driver.c 64.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// SPDX-License-Identifier: GPL-2.0
/*
 * System Control and Management Interface (SCMI) Message Protocol driver
 *
 * SCMI Message Protocol is used between the System Control Processor(SCP)
 * and the Application Processors(AP). The Message Handling Unit(MHU)
 * provides a mechanism for inter-processor communication between SCP's
 * Cortex M3 and AP.
 *
 * SCP offers control and management of the core/cluster power states,
 * various power domain DVFS including the core/cluster, certain system
 * clocks configuration, thermal sensors and many others.
 *
14
 * Copyright (C) 2018-2021 ARM Ltd.
15 16 17
 */

#include <linux/bitmap.h>
18
#include <linux/device.h>
19
#include <linux/export.h>
20
#include <linux/idr.h>
21 22
#include <linux/io.h>
#include <linux/kernel.h>
23
#include <linux/ktime.h>
24
#include <linux/hashtable.h>
25
#include <linux/list.h>
26 27 28
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
29
#include <linux/processor.h>
30
#include <linux/refcount.h>
31 32 33
#include <linux/slab.h>

#include "common.h"
34
#include "notify.h"
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/scmi.h>

39 40 41 42 43 44 45 46 47 48 49 50 51 52
enum scmi_error_codes {
	SCMI_SUCCESS = 0,	/* Success */
	SCMI_ERR_SUPPORT = -1,	/* Not supported */
	SCMI_ERR_PARAMS = -2,	/* Invalid Parameters */
	SCMI_ERR_ACCESS = -3,	/* Invalid access/permission denied */
	SCMI_ERR_ENTRY = -4,	/* Not found */
	SCMI_ERR_RANGE = -5,	/* Value out of range */
	SCMI_ERR_BUSY = -6,	/* Device busy */
	SCMI_ERR_COMMS = -7,	/* Communication Error */
	SCMI_ERR_GENERIC = -8,	/* Generic Error */
	SCMI_ERR_HARDWARE = -9,	/* Hardware Error */
	SCMI_ERR_PROTOCOL = -10,/* Protocol Error */
};

53
/* List of all SCMI devices active in system */
54 55 56
static LIST_HEAD(scmi_list);
/* Protection for the entire list */
static DEFINE_MUTEX(scmi_list_mutex);
57 58
/* Track the unique id for the transfers for debug & profiling purpose */
static atomic_t transfer_last_id;
59

60 61 62 63 64 65 66 67
static DEFINE_IDR(scmi_requested_devices);
static DEFINE_MUTEX(scmi_requested_devices_mtx);

struct scmi_requested_dev {
	const struct scmi_device_id *id_table;
	struct list_head node;
};

68 69 70 71 72 73 74
/**
 * struct scmi_xfers_info - Structure to manage transfer information
 *
 * @xfer_alloc_table: Bitmap table for allocated messages.
 *	Index of this bitmap table is also used for message
 *	sequence identifier.
 * @xfer_lock: Protection for message allocation
75
 * @max_msg: Maximum number of messages that can be pending
76 77 78 79 80
 * @free_xfers: A free list for available to use xfers. It is initialized with
 *		a number of xfers equal to the maximum allowed in-flight
 *		messages.
 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
 *		   currently in-flight messages.
81 82 83 84
 */
struct scmi_xfers_info {
	unsigned long *xfer_alloc_table;
	spinlock_t xfer_lock;
85
	int max_msg;
86 87
	struct hlist_head free_xfers;
	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
88 89
};

90 91
/**
 * struct scmi_protocol_instance  - Describe an initialized protocol instance.
92
 * @handle: Reference to the SCMI handle associated to this protocol instance.
93 94 95
 * @proto: A reference to the protocol descriptor.
 * @gid: A reference for per-protocol devres management.
 * @users: A refcount to track effective users of this protocol.
96 97 98
 * @priv: Reference for optional protocol private data.
 * @ph: An embedded protocol handle that will be passed down to protocol
 *	initialization code to identify this instance.
99 100 101 102 103
 *
 * Each protocol is initialized independently once for each SCMI platform in
 * which is defined by DT and implemented by the SCMI server fw.
 */
struct scmi_protocol_instance {
104
	const struct scmi_handle	*handle;
105 106 107
	const struct scmi_protocol	*proto;
	void				*gid;
	refcount_t			users;
108 109
	void				*priv;
	struct scmi_protocol_handle	ph;
110 111
};

112 113
#define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)

114
/**
115
 * struct scmi_info - Structure representing a SCMI instance
116 117 118
 *
 * @dev: Device pointer
 * @desc: SoC description for this instance
119 120
 * @version: SCMI revision information containing protocol version,
 *	implementation version and (sub-)vendor identification.
121
 * @handle: Instance of SCMI handle to send to clients
122
 * @tx_minfo: Universal Transmit Message management info
123
 * @rx_minfo: Universal Receive Message management info
124
 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
125
 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
126 127 128 129
 * @protocols: IDR for protocols' instance descriptors initialized for
 *	       this SCMI instance: populated on protocol's first attempted
 *	       usage.
 * @protocols_mtx: A mutex to protect protocols instances initialization.
130
 * @protocols_imp: List of protocols implemented, currently maximum of
131
 *	MAX_PROTOCOLS_IMP elements allocated by the base protocol
132 133
 * @active_protocols: IDR storing device_nodes for protocols actually defined
 *		      in the DT and confirmed as implemented by fw.
134 135 136 137 138 139
 * @atomic_threshold: Optional system wide DT-configured threshold, expressed
 *		      in microseconds, for atomic operations.
 *		      Only SCMI synchronous commands reported by the platform
 *		      to have an execution latency lesser-equal to the threshold
 *		      should be considered for atomic mode operation: such
 *		      decision is finally left up to the SCMI drivers.
140
 * @notify_priv: Pointer to private data structure specific to notifications.
141
 * @node: List head
142 143 144 145 146
 * @users: Number of users of this instance
 */
struct scmi_info {
	struct device *dev;
	const struct scmi_desc *desc;
147
	struct scmi_revision_info version;
148
	struct scmi_handle handle;
149
	struct scmi_xfers_info tx_minfo;
150
	struct scmi_xfers_info rx_minfo;
151
	struct idr tx_idr;
152
	struct idr rx_idr;
153 154 155
	struct idr protocols;
	/* Ensure mutual exclusive access to protocols instance array */
	struct mutex protocols_mtx;
156
	u8 *protocols_imp;
157
	struct idr active_protocols;
158
	unsigned int atomic_threshold;
159
	void *notify_priv;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	struct list_head node;
	int users;
};

#define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)

static const int scmi_linux_errmap[] = {
	/* better than switch case as long as return value is continuous */
	0,			/* SCMI_SUCCESS */
	-EOPNOTSUPP,		/* SCMI_ERR_SUPPORT */
	-EINVAL,		/* SCMI_ERR_PARAM */
	-EACCES,		/* SCMI_ERR_ACCESS */
	-ENOENT,		/* SCMI_ERR_ENTRY */
	-ERANGE,		/* SCMI_ERR_RANGE */
	-EBUSY,			/* SCMI_ERR_BUSY */
	-ECOMM,			/* SCMI_ERR_COMMS */
	-EIO,			/* SCMI_ERR_GENERIC */
	-EREMOTEIO,		/* SCMI_ERR_HARDWARE */
	-EPROTO,		/* SCMI_ERR_PROTOCOL */
};

static inline int scmi_to_linux_errno(int errno)
{
183 184 185 186
	int err_idx = -errno;

	if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap))
		return scmi_linux_errmap[err_idx];
187 188 189
	return -EIO;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
void scmi_notification_instance_data_set(const struct scmi_handle *handle,
					 void *priv)
{
	struct scmi_info *info = handle_to_scmi_info(handle);

	info->notify_priv = priv;
	/* Ensure updated protocol private date are visible */
	smp_wmb();
}

void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
{
	struct scmi_info *info = handle_to_scmi_info(handle);

	/* Ensure protocols_private_data has been updated */
	smp_rmb();
	return info->notify_priv;
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/**
 * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
 *
 * @minfo: Pointer to Tx/Rx Message management info based on channel type
 * @xfer: The xfer to act upon
 *
 * Pick the next unused monotonically increasing token and set it into
 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
 * of incorrect association of a late and expired xfer with a live in-flight
 * transaction, both happening to re-use the same token identifier.
 *
 * Since platform is NOT required to answer our request in-order we should
 * account for a few rare but possible scenarios:
 *
 *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
 *    using find_next_zero_bit() starting from candidate next_token bit
 *
 *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
 *    are plenty of free tokens at start, so try a second pass using
 *    find_next_zero_bit() and starting from 0.
 *
 *  X = used in-flight
 *
 * Normal
 * ------
 *
 *		|- xfer_id picked
 *   -----------+----------------------------------------------------------
 *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
 *   ----------------------------------------------------------------------
 *		^
 *		|- next_token
 *
 * Out-of-order pending at start
 * -----------------------------
 *
 *	  |- xfer_id picked, last_token fixed
 *   -----+----------------------------------------------------------------
 *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
 *   ----------------------------------------------------------------------
 *    ^
 *    |- next_token
 *
 *
 * Out-of-order pending at end
 * ---------------------------
 *
 *	  |- xfer_id picked, last_token fixed
 *   -----+----------------------------------------------------------------
 *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
 *   ----------------------------------------------------------------------
 *								^
 *								|- next_token
 *
 * Context: Assumes to be called with @xfer_lock already acquired.
 *
 * Return: 0 on Success or error
 */
static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
			       struct scmi_xfer *xfer)
{
	unsigned long xfer_id, next_token;

	/*
	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
	 * using the pre-allocated transfer_id as a base.
	 * Note that the global transfer_id is shared across all message types
	 * so there could be holes in the allocated set of monotonic sequence
	 * numbers, but that is going to limit the effectiveness of the
	 * mitigation only in very rare limit conditions.
	 */
	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));

	/* Pick the next available xfer_id >= next_token */
	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
				     MSG_TOKEN_MAX, next_token);
	if (xfer_id == MSG_TOKEN_MAX) {
		/*
		 * After heavily out-of-order responses, there are no free
		 * tokens ahead, but only at start of xfer_alloc_table so
		 * try again from the beginning.
		 */
		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
					     MSG_TOKEN_MAX, 0);
		/*
		 * Something is wrong if we got here since there can be a
		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
		 */
		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
			return -ENOMEM;
	}

	/* Update +/- last_token accordingly if we skipped some hole */
	if (xfer_id != next_token)
		atomic_add((int)(xfer_id - next_token), &transfer_last_id);

	/* Set in-flight */
	set_bit(xfer_id, minfo->xfer_alloc_table);
	xfer->hdr.seq = (u16)xfer_id;

	return 0;
}

/**
 * scmi_xfer_token_clear  - Release the token
 *
 * @minfo: Pointer to Tx/Rx Message management info based on channel type
 * @xfer: The xfer to act upon
 */
static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
					 struct scmi_xfer *xfer)
{
	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
}

326
/**
327
 * scmi_xfer_get() - Allocate one message
328
 *
329
 * @handle: Pointer to SCMI entity handle
330
 * @minfo: Pointer to Tx/Rx Message management info based on channel type
331 332
 * @set_pending: If true a monotonic token is picked and the xfer is added to
 *		 the pending hash table.
333
 *
334
 * Helper function which is used by various message functions that are
335 336
 * exposed to clients of this driver for allocating a message traffic event.
 *
337 338 339 340 341 342 343 344
 * Picks an xfer from the free list @free_xfers (if any available) and, if
 * required, sets a monotonically increasing token and stores the inflight xfer
 * into the @pending_xfers hashtable for later retrieval.
 *
 * The successfully initialized xfer is refcounted.
 *
 * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and
 *	    @free_xfers.
345 346 347
 *
 * Return: 0 if all went fine, else corresponding error.
 */
348
static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
349 350
				       struct scmi_xfers_info *minfo,
				       bool set_pending)
351
{
352 353
	int ret;
	unsigned long flags;
354 355 356
	struct scmi_xfer *xfer;

	spin_lock_irqsave(&minfo->xfer_lock, flags);
357
	if (hlist_empty(&minfo->free_xfers)) {
358 359 360 361
		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
		return ERR_PTR(-ENOMEM);
	}

362 363 364
	/* grab an xfer from the free_list */
	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
	hlist_del_init(&xfer->node);
365

366 367 368 369
	/*
	 * Allocate transfer_id early so that can be used also as base for
	 * monotonic sequence number generation if needed.
	 */
370
	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385
	if (set_pending) {
		/* Pick and set monotonic token */
		ret = scmi_xfer_token_set(minfo, xfer);
		if (!ret) {
			hash_add(minfo->pending_xfers, &xfer->node,
				 xfer->hdr.seq);
			xfer->pending = true;
		} else {
			dev_err(handle->dev,
				"Failed to get monotonic token %d\n", ret);
			hlist_add_head(&xfer->node, &minfo->free_xfers);
			xfer = ERR_PTR(ret);
		}
	}
386 387 388 389 390

	if (!IS_ERR(xfer)) {
		refcount_set(&xfer->users, 1);
		atomic_set(&xfer->busy, SCMI_XFER_FREE);
	}
391 392
	spin_unlock_irqrestore(&minfo->xfer_lock, flags);

393 394 395 396
	return xfer;
}

/**
397
 * __scmi_xfer_put() - Release a message
398
 *
399
 * @minfo: Pointer to Tx/Rx Message management info based on channel type
400
 * @xfer: message that was reserved by scmi_xfer_get
401
 *
402 403 404
 * After refcount check, possibly release an xfer, clearing the token slot,
 * removing xfer from @pending_xfers and putting it back into free_xfers.
 *
405 406
 * This holds a spinlock to maintain integrity of internal data structures.
 */
407 408
static void
__scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
409 410 411 412
{
	unsigned long flags;

	spin_lock_irqsave(&minfo->xfer_lock, flags);
413 414 415 416 417 418 419
	if (refcount_dec_and_test(&xfer->users)) {
		if (xfer->pending) {
			scmi_xfer_token_clear(minfo, xfer);
			hash_del(&xfer->node);
			xfer->pending = false;
		}
		hlist_add_head(&xfer->node, &minfo->free_xfers);
420
	}
421 422 423
	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/**
 * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
 *
 * @minfo: Pointer to Tx/Rx Message management info based on channel type
 * @xfer_id: Token ID to lookup in @pending_xfers
 *
 * Refcounting is untouched.
 *
 * Context: Assumes to be called with @xfer_lock already acquired.
 *
 * Return: A valid xfer on Success or error otherwise
 */
static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
{
	struct scmi_xfer *xfer = NULL;

	if (test_bit(xfer_id, minfo->xfer_alloc_table))
		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);

	return xfer ?: ERR_PTR(-EINVAL);
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/**
 * scmi_msg_response_validate  - Validate message type against state of related
 * xfer
 *
 * @cinfo: A reference to the channel descriptor.
 * @msg_type: Message type to check
 * @xfer: A reference to the xfer to validate against @msg_type
 *
 * This function checks if @msg_type is congruent with the current state of
 * a pending @xfer; if an asynchronous delayed response is received before the
 * related synchronous response (Out-of-Order Delayed Response) the missing
 * synchronous response is assumed to be OK and completed, carrying on with the
 * Delayed Response: this is done to address the case in which the underlying
 * SCMI transport can deliver such out-of-order responses.
 *
 * Context: Assumes to be called with xfer->lock already acquired.
 *
 * Return: 0 on Success, error otherwise
 */
static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
					     u8 msg_type,
					     struct scmi_xfer *xfer)
{
	/*
	 * Even if a response was indeed expected on this slot at this point,
	 * a buggy platform could wrongly reply feeding us an unexpected
	 * delayed response we're not prepared to handle: bail-out safely
	 * blaming firmware.
	 */
	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
		dev_err(cinfo->dev,
			"Delayed Response for %d not expected! Buggy F/W ?\n",
			xfer->hdr.seq);
		return -EINVAL;
	}

	switch (xfer->state) {
	case SCMI_XFER_SENT_OK:
		if (msg_type == MSG_TYPE_DELAYED_RESP) {
			/*
			 * Delayed Response expected but delivered earlier.
			 * Assume message RESPONSE was OK and skip state.
			 */
			xfer->hdr.status = SCMI_SUCCESS;
			xfer->state = SCMI_XFER_RESP_OK;
			complete(&xfer->done);
			dev_warn(cinfo->dev,
				 "Received valid OoO Delayed Response for %d\n",
				 xfer->hdr.seq);
		}
		break;
	case SCMI_XFER_RESP_OK:
		if (msg_type != MSG_TYPE_DELAYED_RESP)
			return -EINVAL;
		break;
	case SCMI_XFER_DRESP_OK:
		/* No further message expected once in SCMI_XFER_DRESP_OK */
		return -EINVAL;
	}

	return 0;
}

/**
 * scmi_xfer_state_update  - Update xfer state
 *
 * @xfer: A reference to the xfer to update
 * @msg_type: Type of message being processed.
 *
 * Note that this message is assumed to have been already successfully validated
 * by @scmi_msg_response_validate(), so here we just update the state.
 *
 * Context: Assumes to be called on an xfer exclusively acquired using the
 *	    busy flag.
 */
static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
{
	xfer->hdr.type = msg_type;

	/* Unknown command types were already discarded earlier */
	if (xfer->hdr.type == MSG_TYPE_COMMAND)
		xfer->state = SCMI_XFER_RESP_OK;
	else
		xfer->state = SCMI_XFER_DRESP_OK;
}

static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
{
	int ret;

	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);

	return ret == SCMI_XFER_FREE;
}

/**
 * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
 *
 * @cinfo: A reference to the channel descriptor.
 * @msg_hdr: A message header to use as lookup key
 *
 * When a valid xfer is found for the sequence number embedded in the provided
 * msg_hdr, reference counting is properly updated and exclusive access to this
 * xfer is granted till released with @scmi_xfer_command_release.
 *
 * Return: A valid @xfer on Success or error otherwise.
 */
static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
{
	int ret;
	unsigned long flags;
	struct scmi_xfer *xfer;
	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
	struct scmi_xfers_info *minfo = &info->tx_minfo;
	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);

	/* Are we even expecting this? */
	spin_lock_irqsave(&minfo->xfer_lock, flags);
	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
	if (IS_ERR(xfer)) {
		dev_err(cinfo->dev,
			"Message for %d type %d is not expected!\n",
			xfer_id, msg_type);
		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
		return xfer;
	}
	refcount_inc(&xfer->users);
	spin_unlock_irqrestore(&minfo->xfer_lock, flags);

	spin_lock_irqsave(&xfer->lock, flags);
	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
	/*
	 * If a pending xfer was found which was also in a congruent state with
	 * the received message, acquire exclusive access to it setting the busy
	 * flag.
	 * Spins only on the rare limit condition of concurrent reception of
	 * RESP and DRESP for the same xfer.
	 */
	if (!ret) {
		spin_until_cond(scmi_xfer_acquired(xfer));
		scmi_xfer_state_update(xfer, msg_type);
	}
	spin_unlock_irqrestore(&xfer->lock, flags);

	if (ret) {
		dev_err(cinfo->dev,
			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
			msg_type, xfer_id, msg_hdr, xfer->state);
		/* On error the refcount incremented above has to be dropped */
		__scmi_xfer_put(minfo, xfer);
		xfer = ERR_PTR(-EINVAL);
	}

	return xfer;
}

static inline void scmi_xfer_command_release(struct scmi_info *info,
					     struct scmi_xfer *xfer)
{
	atomic_set(&xfer->busy, SCMI_XFER_FREE);
	__scmi_xfer_put(&info->tx_minfo, xfer);
}

612 613 614 615 616 617 618
static inline void scmi_clear_channel(struct scmi_info *info,
				      struct scmi_chan_info *cinfo)
{
	if (info->desc->ops->clear_channel)
		info->desc->ops->clear_channel(cinfo);
}

619 620 621 622 623 624 625 626
static inline bool is_polling_required(struct scmi_chan_info *cinfo,
				       struct scmi_info *info)
{
	return cinfo->no_completion_irq || info->desc->force_polling;
}

static inline bool is_transport_polling_capable(struct scmi_info *info)
{
627 628
	return info->desc->ops->poll_done ||
		info->desc->sync_cmds_completed_on_ret;
629 630 631 632 633 634 635 636 637
}

static inline bool is_polling_enabled(struct scmi_chan_info *cinfo,
				      struct scmi_info *info)
{
	return is_polling_required(cinfo, info) &&
		is_transport_polling_capable(info);
}

638 639
static void scmi_handle_notification(struct scmi_chan_info *cinfo,
				     u32 msg_hdr, void *priv)
640
{
641
	struct scmi_xfer *xfer;
642 643 644
	struct device *dev = cinfo->dev;
	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
	struct scmi_xfers_info *minfo = &info->rx_minfo;
645
	ktime_t ts;
646

647
	ts = ktime_get_boottime();
648
	xfer = scmi_xfer_get(cinfo->handle, minfo, false);
649 650 651
	if (IS_ERR(xfer)) {
		dev_err(dev, "failed to get free message slot (%ld)\n",
			PTR_ERR(xfer));
652
		scmi_clear_channel(info, cinfo);
653 654 655 656
		return;
	}

	unpack_scmi_header(msg_hdr, &xfer->hdr);
657
	if (priv)
658 659
		/* Ensure order between xfer->priv store and following ops */
		smp_store_mb(xfer->priv, priv);
660 661
	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
					    xfer);
662 663
	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
664 665 666 667

	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
			   xfer->hdr.protocol_id, xfer->hdr.seq,
			   MSG_TYPE_NOTIFICATION);
668

669 670
	__scmi_xfer_put(minfo, xfer);

671
	scmi_clear_channel(info, cinfo);
672 673
}

674 675
static void scmi_handle_response(struct scmi_chan_info *cinfo,
				 u32 msg_hdr, void *priv)
676 677 678
{
	struct scmi_xfer *xfer;
	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
679

680
	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
681
	if (IS_ERR(xfer)) {
682 683
		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
			scmi_clear_channel(info, cinfo);
684 685
		return;
	}
686

687
	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
688
	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
689 690
		xfer->rx.len = info->desc->max_msg_size;

691
	if (priv)
692 693
		/* Ensure order between xfer->priv store and following ops */
		smp_store_mb(xfer->priv, priv);
694
	info->desc->ops->fetch_response(cinfo, xfer);
695

696 697
	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
			   xfer->hdr.protocol_id, xfer->hdr.seq,
698
			   xfer->hdr.type);
699

700
	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
701
		scmi_clear_channel(info, cinfo);
702
		complete(xfer->async_done);
703
	} else {
704
		complete(&xfer->done);
705
	}
706 707

	scmi_xfer_command_release(info, xfer);
708 709
}

710 711 712 713 714
/**
 * scmi_rx_callback() - callback for receiving messages
 *
 * @cinfo: SCMI channel info
 * @msg_hdr: Message header
715
 * @priv: Transport specific private data.
716 717 718 719 720 721 722
 *
 * Processes one received message to appropriate transfer information and
 * signals completion of the transfer.
 *
 * NOTE: This function will be invoked in IRQ context, hence should be
 * as optimal as possible.
 */
723
void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
724 725 726 727 728
{
	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);

	switch (msg_type) {
	case MSG_TYPE_NOTIFICATION:
729
		scmi_handle_notification(cinfo, msg_hdr, priv);
730 731 732
		break;
	case MSG_TYPE_COMMAND:
	case MSG_TYPE_DELAYED_RESP:
733
		scmi_handle_response(cinfo, msg_hdr, priv);
734 735 736 737 738 739 740
		break;
	default:
		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
		break;
	}
}

741
/**
742
 * xfer_put() - Release a transmit message
743
 *
744
 * @ph: Pointer to SCMI protocol handle
745
 * @xfer: message that was reserved by xfer_get_init
746
 */
747 748
static void xfer_put(const struct scmi_protocol_handle *ph,
		     struct scmi_xfer *xfer)
749
{
750 751
	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
	struct scmi_info *info = handle_to_scmi_info(pi->handle);
752 753 754 755

	__scmi_xfer_put(&info->tx_minfo, xfer);
}

756
static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
757 758
				      struct scmi_xfer *xfer, ktime_t stop)
{
759
	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
760

761 762 763 764
	/*
	 * Poll also on xfer->done so that polling can be forcibly terminated
	 * in case of out-of-order receptions of delayed responses
	 */
765
	return info->desc->ops->poll_done(cinfo, xfer) ||
766
	       try_wait_for_completion(&xfer->done) ||
767
	       ktime_after(ktime_get(), stop);
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 * scmi_wait_for_message_response  - An helper to group all the possible ways of
 * waiting for a synchronous message response.
 *
 * @cinfo: SCMI channel info
 * @xfer: Reference to the transfer being waited for.
 *
 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
 * configuration flags like xfer->hdr.poll_completion.
 *
 * Return: 0 on Success, error otherwise.
 */
static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
					  struct scmi_xfer *xfer)
{
	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
	struct device *dev = info->dev;
	int ret = 0, timeout_ms = info->desc->max_rx_timeout_ms;

789 790 791 792 793
	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
				      xfer->hdr.protocol_id, xfer->hdr.seq,
				      timeout_ms,
				      xfer->hdr.poll_completion);

794
	if (xfer->hdr.poll_completion) {
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/*
		 * Real polling is needed only if transport has NOT declared
		 * itself to support synchronous commands replies.
		 */
		if (!info->desc->sync_cmds_completed_on_ret) {
			/*
			 * Poll on xfer using transport provided .poll_done();
			 * assumes no completion interrupt was available.
			 */
			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);

			spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
								  xfer, stop));
			if (ktime_after(ktime_get(), stop)) {
				dev_err(dev,
					"timed out in resp(caller: %pS) - polling\n",
					(void *)_RET_IP_);
				ret = -ETIMEDOUT;
			}
		}
815

816
		if (!ret) {
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
			unsigned long flags;

			/*
			 * Do not fetch_response if an out-of-order delayed
			 * response is being processed.
			 */
			spin_lock_irqsave(&xfer->lock, flags);
			if (xfer->state == SCMI_XFER_SENT_OK) {
				info->desc->ops->fetch_response(cinfo, xfer);
				xfer->state = SCMI_XFER_RESP_OK;
			}
			spin_unlock_irqrestore(&xfer->lock, flags);
		}
	} else {
		/* And we wait for the response. */
		if (!wait_for_completion_timeout(&xfer->done,
						 msecs_to_jiffies(timeout_ms))) {
			dev_err(dev, "timed out in resp(caller: %pS)\n",
				(void *)_RET_IP_);
			ret = -ETIMEDOUT;
		}
	}

	return ret;
}

843
/**
844
 * do_xfer() - Do one transfer
845
 *
846
 * @ph: Pointer to SCMI protocol handle
847 848 849
 * @xfer: Transfer to initiate and wait for response
 *
 * Return: -ETIMEDOUT in case of no response, if transmit error,
850 851
 *	return corresponding error, else if all goes well,
 *	return 0.
852
 */
853 854
static int do_xfer(const struct scmi_protocol_handle *ph,
		   struct scmi_xfer *xfer)
855 856
{
	int ret;
857 858
	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
	struct scmi_info *info = handle_to_scmi_info(pi->handle);
859
	struct device *dev = info->dev;
860 861
	struct scmi_chan_info *cinfo;

862
	/* Check for polling request on custom command xfers at first */
863
	if (xfer->hdr.poll_completion && !is_transport_polling_capable(info)) {
864 865 866 867 868
		dev_warn_once(dev,
			      "Polling mode is not supported by transport.\n");
		return -EINVAL;
	}

869 870 871 872
	cinfo = idr_find(&info->tx_idr, pi->proto->id);
	if (unlikely(!cinfo))
		return -EINVAL;

873 874 875 876
	/* True ONLY if also supported by transport. */
	if (is_polling_enabled(cinfo, info))
		xfer->hdr.poll_completion = true;

877
	/*
878
	 * Initialise protocol id now from protocol handle to avoid it being
879
	 * overridden by mistake (or malice) by the protocol code mangling with
880
	 * the scmi_xfer structure prior to this.
881 882
	 */
	xfer->hdr.protocol_id = pi->proto->id;
883
	reinit_completion(&xfer->done);
884

885 886 887 888
	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
			      xfer->hdr.protocol_id, xfer->hdr.seq,
			      xfer->hdr.poll_completion);

889 890 891 892 893 894 895 896 897 898
	xfer->state = SCMI_XFER_SENT_OK;
	/*
	 * Even though spinlocking is not needed here since no race is possible
	 * on xfer->state due to the monotonically increasing tokens allocation,
	 * we must anyway ensure xfer->state initialization is not re-ordered
	 * after the .send_message() to be sure that on the RX path an early
	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
	 */
	smp_mb();

899
	ret = info->desc->ops->send_message(cinfo, xfer);
900
	if (ret < 0) {
901
		dev_dbg(dev, "Failed to send message %d\n", ret);
902 903 904
		return ret;
	}

905
	ret = scmi_wait_for_message_response(cinfo, xfer);
906 907 908
	if (!ret && xfer->hdr.status)
		ret = scmi_to_linux_errno(xfer->hdr.status);

909
	if (info->desc->ops->mark_txdone)
910
		info->desc->ops->mark_txdone(cinfo, ret, xfer);
911

912
	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
913
			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
914

915 916 917
	return ret;
}

918 919 920 921 922 923 924 925 926
static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
			      struct scmi_xfer *xfer)
{
	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
	struct scmi_info *info = handle_to_scmi_info(pi->handle);

	xfer->rx.len = info->desc->max_msg_size;
}

927 928 929
#define SCMI_MAX_RESPONSE_TIMEOUT	(2 * MSEC_PER_SEC)

/**
930
 * do_xfer_with_response() - Do one transfer and wait until the delayed
931 932
 *	response is received
 *
933
 * @ph: Pointer to SCMI protocol handle
934 935
 * @xfer: Transfer to initiate and wait for response
 *
936 937 938 939 940 941 942 943 944 945 946 947 948 949
 * Using asynchronous commands in atomic/polling mode should be avoided since
 * it could cause long busy-waiting here, so ignore polling for the delayed
 * response and WARN if it was requested for this command transaction since
 * upper layers should refrain from issuing such kind of requests.
 *
 * The only other option would have been to refrain from using any asynchronous
 * command even if made available, when an atomic transport is detected, and
 * instead forcibly use the synchronous version (thing that can be easily
 * attained at the protocol layer), but this would also have led to longer
 * stalls of the channel for synchronous commands and possibly timeouts.
 * (in other words there is usually a good reason if a platform provides an
 *  asynchronous version of a command and we should prefer to use it...just not
 *  when using atomic/polling mode)
 *
950 951 952
 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
 *	return corresponding error, else if all goes well, return 0.
 */
953 954
static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
				 struct scmi_xfer *xfer)
955 956 957 958 959 960
{
	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
	DECLARE_COMPLETION_ONSTACK(async_response);

	xfer->async_done = &async_response;

961 962 963 964 965 966 967 968
	/*
	 * Delayed responses should not be polled, so an async command should
	 * not have been used when requiring an atomic/poll context; WARN and
	 * perform instead a sleeping wait.
	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
	 */
	WARN_ON_ONCE(xfer->hdr.poll_completion);

969
	ret = do_xfer(ph, xfer);
970
	if (!ret) {
971 972 973 974
		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
			dev_err(ph->dev,
				"timed out in delayed resp(caller: %pS)\n",
				(void *)_RET_IP_);
975
			ret = -ETIMEDOUT;
976
		} else if (xfer->hdr.status) {
977
			ret = scmi_to_linux_errno(xfer->hdr.status);
978
		}
979
	}
980 981 982 983 984

	xfer->async_done = NULL;
	return ret;
}

985
/**
986
 * xfer_get_init() - Allocate and initialise one message for transmit
987
 *
988
 * @ph: Pointer to SCMI protocol handle
989 990 991 992 993
 * @msg_id: Message identifier
 * @tx_size: transmit message size
 * @rx_size: receive message size
 * @p: pointer to the allocated and initialised message
 *
994
 * This function allocates the message using @scmi_xfer_get and
995 996 997 998 999
 * initialise the header.
 *
 * Return: 0 if all went fine with @p pointing to message, else
 *	corresponding error.
 */
1000 1001 1002
static int xfer_get_init(const struct scmi_protocol_handle *ph,
			 u8 msg_id, size_t tx_size, size_t rx_size,
			 struct scmi_xfer **p)
1003 1004 1005
{
	int ret;
	struct scmi_xfer *xfer;
1006 1007
	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1008
	struct scmi_xfers_info *minfo = &info->tx_minfo;
1009 1010 1011 1012 1013 1014 1015
	struct device *dev = info->dev;

	/* Ensure we have sane transfer sizes */
	if (rx_size > info->desc->max_msg_size ||
	    tx_size > info->desc->max_msg_size)
		return -ERANGE;

1016
	xfer = scmi_xfer_get(pi->handle, minfo, true);
1017 1018 1019 1020 1021 1022 1023 1024
	if (IS_ERR(xfer)) {
		ret = PTR_ERR(xfer);
		dev_err(dev, "failed to get free message slot(%d)\n", ret);
		return ret;
	}

	xfer->tx.len = tx_size;
	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1025
	xfer->hdr.type = MSG_TYPE_COMMAND;
1026 1027 1028 1029
	xfer->hdr.id = msg_id;
	xfer->hdr.poll_completion = false;

	*p = xfer;
1030

1031 1032 1033
	return 0;
}

1034
/**
1035
 * version_get() - command to get the revision of the SCMI entity
1036
 *
1037
 * @ph: Pointer to SCMI protocol handle
1038
 * @version: Holds returned version of protocol.
1039 1040 1041 1042 1043
 *
 * Updates the SCMI information in the internal data structure.
 *
 * Return: 0 if all went fine, else return appropriate error.
 */
1044
static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1045 1046 1047 1048 1049
{
	int ret;
	__le32 *rev_info;
	struct scmi_xfer *t;

1050
	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1051 1052 1053
	if (ret)
		return ret;

1054
	ret = do_xfer(ph, t);
1055 1056 1057 1058 1059
	if (!ret) {
		rev_info = t->rx.buf;
		*version = le32_to_cpu(*rev_info);
	}

1060
	xfer_put(ph, t);
1061 1062 1063
	return ret;
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/**
 * scmi_set_protocol_priv  - Set protocol specific data at init time
 *
 * @ph: A reference to the protocol handle.
 * @priv: The private data to set.
 *
 * Return: 0 on Success
 */
static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
				  void *priv)
{
	struct scmi_protocol_instance *pi = ph_to_pi(ph);

	pi->priv = priv;

	return 0;
}

/**
 * scmi_get_protocol_priv  - Set protocol specific data at init time
 *
 * @ph: A reference to the protocol handle.
 *
 * Return: Protocol private data if any was set.
 */
static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
{
	const struct scmi_protocol_instance *pi = ph_to_pi(ph);

	return pi->priv;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104
static const struct scmi_xfer_ops xfer_ops = {
	.version_get = version_get,
	.xfer_get_init = xfer_get_init,
	.reset_rx_to_maxsz = reset_rx_to_maxsz,
	.do_xfer = do_xfer,
	.do_xfer_with_response = do_xfer_with_response,
	.xfer_put = xfer_put,
};

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * scmi_revision_area_get  - Retrieve version memory area.
 *
 * @ph: A reference to the protocol handle.
 *
 * A helper to grab the version memory area reference during SCMI Base protocol
 * initialization.
 *
 * Return: A reference to the version memory area associated to the SCMI
 *	   instance underlying this protocol handle.
 */
struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle *ph)
{
	const struct scmi_protocol_instance *pi = ph_to_pi(ph);

	return pi->handle->version;
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/**
 * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
 * instance descriptor.
 * @info: The reference to the related SCMI instance.
 * @proto: The protocol descriptor.
 *
 * Allocate a new protocol instance descriptor, using the provided @proto
 * description, against the specified SCMI instance @info, and initialize it;
 * all resources management is handled via a dedicated per-protocol devres
 * group.
 *
 * Context: Assumes to be called with @protocols_mtx already acquired.
 * Return: A reference to a freshly allocated and initialized protocol instance
1137 1138
 *	   or ERR_PTR on failure. On failure the @proto reference is at first
 *	   put using @scmi_protocol_put() before releasing all the devres group.
1139 1140 1141 1142 1143 1144 1145 1146
 */
static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info *info,
				  const struct scmi_protocol *proto)
{
	int ret = -ENOMEM;
	void *gid;
	struct scmi_protocol_instance *pi;
1147
	const struct scmi_handle *handle = &info->handle;
1148 1149 1150

	/* Protocol specific devres group */
	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1151 1152
	if (!gid) {
		scmi_protocol_put(proto->id);
1153
		goto out;
1154
	}
1155 1156 1157 1158 1159 1160 1161

	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
	if (!pi)
		goto clean;

	pi->gid = gid;
	pi->proto = proto;
1162 1163
	pi->handle = handle;
	pi->ph.dev = handle->dev;
1164
	pi->ph.xops = &xfer_ops;
1165 1166
	pi->ph.set_priv = scmi_set_protocol_priv;
	pi->ph.get_priv = scmi_get_protocol_priv;
1167 1168
	refcount_set(&pi->users, 1);
	/* proto->init is assured NON NULL by scmi_protocol_register */
1169
	ret = pi->proto->instance_init(&pi->ph);
1170 1171 1172 1173 1174 1175 1176 1177
	if (ret)
		goto clean;

	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
			GFP_KERNEL);
	if (ret != proto->id)
		goto clean;

1178 1179 1180 1181 1182 1183
	/*
	 * Warn but ignore events registration errors since we do not want
	 * to skip whole protocols if their notifications are messed up.
	 */
	if (pi->proto->events) {
		ret = scmi_register_protocol_events(handle, pi->proto->id,
1184
						    &pi->ph,
1185 1186 1187 1188 1189 1190 1191
						    pi->proto->events);
		if (ret)
			dev_warn(handle->dev,
				 "Protocol:%X - Events Registration Failed - err:%d\n",
				 pi->proto->id, ret);
	}

1192 1193 1194 1195 1196 1197
	devres_close_group(handle->dev, pi->gid);
	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);

	return pi;

clean:
1198 1199
	/* Take care to put the protocol module's owner before releasing all */
	scmi_protocol_put(proto->id);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	devres_release_group(handle->dev, gid);
out:
	return ERR_PTR(ret);
}

/**
 * scmi_get_protocol_instance  - Protocol initialization helper.
 * @handle: A reference to the SCMI platform instance.
 * @protocol_id: The protocol being requested.
 *
 * In case the required protocol has never been requested before for this
 * instance, allocate and initialize all the needed structures while handling
 * resource allocation with a dedicated per-protocol devres subgroup.
 *
1214 1215 1216
 * Return: A reference to an initialized protocol instance or error on failure:
 *	   in particular returns -EPROBE_DEFER when the desired protocol could
 *	   NOT be found.
1217 1218
 */
static struct scmi_protocol_instance * __must_check
1219
scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	struct scmi_protocol_instance *pi;
	struct scmi_info *info = handle_to_scmi_info(handle);

	mutex_lock(&info->protocols_mtx);
	pi = idr_find(&info->protocols, protocol_id);

	if (pi) {
		refcount_inc(&pi->users);
	} else {
		const struct scmi_protocol *proto;

		/* Fails if protocol not registered on bus */
		proto = scmi_protocol_get(protocol_id);
		if (proto)
			pi = scmi_alloc_init_protocol_instance(info, proto);
		else
1237
			pi = ERR_PTR(-EPROBE_DEFER);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	}
	mutex_unlock(&info->protocols_mtx);

	return pi;
}

/**
 * scmi_protocol_acquire  - Protocol acquire
 * @handle: A reference to the SCMI platform instance.
 * @protocol_id: The protocol being requested.
 *
 * Register a new user for the requested protocol on the specified SCMI
 * platform instance, possibly triggering its initialization on first user.
 *
 * Return: 0 if protocol was acquired successfully.
 */
1254
int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
{
	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
}

/**
 * scmi_protocol_release  - Protocol de-initialization helper.
 * @handle: A reference to the SCMI platform instance.
 * @protocol_id: The protocol being requested.
 *
 * Remove one user for the specified protocol and triggers de-initialization
 * and resources de-allocation once the last user has gone.
 */
1267
void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
{
	struct scmi_info *info = handle_to_scmi_info(handle);
	struct scmi_protocol_instance *pi;

	mutex_lock(&info->protocols_mtx);
	pi = idr_find(&info->protocols, protocol_id);
	if (WARN_ON(!pi))
		goto out;

	if (refcount_dec_and_test(&pi->users)) {
		void *gid = pi->gid;

1280 1281 1282
		if (pi->proto->events)
			scmi_deregister_protocol_events(handle, protocol_id);

1283
		if (pi->proto->instance_deinit)
1284
			pi->proto->instance_deinit(&pi->ph);
1285 1286 1287

		idr_remove(&info->protocols, protocol_id);

1288 1289
		scmi_protocol_put(protocol_id);

1290 1291 1292 1293 1294 1295 1296 1297 1298
		devres_release_group(handle->dev, gid);
		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
			protocol_id);
	}

out:
	mutex_unlock(&info->protocols_mtx);
}

1299
void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1300 1301
				     u8 *prot_imp)
{
1302 1303
	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1304 1305 1306 1307

	info->protocols_imp = prot_imp;
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static bool
scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
{
	int i;
	struct scmi_info *info = handle_to_scmi_info(handle);

	if (!info->protocols_imp)
		return false;

	for (i = 0; i < MAX_PROTOCOLS_IMP; i++)
		if (info->protocols_imp[i] == prot_id)
			return true;
	return false;
}

1323
struct scmi_protocol_devres {
1324
	const struct scmi_handle *handle;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	u8 protocol_id;
};

static void scmi_devm_release_protocol(struct device *dev, void *res)
{
	struct scmi_protocol_devres *dres = res;

	scmi_protocol_release(dres->handle, dres->protocol_id);
}

/**
 * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
 * @sdev: A reference to an scmi_device whose embedded struct device is to
 *	  be used for devres accounting.
 * @protocol_id: The protocol being requested.
 * @ph: A pointer reference used to pass back the associated protocol handle.
 *
 * Get hold of a protocol accounting for its usage, eventually triggering its
 * initialization, and returning the protocol specific operations and related
 * protocol handle which will be used as first argument in most of the
 * protocols operations methods.
 * Being a devres based managed method, protocol hold will be automatically
 * released, and possibly de-initialized on last user, once the SCMI driver
 * owning the scmi_device is unbound from it.
 *
 * Return: A reference to the requested protocol operations or error.
 *	   Must be checked for errors by caller.
 */
static const void __must_check *
scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
		       struct scmi_protocol_handle **ph)
{
	struct scmi_protocol_instance *pi;
	struct scmi_protocol_devres *dres;
	struct scmi_handle *handle = sdev->handle;

	if (!ph)
		return ERR_PTR(-EINVAL);

	dres = devres_alloc(scmi_devm_release_protocol,
			    sizeof(*dres), GFP_KERNEL);
	if (!dres)
		return ERR_PTR(-ENOMEM);

	pi = scmi_get_protocol_instance(handle, protocol_id);
	if (IS_ERR(pi)) {
		devres_free(dres);
		return pi;
	}

	dres->handle = handle;
	dres->protocol_id = protocol_id;
	devres_add(&sdev->dev, dres);

	*ph = &pi->ph;

	return pi->proto->ops;
}

static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
{
	struct scmi_protocol_devres *dres = res;

	if (WARN_ON(!dres || !data))
		return 0;

	return dres->protocol_id == *((u8 *)data);
}

/**
 * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
 * @sdev: A reference to an scmi_device whose embedded struct device is to
 *	  be used for devres accounting.
 * @protocol_id: The protocol being requested.
 *
 * Explicitly release a protocol hold previously obtained calling the above
 * @scmi_devm_protocol_get.
 */
static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
{
	int ret;

	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
			     scmi_devm_protocol_match, &protocol_id);
	WARN_ON(ret);
}

1412 1413 1414 1415 1416
/**
 * scmi_is_transport_atomic  - Method to check if underlying transport for an
 * SCMI instance is configured as atomic.
 *
 * @handle: A reference to the SCMI platform instance.
1417 1418
 * @atomic_threshold: An optional return value for the system wide currently
 *		      configured threshold for atomic operations.
1419 1420 1421
 *
 * Return: True if transport is configured as atomic
 */
1422 1423
static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
				     unsigned int *atomic_threshold)
1424
{
1425
	bool ret;
1426 1427
	struct scmi_info *info = handle_to_scmi_info(handle);

1428 1429 1430 1431 1432
	ret = info->desc->atomic_enabled && is_transport_polling_capable(info);
	if (ret && atomic_threshold)
		*atomic_threshold = info->atomic_threshold;

	return ret;
1433 1434
}

1435 1436 1437 1438 1439 1440 1441
static inline
struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info)
{
	info->users++;
	return &info->handle;
}

1442
/**
1443
 * scmi_handle_get() - Get the SCMI handle for a device
1444 1445 1446 1447
 *
 * @dev: pointer to device for which we want SCMI handle
 *
 * NOTE: The function does not track individual clients of the framework
1448
 * and is expected to be maintained by caller of SCMI protocol library.
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
 * scmi_handle_put must be balanced with successful scmi_handle_get
 *
 * Return: pointer to handle if successful, NULL on error
 */
struct scmi_handle *scmi_handle_get(struct device *dev)
{
	struct list_head *p;
	struct scmi_info *info;
	struct scmi_handle *handle = NULL;

	mutex_lock(&scmi_list_mutex);
	list_for_each(p, &scmi_list) {
		info = list_entry(p, struct scmi_info, node);
		if (dev->parent == info->dev) {
1463
			handle = scmi_handle_get_from_info_unlocked(info);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
			break;
		}
	}
	mutex_unlock(&scmi_list_mutex);

	return handle;
}

/**
 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
 *
 * @handle: handle acquired by scmi_handle_get
 *
 * NOTE: The function does not track individual clients of the framework
1478
 * and is expected to be maintained by caller of SCMI protocol library.
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
 * scmi_handle_put must be balanced with successful scmi_handle_get
 *
 * Return: 0 is successfully released
 *	if null was passed, it returns -EINVAL;
 */
int scmi_handle_put(const struct scmi_handle *handle)
{
	struct scmi_info *info;

	if (!handle)
		return -EINVAL;

	info = handle_to_scmi_info(handle);
	mutex_lock(&scmi_list_mutex);
	if (!WARN_ON(!info->users))
		info->users--;
	mutex_unlock(&scmi_list_mutex);

	return 0;
}

1500 1501
static int __scmi_xfer_info_init(struct scmi_info *sinfo,
				 struct scmi_xfers_info *info)
1502 1503 1504 1505 1506 1507 1508
{
	int i;
	struct scmi_xfer *xfer;
	struct device *dev = sinfo->dev;
	const struct scmi_desc *desc = sinfo->desc;

	/* Pre-allocated messages, no more than what hdr.seq can support */
1509
	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
1510 1511
		dev_err(dev,
			"Invalid maximum messages %d, not in range [1 - %lu]\n",
1512
			info->max_msg, MSG_TOKEN_MAX);
1513 1514 1515
		return -EINVAL;
	}

1516
	hash_init(info->pending_xfers);
1517

1518 1519
	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
	info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX),
1520 1521 1522 1523
					      sizeof(long), GFP_KERNEL);
	if (!info->xfer_alloc_table)
		return -ENOMEM;

1524 1525 1526 1527 1528 1529
	/*
	 * Preallocate a number of xfers equal to max inflight messages,
	 * pre-initialize the buffer pointer to pre-allocated buffers and
	 * attach all of them to the free list
	 */
	INIT_HLIST_HEAD(&info->free_xfers);
1530
	for (i = 0; i < info->max_msg; i++) {
1531 1532 1533 1534
		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
		if (!xfer)
			return -ENOMEM;

1535 1536 1537 1538 1539 1540 1541
		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
					    GFP_KERNEL);
		if (!xfer->rx.buf)
			return -ENOMEM;

		xfer->tx.buf = xfer->rx.buf;
		init_completion(&xfer->done);
1542
		spin_lock_init(&xfer->lock);
1543 1544 1545

		/* Add initialized xfer to the free list */
		hlist_add_head(&xfer->node, &info->free_xfers);
1546 1547 1548 1549 1550 1551 1552
	}

	spin_lock_init(&info->xfer_lock);

	return 0;
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
{
	const struct scmi_desc *desc = sinfo->desc;

	if (!desc->ops->get_max_msg) {
		sinfo->tx_minfo.max_msg = desc->max_msg;
		sinfo->rx_minfo.max_msg = desc->max_msg;
	} else {
		struct scmi_chan_info *base_cinfo;

		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
		if (!base_cinfo)
			return -EINVAL;
		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);

		/* RX channel is optional so can be skipped */
		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
		if (base_cinfo)
			sinfo->rx_minfo.max_msg =
				desc->ops->get_max_msg(base_cinfo);
	}

	return 0;
}

1578 1579
static int scmi_xfer_info_init(struct scmi_info *sinfo)
{
1580 1581 1582 1583 1584
	int ret;

	ret = scmi_channels_max_msg_configure(sinfo);
	if (ret)
		return ret;
1585

1586
	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
1587 1588 1589 1590 1591 1592
	if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE))
		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);

	return ret;
}

1593 1594
static int scmi_chan_setup(struct scmi_info *info, struct device *dev,
			   int prot_id, bool tx)
1595
{
1596
	int ret, idx;
1597
	struct scmi_chan_info *cinfo;
1598
	struct idr *idr;
1599 1600 1601

	/* Transmit channel is first entry i.e. index 0 */
	idx = tx ? 0 : 1;
1602
	idr = tx ? &info->tx_idr : &info->rx_idr;
1603

1604 1605 1606 1607 1608
	/* check if already allocated, used for multiple device per protocol */
	cinfo = idr_find(idr, prot_id);
	if (cinfo)
		return 0;

1609
	if (!info->desc->ops->chan_available(dev, idx)) {
1610 1611 1612
		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
			return -EINVAL;
1613 1614 1615
		goto idr_alloc;
	}

1616 1617 1618 1619 1620 1621
	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
	if (!cinfo)
		return -ENOMEM;

	cinfo->dev = dev;

1622 1623
	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
	if (ret)
1624 1625
		return ret;

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (tx && is_polling_required(cinfo, info)) {
		if (is_transport_polling_capable(info))
			dev_info(dev,
				 "Enabled polling mode TX channel - prot_id:%d\n",
				 prot_id);
		else
			dev_warn(dev,
				 "Polling mode NOT supported by transport.\n");
	}

1636
idr_alloc:
1637
	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
1638 1639 1640 1641 1642 1643
	if (ret != prot_id) {
		dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret);
		return ret;
	}

	cinfo->handle = &info->handle;
1644 1645 1646
	return 0;
}

1647
static inline int
1648
scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id)
1649
{
1650
	int ret = scmi_chan_setup(info, dev, prot_id, true);
1651 1652

	if (!ret) /* Rx is optional, hence no error check */
1653
		scmi_chan_setup(info, dev, prot_id, false);
1654 1655 1656 1657

	return ret;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/**
 * scmi_get_protocol_device  - Helper to get/create an SCMI device.
 *
 * @np: A device node representing a valid active protocols for the referred
 * SCMI instance.
 * @info: The referred SCMI instance for which we are getting/creating this
 * device.
 * @prot_id: The protocol ID.
 * @name: The device name.
 *
 * Referring to the specific SCMI instance identified by @info, this helper
 * takes care to return a properly initialized device matching the requested
 * @proto_id and @name: if device was still not existent it is created as a
 * child of the specified SCMI instance @info and its transport properly
 * initialized as usual.
1673 1674
 *
 * Return: A properly initialized scmi device, NULL otherwise.
1675 1676 1677 1678
 */
static inline struct scmi_device *
scmi_get_protocol_device(struct device_node *np, struct scmi_info *info,
			 int prot_id, const char *name)
1679 1680 1681
{
	struct scmi_device *sdev;

1682 1683 1684 1685 1686 1687 1688
	/* Already created for this parent SCMI instance ? */
	sdev = scmi_child_dev_find(info->dev, prot_id, name);
	if (sdev)
		return sdev;

	pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id);

1689
	sdev = scmi_device_create(np, info->dev, prot_id, name);
1690 1691 1692
	if (!sdev) {
		dev_err(info->dev, "failed to create %d protocol device\n",
			prot_id);
1693
		return NULL;
1694 1695
	}

1696
	if (scmi_txrx_setup(info, &sdev->dev, prot_id)) {
1697 1698
		dev_err(&sdev->dev, "failed to setup transport\n");
		scmi_device_destroy(sdev);
1699
		return NULL;
1700 1701
	}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	return sdev;
}

static inline void
scmi_create_protocol_device(struct device_node *np, struct scmi_info *info,
			    int prot_id, const char *name)
{
	struct scmi_device *sdev;

	sdev = scmi_get_protocol_device(np, info, prot_id, name);
	if (!sdev)
		return;

1715 1716 1717 1718
	/* setup handle now as the transport is ready */
	scmi_set_handle(sdev);
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
/**
 * scmi_create_protocol_devices  - Create devices for all pending requests for
 * this SCMI instance.
 *
 * @np: The device node describing the protocol
 * @info: The SCMI instance descriptor
 * @prot_id: The protocol ID
 *
 * All devices previously requested for this instance (if any) are found and
 * created by scanning the proper @&scmi_requested_devices entry.
 */
static void scmi_create_protocol_devices(struct device_node *np,
					 struct scmi_info *info, int prot_id)
{
	struct list_head *phead;
1734

1735 1736 1737 1738
	mutex_lock(&scmi_requested_devices_mtx);
	phead = idr_find(&scmi_requested_devices, prot_id);
	if (phead) {
		struct scmi_requested_dev *rdev;
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		list_for_each_entry(rdev, phead, node)
			scmi_create_protocol_device(np, info, prot_id,
						    rdev->id_table->name);
	}
	mutex_unlock(&scmi_requested_devices_mtx);
}

/**
 * scmi_protocol_device_request  - Helper to request a device
 *
 * @id_table: A protocol/name pair descriptor for the device to be created.
 *
 * This helper let an SCMI driver request specific devices identified by the
 * @id_table to be created for each active SCMI instance.
 *
 * The requested device name MUST NOT be already existent for any protocol;
 * at first the freshly requested @id_table is annotated in the IDR table
 * @scmi_requested_devices, then a matching device is created for each already
 * active SCMI instance. (if any)
 *
 * This way the requested device is created straight-away for all the already
 * initialized(probed) SCMI instances (handles) and it remains also annotated
 * as pending creation if the requesting SCMI driver was loaded before some
 * SCMI instance and related transports were available: when such late instance
 * is probed, its probe will take care to scan the list of pending requested
 * devices and create those on its own (see @scmi_create_protocol_devices and
 * its enclosing loop)
 *
 * Return: 0 on Success
 */
int scmi_protocol_device_request(const struct scmi_device_id *id_table)
1771
{
1772 1773 1774 1775 1776
	int ret = 0;
	unsigned int id = 0;
	struct list_head *head, *phead = NULL;
	struct scmi_requested_dev *rdev;
	struct scmi_info *info;
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	pr_debug("Requesting SCMI device (%s) for protocol %x\n",
		 id_table->name, id_table->protocol_id);

	/*
	 * Search for the matching protocol rdev list and then search
	 * of any existent equally named device...fails if any duplicate found.
	 */
	mutex_lock(&scmi_requested_devices_mtx);
	idr_for_each_entry(&scmi_requested_devices, head, id) {
		if (!phead) {
			/* A list found registered in the IDR is never empty */
			rdev = list_first_entry(head, struct scmi_requested_dev,
						node);
			if (rdev->id_table->protocol_id ==
			    id_table->protocol_id)
				phead = head;
		}
		list_for_each_entry(rdev, head, node) {
			if (!strcmp(rdev->id_table->name, id_table->name)) {
				pr_err("Ignoring duplicate request [%d] %s\n",
				       rdev->id_table->protocol_id,
				       rdev->id_table->name);
				ret = -EINVAL;
				goto out;
			}
		}
	}

	/*
	 * No duplicate found for requested id_table, so let's create a new
	 * requested device entry for this new valid request.
	 */
	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
	if (!rdev) {
		ret = -ENOMEM;
		goto out;
	}
	rdev->id_table = id_table;

	/*
	 * Append the new requested device table descriptor to the head of the
	 * related protocol list, eventually creating such head if not already
	 * there.
	 */
	if (!phead) {
		phead = kzalloc(sizeof(*phead), GFP_KERNEL);
		if (!phead) {
			kfree(rdev);
			ret = -ENOMEM;
			goto out;
		}
		INIT_LIST_HEAD(phead);

		ret = idr_alloc(&scmi_requested_devices, (void *)phead,
				id_table->protocol_id,
				id_table->protocol_id + 1, GFP_KERNEL);
		if (ret != id_table->protocol_id) {
			pr_err("Failed to save SCMI device - ret:%d\n", ret);
			kfree(rdev);
			kfree(phead);
			ret = -EINVAL;
			goto out;
		}
		ret = 0;
	}
	list_add(&rdev->node, phead);

	/*
	 * Now effectively create and initialize the requested device for every
	 * already initialized SCMI instance which has registered the requested
	 * protocol as a valid active one: i.e. defined in DT and supported by
	 * current platform FW.
	 */
	mutex_lock(&scmi_list_mutex);
	list_for_each_entry(info, &scmi_list, node) {
		struct device_node *child;

		child = idr_find(&info->active_protocols,
				 id_table->protocol_id);
		if (child) {
			struct scmi_device *sdev;

			sdev = scmi_get_protocol_device(child, info,
							id_table->protocol_id,
							id_table->name);
			/* Set handle if not already set: device existed */
			if (sdev && !sdev->handle)
				sdev->handle =
					scmi_handle_get_from_info_unlocked(info);
		} else {
			dev_err(info->dev,
				"Failed. SCMI protocol %d not active.\n",
				id_table->protocol_id);
		}
	}
	mutex_unlock(&scmi_list_mutex);

out:
	mutex_unlock(&scmi_requested_devices_mtx);
1877

1878 1879
	return ret;
}
1880

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/**
 * scmi_protocol_device_unrequest  - Helper to unrequest a device
 *
 * @id_table: A protocol/name pair descriptor for the device to be unrequested.
 *
 * An helper to let an SCMI driver release its request about devices; note that
 * devices are created and initialized once the first SCMI driver request them
 * but they destroyed only on SCMI core unloading/unbinding.
 *
 * The current SCMI transport layer uses such devices as internal references and
 * as such they could be shared as same transport between multiple drivers so
 * that cannot be safely destroyed till the whole SCMI stack is removed.
 * (unless adding further burden of refcounting.)
 */
void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table)
{
	struct list_head *phead;

	pr_debug("Unrequesting SCMI device (%s) for protocol %x\n",
		 id_table->name, id_table->protocol_id);

	mutex_lock(&scmi_requested_devices_mtx);
	phead = idr_find(&scmi_requested_devices, id_table->protocol_id);
	if (phead) {
		struct scmi_requested_dev *victim, *tmp;

		list_for_each_entry_safe(victim, tmp, phead, node) {
			if (!strcmp(victim->id_table->name, id_table->name)) {
				list_del(&victim->node);
				kfree(victim);
				break;
			}
		}

		if (list_empty(phead)) {
			idr_remove(&scmi_requested_devices,
				   id_table->protocol_id);
			kfree(phead);
1919 1920
		}
	}
1921
	mutex_unlock(&scmi_requested_devices_mtx);
1922 1923
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
static int scmi_cleanup_txrx_channels(struct scmi_info *info)
{
	int ret;
	struct idr *idr = &info->tx_idr;

	ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
	idr_destroy(&info->tx_idr);

	idr = &info->rx_idr;
	ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
	idr_destroy(&info->rx_idr);

	return ret;
}

1939 1940 1941 1942 1943 1944 1945
static int scmi_probe(struct platform_device *pdev)
{
	int ret;
	struct scmi_handle *handle;
	const struct scmi_desc *desc;
	struct scmi_info *info;
	struct device *dev = &pdev->dev;
1946
	struct device_node *child, *np = dev->of_node;
1947

1948 1949 1950
	desc = of_device_get_match_data(dev);
	if (!desc)
		return -EINVAL;
1951 1952 1953 1954 1955 1956 1957 1958

	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	info->dev = dev;
	info->desc = desc;
	INIT_LIST_HEAD(&info->node);
1959 1960
	idr_init(&info->protocols);
	mutex_init(&info->protocols_mtx);
1961
	idr_init(&info->active_protocols);
1962 1963

	platform_set_drvdata(pdev, info);
1964
	idr_init(&info->tx_idr);
1965
	idr_init(&info->rx_idr);
1966 1967 1968

	handle = &info->handle;
	handle->dev = info->dev;
1969
	handle->version = &info->version;
1970 1971
	handle->devm_protocol_get = scmi_devm_protocol_get;
	handle->devm_protocol_put = scmi_devm_protocol_put;
1972

1973 1974 1975 1976 1977 1978
	/* System wide atomic threshold for atomic ops .. if any */
	if (!of_property_read_u32(np, "atomic-threshold-us",
				  &info->atomic_threshold))
		dev_info(dev,
			 "SCMI System wide atomic threshold set to %d us\n",
			 info->atomic_threshold);
1979
	handle->is_transport_atomic = scmi_is_transport_atomic;
1980

1981 1982 1983 1984 1985 1986
	if (desc->ops->link_supplier) {
		ret = desc->ops->link_supplier(dev);
		if (ret)
			return ret;
	}

1987
	ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE);
1988 1989 1990
	if (ret)
		return ret;

1991 1992
	ret = scmi_xfer_info_init(info);
	if (ret)
1993
		goto clear_txrx_setup;
1994

1995 1996 1997
	if (scmi_notification_init(handle))
		dev_err(dev, "SCMI Notifications NOT available.\n");

1998 1999 2000 2001
	if (info->desc->atomic_enabled && !is_transport_polling_capable(info))
		dev_err(dev,
			"Transport is not polling capable. Atomic mode not supported.\n");

2002 2003 2004 2005 2006 2007
	/*
	 * Trigger SCMI Base protocol initialization.
	 * It's mandatory and won't be ever released/deinit until the
	 * SCMI stack is shutdown/unloaded as a whole.
	 */
	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2008
	if (ret) {
2009
		dev_err(dev, "unable to communicate with SCMI\n");
2010
		goto notification_exit;
2011 2012
	}

2013 2014 2015 2016
	mutex_lock(&scmi_list_mutex);
	list_add_tail(&info->node, &scmi_list);
	mutex_unlock(&scmi_list_mutex);

2017 2018 2019 2020 2021 2022
	for_each_available_child_of_node(np, child) {
		u32 prot_id;

		if (of_property_read_u32(child, "reg", &prot_id))
			continue;

2023 2024
		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
			dev_err(dev, "Out of range protocol %d\n", prot_id);
2025 2026 2027 2028 2029 2030 2031

		if (!scmi_is_protocol_implemented(handle, prot_id)) {
			dev_err(dev, "SCMI protocol %d not implemented\n",
				prot_id);
			continue;
		}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		/*
		 * Save this valid DT protocol descriptor amongst
		 * @active_protocols for this SCMI instance/
		 */
		ret = idr_alloc(&info->active_protocols, child,
				prot_id, prot_id + 1, GFP_KERNEL);
		if (ret != prot_id) {
			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
				prot_id);
			continue;
		}

		of_node_get(child);
2045
		scmi_create_protocol_devices(child, info, prot_id);
2046 2047
	}

2048
	return 0;
2049 2050 2051 2052 2053 2054

notification_exit:
	scmi_notification_exit(&info->handle);
clear_txrx_setup:
	scmi_cleanup_txrx_channels(info);
	return ret;
2055 2056
}

2057
void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id)
2058 2059 2060 2061 2062 2063
{
	idr_remove(idr, id);
}

static int scmi_remove(struct platform_device *pdev)
{
2064
	int ret = 0, id;
2065
	struct scmi_info *info = platform_get_drvdata(pdev);
2066
	struct device_node *child;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

	mutex_lock(&scmi_list_mutex);
	if (info->users)
		ret = -EBUSY;
	else
		list_del(&info->node);
	mutex_unlock(&scmi_list_mutex);

	if (ret)
		return ret;

2078 2079
	scmi_notification_exit(&info->handle);

2080 2081 2082 2083
	mutex_lock(&info->protocols_mtx);
	idr_destroy(&info->protocols);
	mutex_unlock(&info->protocols_mtx);

2084 2085 2086 2087
	idr_for_each_entry(&info->active_protocols, child, id)
		of_node_put(child);
	idr_destroy(&info->active_protocols);

2088
	/* Safe to free channels since no more users */
2089
	return scmi_cleanup_txrx_channels(info);
2090 2091
}

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
static ssize_t protocol_version_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct scmi_info *info = dev_get_drvdata(dev);

	return sprintf(buf, "%u.%u\n", info->version.major_ver,
		       info->version.minor_ver);
}
static DEVICE_ATTR_RO(protocol_version);

static ssize_t firmware_version_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct scmi_info *info = dev_get_drvdata(dev);

	return sprintf(buf, "0x%x\n", info->version.impl_ver);
}
static DEVICE_ATTR_RO(firmware_version);

static ssize_t vendor_id_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct scmi_info *info = dev_get_drvdata(dev);

	return sprintf(buf, "%s\n", info->version.vendor_id);
}
static DEVICE_ATTR_RO(vendor_id);

static ssize_t sub_vendor_id_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct scmi_info *info = dev_get_drvdata(dev);

	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
}
static DEVICE_ATTR_RO(sub_vendor_id);

static struct attribute *versions_attrs[] = {
	&dev_attr_firmware_version.attr,
	&dev_attr_protocol_version.attr,
	&dev_attr_vendor_id.attr,
	&dev_attr_sub_vendor_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(versions);

2138 2139
/* Each compatible listed below must have descriptor associated with it */
static const struct of_device_id scmi_of_match[] = {
2140
#ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2141
	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2142
#endif
2143 2144 2145
#ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
	{ .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
#endif
2146
#ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2147
	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2148 2149 2150
#endif
#ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2151
#endif
2152 2153 2154 2155 2156
	{ /* Sentinel */ },
};

MODULE_DEVICE_TABLE(of, scmi_of_match);

2157 2158 2159 2160
static struct platform_driver scmi_driver = {
	.driver = {
		   .name = "arm-scmi",
		   .of_match_table = scmi_of_match,
2161
		   .dev_groups = versions_groups,
2162 2163 2164 2165 2166
		   },
	.probe = scmi_probe,
	.remove = scmi_remove,
};

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/**
 * __scmi_transports_setup  - Common helper to call transport-specific
 * .init/.exit code if provided.
 *
 * @init: A flag to distinguish between init and exit.
 *
 * Note that, if provided, we invoke .init/.exit functions for all the
 * transports currently compiled in.
 *
 * Return: 0 on Success.
 */
static inline int __scmi_transports_setup(bool init)
{
	int ret = 0;
	const struct of_device_id *trans;

	for (trans = scmi_of_match; trans->data; trans++) {
		const struct scmi_desc *tdesc = trans->data;

		if ((init && !tdesc->transport_init) ||
		    (!init && !tdesc->transport_exit))
			continue;

		if (init)
			ret = tdesc->transport_init();
		else
			tdesc->transport_exit();

		if (ret) {
			pr_err("SCMI transport %s FAILED initialization!\n",
			       trans->compatible);
			break;
		}
	}

	return ret;
}

static int __init scmi_transports_init(void)
{
	return __scmi_transports_setup(true);
}

static void __exit scmi_transports_exit(void)
{
	__scmi_transports_setup(false);
}

2215 2216
static int __init scmi_driver_init(void)
{
2217 2218
	int ret;

2219 2220 2221
	/* Bail out if no SCMI transport was configured */
	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
		return -EINVAL;
2222

2223
	scmi_bus_init();
2224

2225 2226 2227 2228 2229
	/* Initialize any compiled-in transport which provided an init/exit */
	ret = scmi_transports_init();
	if (ret)
		return ret;

2230 2231
	scmi_base_register();

2232 2233 2234 2235 2236
	scmi_clock_register();
	scmi_perf_register();
	scmi_power_register();
	scmi_reset_register();
	scmi_sensors_register();
2237
	scmi_voltage_register();
2238 2239
	scmi_system_register();

2240 2241
	return platform_driver_register(&scmi_driver);
}
2242
subsys_initcall(scmi_driver_init);
2243 2244 2245

static void __exit scmi_driver_exit(void)
{
2246
	scmi_base_unregister();
2247

2248 2249 2250 2251 2252
	scmi_clock_unregister();
	scmi_perf_unregister();
	scmi_power_unregister();
	scmi_reset_unregister();
	scmi_sensors_unregister();
2253
	scmi_voltage_unregister();
2254 2255
	scmi_system_unregister();

2256 2257
	scmi_bus_exit();

2258 2259
	scmi_transports_exit();

2260 2261 2262
	platform_driver_unregister(&scmi_driver);
}
module_exit(scmi_driver_exit);
2263

2264
MODULE_ALIAS("platform:arm-scmi");
2265 2266 2267
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI protocol driver");
MODULE_LICENSE("GPL v2");