->asic_funcs->state_dump_init(hdev);

2162 2163
	hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;

2164
	hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
2165 2166 2167 2168 2169
	hl_debugfs_add_device(hdev);

	/* debugfs nodes are created in hl_ctx_init so it must be called after
	 * hl_debugfs_add_device.
	 */
2170 2171 2172
	rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize kernel context\n");
2173
		kfree(hdev->kernel_ctx);
2174
		goto remove_device_from_debugfs;
2175 2176
	}

2177 2178 2179 2180 2181 2182
	rc = hl_cb_pool_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize CB pool\n");
		goto release_ctx;
	}

2183 2184 2185 2186 2187 2188
	rc = hl_dec_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize the decoder module\n");
		goto cb_pool_fini;
	}

2189
	/*
2190 2191 2192
	 * From this point, override rc (=0) in case of an error to allow
	 * debugging (by adding char devices and create sysfs nodes as part of
	 * the error flow).
2193 2194 2195
	 */
	add_cdev_sysfs_on_err = true;

2196 2197 2198 2199 2200 2201
	/* Device is now enabled as part of the initialization requires
	 * communication with the device firmware to get information that
	 * is required for the initialization itself
	 */
	hdev->disabled = false;

2202 2203 2204 2205 2206 2207 2208
	rc = hdev->asic_funcs->hw_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize the H/W\n");
		rc = 0;
		goto out_disabled;
	}

2209 2210 2211 2212 2213 2214 2215 2216
	/* Check that the communication with the device is working */
	rc = hdev->asic_funcs->test_queues(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to detect if device is alive\n");
		rc = 0;
		goto out_disabled;
	}

2217 2218 2219 2220 2221 2222 2223 2224 2225
	rc = device_late_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed late initialization\n");
		rc = 0;
		goto out_disabled;
	}

	dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
		hdev->asic_name,
2226
		hdev->asic_prop.dram_size / SZ_1G);
2227

2228 2229 2230 2231 2232 2233 2234
	rc = hl_vm_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize memory module\n");
		rc = 0;
		goto out_disabled;
	}

2235
	/*
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	 * Expose devices and sysfs nodes to user.
	 * From here there is no need to add char devices and create sysfs nodes
	 * in case of an error.
	 */
	add_cdev_sysfs_on_err = false;
	rc = device_cdev_sysfs_add(hdev);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to add char devices and sysfs nodes\n");
		rc = 0;
		goto out_disabled;
	}

2249 2250 2251
	/* Need to call this again because the max power might change,
	 * depending on card type for certain ASICs
	 */
2252 2253
	if (hdev->asic_prop.set_max_power_on_device_init &&
			!hdev->asic_prop.fw_security_enabled)
2254
		hl_fw_set_max_power(hdev);
2255

2256 2257
	/*
	 * hl_hwmon_init() must be called after device_late_init(), because only
2258
	 * there we get the information from the device about which
2259 2260
	 * hwmon-related sensors the device supports.
	 * Furthermore, it must be done after adding the device to the system.
2261 2262 2263 2264 2265 2266 2267 2268
	 */
	rc = hl_hwmon_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize hwmon\n");
		rc = 0;
		goto out_disabled;
	}

2269
	dev_notice(hdev->dev,
2270 2271
		"Successfully added device %s to habanalabs driver\n",
		dev_name(&(hdev)->pdev->dev));
2272

2273 2274
	hdev->init_done = true;

2275 2276 2277 2278 2279 2280 2281
	/* After initialization is done, we are ready to receive events from
	 * the F/W. We can't do it before because we will ignore events and if
	 * those events are fatal, we won't know about it and the device will
	 * be operational although it shouldn't be
	 */
	hdev->asic_funcs->enable_events_from_fw(hdev);

2282 2283
	return 0;

2284 2285
cb_pool_fini:
	hl_cb_pool_fini(hdev);
2286 2287 2288 2289
release_ctx:
	if (hl_ctx_put(hdev->kernel_ctx) != 1)
		dev_err(hdev->dev,
			"kernel ctx is still alive on initialization failure\n");
2290 2291
remove_device_from_debugfs:
	hl_debugfs_remove_device(hdev);
2292 2293
mmu_fini:
	hl_mmu_fini(hdev);
2294 2295
eq_fini:
	hl_eq_fini(hdev, &hdev->event_queue);
2296 2297
free_shadow_cs_queue:
	kfree(hdev->shadow_cs_queue);
2298 2299 2300 2301 2302 2303
cq_fini:
	for (i = 0 ; i < cq_ready_cnt ; i++)
		hl_cq_fini(hdev, &hdev->completion_queue[i]);
	kfree(hdev->completion_queue);
hw_queues_destroy:
	hl_hw_queues_destroy(hdev);
2304 2305
sw_fini:
	hdev->asic_funcs->sw_fini(hdev);
2306
free_usr_intr_mem:
2307
	kfree(hdev->user_interrupt);
2308 2309
early_fini:
	device_early_fini(hdev);
2310
free_dev:
2311
	put_device(hdev->dev_ctrl);
2312
	put_device(hdev->dev);
2313 2314
out_disabled:
	hdev->disabled = true;
2315 2316
	if (add_cdev_sysfs_on_err)
		device_cdev_sysfs_add(hdev);
2317 2318
	if (hdev->pdev)
		dev_err(&hdev->pdev->dev,
2319 2320
			"Failed to initialize hl%d. Device %s is NOT usable !\n",
			hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
2321
	else
2322 2323
		pr_err("Failed to initialize hl%d. Device %s is NOT usable !\n",
			hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

	return rc;
}

/*
 * hl_device_fini - main tear-down function for habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Destroy the device, call ASIC fini functions and release the id
 */
void hl_device_fini(struct hl_device *hdev)
{
2337
	bool device_in_reset;
2338
	ktime_t timeout;
2339
	u64 reset_sec;
2340
	int i, rc;
2341

2342 2343
	dev_info(hdev->dev, "Removing device\n");

2344 2345 2346
	hdev->device_fini_pending = 1;
	flush_delayed_work(&hdev->device_reset_work.reset_work);

2347 2348 2349 2350 2351
	if (hdev->pldm)
		reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
	else
		reset_sec = HL_HARD_RESET_MAX_TIMEOUT;

2352 2353 2354 2355
	/*
	 * This function is competing with the reset function, so try to
	 * take the reset atomic and if we are already in middle of reset,
	 * wait until reset function is finished. Reset function is designed
2356 2357
	 * to always finish. However, in Gaudi, because of all the network
	 * ports, the hard reset could take between 10-30 seconds
2358 2359
	 */

2360
	timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
2361 2362 2363 2364 2365 2366 2367 2368

	spin_lock(&hdev->reset_info.lock);
	device_in_reset = !!hdev->reset_info.in_reset;
	if (!device_in_reset)
		hdev->reset_info.in_reset = 1;
	spin_unlock(&hdev->reset_info.lock);

	while (device_in_reset) {
2369
		usleep_range(50, 200);
2370 2371 2372 2373 2374 2375 2376

		spin_lock(&hdev->reset_info.lock);
		device_in_reset = !!hdev->reset_info.in_reset;
		if (!device_in_reset)
			hdev->reset_info.in_reset = 1;
		spin_unlock(&hdev->reset_info.lock);

2377
		if (ktime_compare(ktime_get(), timeout) > 0) {
2378
			dev_crit(hdev->dev,
2379 2380
				"%s Failed to remove device because reset function did not finish\n",
				dev_name(&(hdev)->pdev->dev));
2381 2382
			return;
		}
2383
	}
2384

2385 2386
	cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);

2387 2388 2389 2390 2391 2392 2393
	/* Disable PCI access from device F/W so it won't send us additional
	 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
	 * can't have the F/W sending us interrupts after that. We need to
	 * disable the access here because if the device is marked disable, the
	 * message won't be send. Also, in case of heartbeat, the device CPU is
	 * marked as disable so this message won't be sent
	 */
2394
	hl_fw_send_pci_access_msg(hdev,	CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2395

2396 2397 2398
	/* Mark device as disabled */
	hdev->disabled = true;

2399
	take_release_locks(hdev);
2400

2401
	hdev->reset_info.hard_reset_pending = true;
2402

2403 2404
	hl_hwmon_fini(hdev);

2405
	cleanup_resources(hdev, true, false, false);
2406

2407 2408 2409 2410
	/* Kill processes here after CS rollback. This is because the process
	 * can't really exit until all its CSs are done, which is what we
	 * do in cs rollback
	 */
2411 2412
	dev_info(hdev->dev,
		"Waiting for all processes to exit (timeout of %u seconds)",
2413
		HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
2414

2415 2416
	hdev->process_kill_trial_cnt = 0;
	rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
2417
	if (rc) {
2418
		dev_crit(hdev->dev, "Failed to kill all open processes\n");
2419 2420 2421
		device_disable_open_processes(hdev, false);
	}

2422
	hdev->process_kill_trial_cnt = 0;
2423 2424 2425 2426
	rc = device_kill_open_processes(hdev, 0, true);
	if (rc) {
		dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
		device_disable_open_processes(hdev, true);
2427
	}
2428

2429 2430
	hl_cb_pool_fini(hdev);

2431
	/* Reset the H/W. It will be in idle state after this returns */
2432
	hdev->asic_funcs->hw_fini(hdev, true, false);
2433

2434
	hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
2435

2436 2437 2438 2439
	/* Release kernel context */
	if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
		dev_err(hdev->dev, "kernel ctx is still alive\n");

2440 2441
	hl_debugfs_remove_device(hdev);

2442 2443
	hl_dec_fini(hdev);

2444 2445
	hl_vm_fini(hdev);

2446 2447
	hl_mmu_fini(hdev);

2448
	vfree(hdev->captured_err_info.page_fault_info.user_mappings);
2449

2450 2451
	hl_eq_fini(hdev, &hdev->event_queue);

2452 2453
	kfree(hdev->shadow_cs_queue);

2454 2455 2456
	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		hl_cq_fini(hdev, &hdev->completion_queue[i]);
	kfree(hdev->completion_queue);
2457
	kfree(hdev->user_interrupt);
2458 2459 2460

	hl_hw_queues_destroy(hdev);

2461 2462 2463
	/* Call ASIC S/W finalize function */
	hdev->asic_funcs->sw_fini(hdev);

2464 2465
	device_early_fini(hdev);

2466 2467
	/* Hide devices and sysfs nodes from user */
	device_cdev_sysfs_del(hdev);
2468 2469 2470 2471

	pr_info("removed device successfully\n");
}

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
/*
 * MMIO register access helper functions.
 */

/*
 * hl_rreg - Read an MMIO register
 *
 * @hdev: pointer to habanalabs device structure
 * @reg: MMIO register offset (in bytes)
 *
 * Returns the value of the MMIO register we are asked to read
 *
 */
inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
{
2487 2488 2489 2490 2491 2492
	u32 val = readl(hdev->rmmio + reg);

	if (unlikely(trace_habanalabs_rreg32_enabled()))
		trace_habanalabs_rreg32(hdev->dev, reg, val);

	return val;
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
}

/*
 * hl_wreg - Write to an MMIO register
 *
 * @hdev: pointer to habanalabs device structure
 * @reg: MMIO register offset (in bytes)
 * @val: 32-bit value
 *
 * Writes the 32-bit value into the MMIO register
 *
 */
inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
{
2507 2508 2509
	if (unlikely(trace_habanalabs_wreg32_enabled()))
		trace_habanalabs_wreg32(hdev->dev, reg, val);

2510 2511
	writel(val, hdev->rmmio + reg);
}
2512 2513 2514 2515

void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
			u8 flags)
{
2516 2517
	struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;

2518 2519 2520 2521 2522 2523 2524 2525
	if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
		dev_err(hdev->dev,
				"Number of possible razwi initiators (%u) exceeded limit (%u)\n",
				num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
		return;
	}

	/* In case it's the first razwi since the device was opened, capture its parameters */
2526
	if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
2527 2528
		return;

2529 2530 2531 2532
	razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
	razwi_info->razwi.addr = addr;
	razwi_info->razwi.num_of_possible_engines = num_of_engines;
	memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
2533
			num_of_engines * sizeof(u16));
2534
	razwi_info->razwi.flags = flags;
2535 2536

	razwi_info->razwi_info_available = true;
2537
}
2538 2539 2540 2541 2542

void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
			u8 flags, u64 *event_mask)
{
	hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
2543 2544 2545

	if (event_mask)
		*event_mask |= HL_NOTIFIER_EVENT_RAZWI;
2546 2547
}

2548
static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
2549
{
2550
	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2551
	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2552 2553
	struct hl_vm_hash_node *hnode;
	struct hl_userptr *userptr;
2554
	enum vm_type *vm_type;
2555 2556 2557 2558
	struct hl_ctx *ctx;
	u32 map_idx = 0;
	int i;

2559 2560 2561
	/* Reset previous session count*/
	pgf_info->num_of_user_mappings = 0;

2562 2563 2564 2565 2566 2567 2568
	ctx = hl_get_compute_ctx(hdev);
	if (!ctx) {
		dev_err(hdev->dev, "Can't get user context for user mappings\n");
		return;
	}

	mutex_lock(&ctx->mem_hash_lock);
2569 2570 2571 2572 2573 2574 2575
	hash_for_each(ctx->mem_hash, i, hnode, node) {
		vm_type = hnode->ptr;
		if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
				((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
			pgf_info->num_of_user_mappings++;

	}
2576 2577 2578 2579 2580 2581 2582 2583 2584

	if (!pgf_info->num_of_user_mappings)
		goto finish;

	/* In case we already allocated in previous session, need to release it before
	 * allocating new buffer.
	 */
	vfree(pgf_info->user_mappings);
	pgf_info->user_mappings =
2585
			vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
2586 2587 2588 2589 2590 2591
	if (!pgf_info->user_mappings) {
		pgf_info->num_of_user_mappings = 0;
		goto finish;
	}

	hash_for_each(ctx->mem_hash, i, hnode, node) {
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		vm_type = hnode->ptr;
		if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
			userptr = hnode->ptr;
			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
			pgf_info->user_mappings[map_idx].size = userptr->size;
			map_idx++;
		} else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
			phys_pg_pack = hnode->ptr;
			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
			pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
			map_idx++;
		}
2604 2605 2606 2607 2608 2609 2610 2611
	}
finish:
	mutex_unlock(&ctx->mem_hash_lock);
	hl_ctx_put(ctx);
}

void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
{
2612 2613
	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;

2614
	/* Capture only the first page fault */
2615
	if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
2616 2617
		return;

2618 2619 2620
	pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
	pgf_info->page_fault.addr = addr;
	pgf_info->page_fault.engine_id = eng_id;
2621
	hl_capture_user_mappings(hdev, is_pmmu);
2622 2623

	pgf_info->page_fault_info_available = true;
2624
}
2625 2626 2627 2628 2629 2630 2631 2632 2633

void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
				u64 *event_mask)
{
	hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);

	if (event_mask)
		*event_mask |=  HL_NOTIFIER_EVENT_PAGE_FAULT;
}
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

void hl_capture_hw_err(struct hl_device *hdev, u16 event_id)
{
	struct hw_err_info *info = &hdev->captured_err_info.hw_err;

	/* Capture only the first HW err */
	if (atomic_cmpxchg(&info->event_detected, 0, 1))
		return;

	info->event.timestamp = ktime_to_ns(ktime_get());
	info->event.event_id = event_id;

	info->event_info_available = true;
}

void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask)
{
	hl_capture_hw_err(hdev, event_id);

	if (event_mask)
		*event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR;
}

void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info)
{
	struct fw_err_info *info = &hdev->captured_err_info.fw_err;

	/* Capture only the first FW error */
	if (atomic_cmpxchg(&info->event_detected, 0, 1))
		return;

	info->event.timestamp = ktime_to_ns(ktime_get());
	info->event.err_type = fw_info->err_type;
	if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR)
		info->event.event_id = fw_info->event_id;

	info->event_info_available = true;
}

void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info)
{
	hl_capture_fw_err(hdev, info);

	if (info->event_mask)
		*info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR;
}