vmx.c 320 KB
Newer Older
1 2 3 4 5 6 7
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * Copyright (C) 2006 Qumranet, Inc.
8
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 10 11 12 13 14 15 16 17 18
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

19
#include "irq.h"
20
#include "mmu.h"
21
#include "cpuid.h"
22
#include "lapic.h"
Avi Kivity's avatar
Avi Kivity committed
23

24
#include <linux/kvm_host.h>
25
#include <linux/module.h>
26
#include <linux/kernel.h>
27 28
#include <linux/mm.h>
#include <linux/highmem.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
29
#include <linux/sched.h>
30
#include <linux/moduleparam.h>
31
#include <linux/mod_devicetable.h>
32
#include <linux/trace_events.h>
33
#include <linux/slab.h>
34
#include <linux/tboot.h>
35
#include <linux/hrtimer.h>
36
#include <linux/nospec.h>
37
#include "kvm_cache_regs.h"
38
#include "x86.h"
Avi Kivity's avatar
Avi Kivity committed
39

40
#include <asm/cpu.h>
41
#include <asm/io.h>
42
#include <asm/desc.h>
43
#include <asm/vmx.h>
44
#include <asm/virtext.h>
45
#include <asm/mce.h>
46
#include <asm/fpu/internal.h>
47
#include <asm/perf_event.h>
48
#include <asm/debugreg.h>
49
#include <asm/kexec.h>
50
#include <asm/apic.h>
51
#include <asm/irq_remapping.h>
52
#include <asm/microcode.h>
53
#include <asm/spec-ctrl.h>
54

55
#include "trace.h"
56
#include "pmu.h"
57

58
#define __ex(x) __kvm_handle_fault_on_reboot(x)
59 60
#define __ex_clear(x, reg) \
	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
61

62 63 64
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");

65 66 67 68 69 70
static const struct x86_cpu_id vmx_cpu_id[] = {
	X86_FEATURE_MATCH(X86_FEATURE_VMX),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);

71
static bool __read_mostly enable_vpid = 1;
72
module_param_named(vpid, enable_vpid, bool, 0444);
73

74
static bool __read_mostly flexpriority_enabled = 1;
75
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
76

77
static bool __read_mostly enable_ept = 1;
78
module_param_named(ept, enable_ept, bool, S_IRUGO);
Sheng Yang's avatar
Sheng Yang committed
79

80
static bool __read_mostly enable_unrestricted_guest = 1;
81 82 83
module_param_named(unrestricted_guest,
			enable_unrestricted_guest, bool, S_IRUGO);

84 85 86
static bool __read_mostly enable_ept_ad_bits = 1;
module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);

87
static bool __read_mostly emulate_invalid_guest_state = true;
88
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
89

90
static bool __read_mostly vmm_exclusive = 1;
91 92
module_param(vmm_exclusive, bool, S_IRUGO);

93
static bool __read_mostly fasteoi = 1;
94 95
module_param(fasteoi, bool, S_IRUGO);

96
static bool __read_mostly enable_apicv = 1;
97
module_param(enable_apicv, bool, S_IRUGO);
98

99 100
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
101 102 103 104 105
/*
 * If nested=1, nested virtualization is supported, i.e., guests may use
 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 * use VMX instructions.
 */
106
static bool __read_mostly nested = 0;
107 108
module_param(nested, bool, S_IRUGO);

109 110
static u64 __read_mostly host_xss;

Kai Huang's avatar
Kai Huang committed
111 112 113
static bool __read_mostly enable_pml = 1;
module_param_named(pml, enable_pml, bool, S_IRUGO);

114 115 116 117 118 119 120 121
#define MSR_TYPE_R	1
#define MSR_TYPE_W	2
#define MSR_TYPE_RW	3

#define MSR_BITMAP_MODE_X2APIC		1
#define MSR_BITMAP_MODE_X2APIC_APICV	2
#define MSR_BITMAP_MODE_LM		4

122 123
#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL

124 125
#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
126 127
#define KVM_VM_CR0_ALWAYS_ON						\
	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
128 129
#define KVM_CR4_GUEST_OWNED_BITS				      \
	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
130
	 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
131

132 133 134
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)

135 136
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))

137 138
#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5

139 140 141 142 143 144
#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)

145 146 147 148
/*
 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 * ple_gap:    upper bound on the amount of time between two successive
 *             executions of PAUSE in a loop. Also indicate if ple enabled.
149
 *             According to test, this time is usually smaller than 128 cycles.
150 151 152 153 154 155
 * ple_window: upper bound on the amount of time a guest is allowed to execute
 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 *             less than 2^12 cycles
 * Time is measured based on a counter that runs at the same rate as the TSC,
 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 */
156 157 158 159 160 161 162
#define KVM_VMX_DEFAULT_PLE_GAP           128
#define KVM_VMX_DEFAULT_PLE_WINDOW        4096
#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
		INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW

163 164 165 166 167 168
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
module_param(ple_gap, int, S_IRUGO);

static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);

169 170 171 172 173 174 175 176 177 178 179 180 181
/* Default doubles per-vcpu window every exit. */
static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
module_param(ple_window_grow, int, S_IRUGO);

/* Default resets per-vcpu window every exit to ple_window. */
static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
module_param(ple_window_shrink, int, S_IRUGO);

/* Default is to compute the maximum so we can never overflow. */
static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
module_param(ple_window_max, int, S_IRUGO);

Avi Kivity's avatar
Avi Kivity committed
182 183
extern const ulong vmx_return;

184
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
185
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
186
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
187

188 189
/* Storage for pre module init parameter parsing */
static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
190 191 192 193 194

static const struct {
	const char *option;
	enum vmx_l1d_flush_state cmd;
} vmentry_l1d_param[] = {
195
	{"auto",	VMENTER_L1D_FLUSH_AUTO},
196 197 198 199 200
	{"never",	VMENTER_L1D_FLUSH_NEVER},
	{"cond",	VMENTER_L1D_FLUSH_COND},
	{"always",	VMENTER_L1D_FLUSH_ALWAYS},
};

201 202 203 204
#define L1D_CACHE_ORDER 4
static void *vmx_l1d_flush_pages;

static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
205
{
206
	struct page *page;
207
	unsigned int i;
208

209 210 211 212 213
	if (!enable_ept) {
		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
		return 0;
	}

214 215 216 217 218 219 220 221 222 223
       if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
	       u64 msr;

	       rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
	       if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
		       l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
		       return 0;
	       }
       }

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	/* If set to auto use the default l1tf mitigation method */
	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
		switch (l1tf_mitigation) {
		case L1TF_MITIGATION_OFF:
			l1tf = VMENTER_L1D_FLUSH_NEVER;
			break;
		case L1TF_MITIGATION_FLUSH_NOWARN:
		case L1TF_MITIGATION_FLUSH:
		case L1TF_MITIGATION_FLUSH_NOSMT:
			l1tf = VMENTER_L1D_FLUSH_COND;
			break;
		case L1TF_MITIGATION_FULL:
		case L1TF_MITIGATION_FULL_FORCE:
			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
			break;
		}
	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
	}

244 245 246 247 248 249
	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
		if (!page)
			return -ENOMEM;
		vmx_l1d_flush_pages = page_address(page);
250 251 252 253 254 255 256 257 258 259

		/*
		 * Initialize each page with a different pattern in
		 * order to protect against KSM in the nested
		 * virtualization case.
		 */
		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
			       PAGE_SIZE);
		}
260 261
	}

262 263
	l1tf_vmx_mitigation = l1tf;

264 265 266 267
	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
		static_branch_enable(&vmx_l1d_should_flush);
	else
		static_branch_disable(&vmx_l1d_should_flush);
268

269 270
	if (l1tf == VMENTER_L1D_FLUSH_COND)
		static_branch_enable(&vmx_l1d_flush_cond);
271
	else
272
		static_branch_disable(&vmx_l1d_flush_cond);
273 274 275 276 277 278 279 280 281
	return 0;
}

static int vmentry_l1d_flush_parse(const char *s)
{
	unsigned int i;

	if (s) {
		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
282
			if (sysfs_streq(s, vmentry_l1d_param[i].option))
283 284 285
				return vmentry_l1d_param[i].cmd;
		}
	}
286 287 288
	return -EINVAL;
}

289 290
static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
{
291
	int l1tf, ret;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

	if (!boot_cpu_has(X86_BUG_L1TF))
		return 0;

	l1tf = vmentry_l1d_flush_parse(s);
	if (l1tf < 0)
		return l1tf;

	/*
	 * Has vmx_init() run already? If not then this is the pre init
	 * parameter parsing. In that case just store the value and let
	 * vmx_init() do the proper setup after enable_ept has been
	 * established.
	 */
	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
		vmentry_l1d_flush_param = l1tf;
		return 0;
	}

311 312 313 314
	mutex_lock(&vmx_l1d_flush_mutex);
	ret = vmx_setup_l1d_flush(l1tf);
	mutex_unlock(&vmx_l1d_flush_mutex);
	return ret;
315 316
}

317 318
static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
{
319
	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
320 321 322 323 324 325
}

static const struct kernel_param_ops vmentry_l1d_flush_ops = {
	.set = vmentry_l1d_flush_set,
	.get = vmentry_l1d_flush_get,
};
326
module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
327

328
#define NR_AUTOLOAD_MSRS 8
329

330 331 332 333 334 335
struct vmcs {
	u32 revision_id;
	u32 abort;
	char data[0];
};

336 337 338 339 340 341 342 343 344
/*
 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 * loaded on this CPU (so we can clear them if the CPU goes down).
 */
struct loaded_vmcs {
	struct vmcs *vmcs;
	int cpu;
	int launched;
345
	unsigned long *msr_bitmap;
346 347 348
	struct list_head loaded_vmcss_on_cpu_link;
};

349 350 351
struct shared_msr_entry {
	unsigned index;
	u64 data;
352
	u64 mask;
353 354
};

355 356 357 358 359 360 361
/*
 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 * More than one of these structures may exist, if L1 runs multiple L2 guests.
362
 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
363 364 365 366 367
 * underlying hardware which will be used to run L2.
 * This structure is packed to ensure that its layout is identical across
 * machines (necessary for live migration).
 * If there are changes in this struct, VMCS12_REVISION must be changed.
 */
368
typedef u64 natural_width;
369 370 371 372 373 374
struct __packed vmcs12 {
	/* According to the Intel spec, a VMCS region must start with the
	 * following two fields. Then follow implementation-specific data.
	 */
	u32 revision_id;
	u32 abort;
375

Nadav Har'El's avatar
Nadav Har'El committed
376 377 378
	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
	u32 padding[7]; /* room for future expansion */

379 380 381 382 383 384 385 386 387
	u64 io_bitmap_a;
	u64 io_bitmap_b;
	u64 msr_bitmap;
	u64 vm_exit_msr_store_addr;
	u64 vm_exit_msr_load_addr;
	u64 vm_entry_msr_load_addr;
	u64 tsc_offset;
	u64 virtual_apic_page_addr;
	u64 apic_access_addr;
388
	u64 posted_intr_desc_addr;
389
	u64 ept_pointer;
390 391 392 393
	u64 eoi_exit_bitmap0;
	u64 eoi_exit_bitmap1;
	u64 eoi_exit_bitmap2;
	u64 eoi_exit_bitmap3;
394
	u64 xss_exit_bitmap;
395 396 397 398 399 400 401 402 403 404
	u64 guest_physical_address;
	u64 vmcs_link_pointer;
	u64 guest_ia32_debugctl;
	u64 guest_ia32_pat;
	u64 guest_ia32_efer;
	u64 guest_ia32_perf_global_ctrl;
	u64 guest_pdptr0;
	u64 guest_pdptr1;
	u64 guest_pdptr2;
	u64 guest_pdptr3;
405
	u64 guest_bndcfgs;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	u64 host_ia32_pat;
	u64 host_ia32_efer;
	u64 host_ia32_perf_global_ctrl;
	u64 padding64[8]; /* room for future expansion */
	/*
	 * To allow migration of L1 (complete with its L2 guests) between
	 * machines of different natural widths (32 or 64 bit), we cannot have
	 * unsigned long fields with no explict size. We use u64 (aliased
	 * natural_width) instead. Luckily, x86 is little-endian.
	 */
	natural_width cr0_guest_host_mask;
	natural_width cr4_guest_host_mask;
	natural_width cr0_read_shadow;
	natural_width cr4_read_shadow;
	natural_width cr3_target_value0;
	natural_width cr3_target_value1;
	natural_width cr3_target_value2;
	natural_width cr3_target_value3;
	natural_width exit_qualification;
	natural_width guest_linear_address;
	natural_width guest_cr0;
	natural_width guest_cr3;
	natural_width guest_cr4;
	natural_width guest_es_base;
	natural_width guest_cs_base;
	natural_width guest_ss_base;
	natural_width guest_ds_base;
	natural_width guest_fs_base;
	natural_width guest_gs_base;
	natural_width guest_ldtr_base;
	natural_width guest_tr_base;
	natural_width guest_gdtr_base;
	natural_width guest_idtr_base;
	natural_width guest_dr7;
	natural_width guest_rsp;
	natural_width guest_rip;
	natural_width guest_rflags;
	natural_width guest_pending_dbg_exceptions;
	natural_width guest_sysenter_esp;
	natural_width guest_sysenter_eip;
	natural_width host_cr0;
	natural_width host_cr3;
	natural_width host_cr4;
	natural_width host_fs_base;
	natural_width host_gs_base;
	natural_width host_tr_base;
	natural_width host_gdtr_base;
	natural_width host_idtr_base;
	natural_width host_ia32_sysenter_esp;
	natural_width host_ia32_sysenter_eip;
	natural_width host_rsp;
	natural_width host_rip;
	natural_width paddingl[8]; /* room for future expansion */
	u32 pin_based_vm_exec_control;
	u32 cpu_based_vm_exec_control;
	u32 exception_bitmap;
	u32 page_fault_error_code_mask;
	u32 page_fault_error_code_match;
	u32 cr3_target_count;
	u32 vm_exit_controls;
	u32 vm_exit_msr_store_count;
	u32 vm_exit_msr_load_count;
	u32 vm_entry_controls;
	u32 vm_entry_msr_load_count;
	u32 vm_entry_intr_info_field;
	u32 vm_entry_exception_error_code;
	u32 vm_entry_instruction_len;
	u32 tpr_threshold;
	u32 secondary_vm_exec_control;
	u32 vm_instruction_error;
	u32 vm_exit_reason;
	u32 vm_exit_intr_info;
	u32 vm_exit_intr_error_code;
	u32 idt_vectoring_info_field;
	u32 idt_vectoring_error_code;
	u32 vm_exit_instruction_len;
	u32 vmx_instruction_info;
	u32 guest_es_limit;
	u32 guest_cs_limit;
	u32 guest_ss_limit;
	u32 guest_ds_limit;
	u32 guest_fs_limit;
	u32 guest_gs_limit;
	u32 guest_ldtr_limit;
	u32 guest_tr_limit;
	u32 guest_gdtr_limit;
	u32 guest_idtr_limit;
	u32 guest_es_ar_bytes;
	u32 guest_cs_ar_bytes;
	u32 guest_ss_ar_bytes;
	u32 guest_ds_ar_bytes;
	u32 guest_fs_ar_bytes;
	u32 guest_gs_ar_bytes;
	u32 guest_ldtr_ar_bytes;
	u32 guest_tr_ar_bytes;
	u32 guest_interruptibility_info;
	u32 guest_activity_state;
	u32 guest_sysenter_cs;
	u32 host_ia32_sysenter_cs;
505 506
	u32 vmx_preemption_timer_value;
	u32 padding32[7]; /* room for future expansion */
507
	u16 virtual_processor_id;
508
	u16 posted_intr_nv;
509 510 511 512 513 514 515 516
	u16 guest_es_selector;
	u16 guest_cs_selector;
	u16 guest_ss_selector;
	u16 guest_ds_selector;
	u16 guest_fs_selector;
	u16 guest_gs_selector;
	u16 guest_ldtr_selector;
	u16 guest_tr_selector;
517
	u16 guest_intr_status;
518 519 520 521 522 523 524
	u16 host_es_selector;
	u16 host_cs_selector;
	u16 host_ss_selector;
	u16 host_ds_selector;
	u16 host_fs_selector;
	u16 host_gs_selector;
	u16 host_tr_selector;
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
};

/*
 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 */
#define VMCS12_REVISION 0x11e57ed0

/*
 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 * current implementation, 4K are reserved to avoid future complications.
 */
#define VMCS12_SIZE 0x1000

541 542 543 544 545 546 547
/*
 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 */
struct nested_vmx {
	/* Has the level1 guest done vmxon? */
	bool vmxon;
548
	gpa_t vmxon_ptr;
549 550 551 552 553 554

	/* The guest-physical address of the current VMCS L1 keeps for L2 */
	gpa_t current_vmptr;
	/* The host-usable pointer to the above */
	struct page *current_vmcs12_page;
	struct vmcs12 *current_vmcs12;
555
	struct vmcs *current_shadow_vmcs;
556 557 558 559 560
	/*
	 * Indicates if the shadow vmcs must be updated with the
	 * data hold by vmcs12
	 */
	bool sync_shadow_vmcs;
561

562
	u64 vmcs01_tsc_offset;
563
	bool change_vmcs01_virtual_x2apic_mode;
564 565
	/* L2 must run next, and mustn't decide to exit to L1. */
	bool nested_run_pending;
566 567 568

	struct loaded_vmcs vmcs02;

569
	/*
570 571
	 * Guest pages referred to in the vmcs02 with host-physical
	 * pointers, so we must keep them pinned while L2 runs.
572 573
	 */
	struct page *apic_access_page;
574
	struct page *virtual_apic_page;
575 576 577 578
	struct page *pi_desc_page;
	struct pi_desc *pi_desc;
	bool pi_pending;
	u16 posted_intr_nv;
579
	u64 msr_ia32_feature_control;
580 581 582

	struct hrtimer preemption_timer;
	bool preemption_timer_expired;
583 584 585

	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
	u64 vmcs01_debugctl;
586

587 588 589
	u16 vpid02;
	u16 last_vpid;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	u32 nested_vmx_procbased_ctls_low;
	u32 nested_vmx_procbased_ctls_high;
	u32 nested_vmx_true_procbased_ctls_low;
	u32 nested_vmx_secondary_ctls_low;
	u32 nested_vmx_secondary_ctls_high;
	u32 nested_vmx_pinbased_ctls_low;
	u32 nested_vmx_pinbased_ctls_high;
	u32 nested_vmx_exit_ctls_low;
	u32 nested_vmx_exit_ctls_high;
	u32 nested_vmx_true_exit_ctls_low;
	u32 nested_vmx_entry_ctls_low;
	u32 nested_vmx_entry_ctls_high;
	u32 nested_vmx_true_entry_ctls_low;
	u32 nested_vmx_misc_low;
	u32 nested_vmx_misc_high;
	u32 nested_vmx_ept_caps;
606
	u32 nested_vmx_vpid_caps;
607 608
};

609
#define POSTED_INTR_ON  0
610 611
#define POSTED_INTR_SN  1

612 613 614
/* Posted-Interrupt Descriptor */
struct pi_desc {
	u32 pir[8];     /* Posted interrupt requested */
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	union {
		struct {
				/* bit 256 - Outstanding Notification */
			u16	on	: 1,
				/* bit 257 - Suppress Notification */
				sn	: 1,
				/* bit 271:258 - Reserved */
				rsvd_1	: 14;
				/* bit 279:272 - Notification Vector */
			u8	nv;
				/* bit 287:280 - Reserved */
			u8	rsvd_2;
				/* bit 319:288 - Notification Destination */
			u32	ndst;
		};
		u64 control;
	};
	u32 rsvd[6];
633 634
} __aligned(64);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static bool pi_test_and_set_on(struct pi_desc *pi_desc)
{
	return test_and_set_bit(POSTED_INTR_ON,
			(unsigned long *)&pi_desc->control);
}

static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
{
	return test_and_clear_bit(POSTED_INTR_ON,
			(unsigned long *)&pi_desc->control);
}

static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
{
	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static inline void pi_clear_sn(struct pi_desc *pi_desc)
{
	return clear_bit(POSTED_INTR_SN,
			(unsigned long *)&pi_desc->control);
}

static inline void pi_set_sn(struct pi_desc *pi_desc)
{
	return set_bit(POSTED_INTR_SN,
			(unsigned long *)&pi_desc->control);
}

static inline int pi_test_on(struct pi_desc *pi_desc)
{
	return test_bit(POSTED_INTR_ON,
			(unsigned long *)&pi_desc->control);
}

static inline int pi_test_sn(struct pi_desc *pi_desc)
{
	return test_bit(POSTED_INTR_SN,
			(unsigned long *)&pi_desc->control);
}

676 677 678 679 680
struct vmx_msrs {
	unsigned		nr;
	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
};

681
struct vcpu_vmx {
682
	struct kvm_vcpu       vcpu;
683
	unsigned long         host_rsp;
684
	u8                    fail;
685
	bool                  nmi_known_unmasked;
686
	u8		      msr_bitmap_mode;
687
	u32                   exit_intr_info;
688
	u32                   idt_vectoring_info;
689
	ulong                 rflags;
690
	struct shared_msr_entry *guest_msrs;
691 692
	int                   nmsrs;
	int                   save_nmsrs;
693
	unsigned long	      host_idt_base;
694
#ifdef CONFIG_X86_64
695 696
	u64 		      msr_host_kernel_gs_base;
	u64 		      msr_guest_kernel_gs_base;
697
#endif
698

699
	u64		      arch_capabilities;
700
	u64		      spec_ctrl;
701

702 703
	u32 vm_entry_controls_shadow;
	u32 vm_exit_controls_shadow;
704 705 706 707 708 709 710 711
	/*
	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
	 * non-nested (L1) guest, it always points to vmcs01. For a nested
	 * guest (L2), it points to a different VMCS.
	 */
	struct loaded_vmcs    vmcs01;
	struct loaded_vmcs   *loaded_vmcs;
	bool                  __launched; /* temporary, used in vmx_vcpu_run */
712
	struct msr_autoload {
713 714
		struct vmx_msrs guest;
		struct vmx_msrs host;
715
	} msr_autoload;
716 717 718
	struct {
		int           loaded;
		u16           fs_sel, gs_sel, ldt_sel;
719 720 721
#ifdef CONFIG_X86_64
		u16           ds_sel, es_sel;
#endif
722 723
		int           gs_ldt_reload_needed;
		int           fs_reload_needed;
724
		u64           msr_host_bndcfgs;
725
		unsigned long vmcs_host_cr4;	/* May not match real cr4 */
Mike Day's avatar
Mike Day committed
726
	} host_state;
727
	struct {
728
		int vm86_active;
729
		ulong save_rflags;
730 731 732 733
		struct kvm_segment segs[8];
	} rmode;
	struct {
		u32 bitmask; /* 4 bits per segment (1 bit per field) */
734 735 736 737 738
		struct kvm_save_segment {
			u16 selector;
			unsigned long base;
			u32 limit;
			u32 ar;
739
		} seg[8];
740
	} segment_cache;
741
	int vpid;
742
	bool emulation_required;
743 744 745 746 747

	/* Support for vnmi-less CPUs */
	int soft_vnmi_blocked;
	ktime_t entry_time;
	s64 vnmi_blocked_time;
748
	u32 exit_reason;
749

750 751 752
	/* Posted interrupt descriptor */
	struct pi_desc pi_desc;

753 754
	/* Support for a guest hypervisor (nested VMX) */
	struct nested_vmx nested;
755 756 757 758

	/* Dynamic PLE window. */
	int ple_window;
	bool ple_window_dirty;
Kai Huang's avatar
Kai Huang committed
759 760 761 762

	/* Support for PML */
#define PML_ENTITY_NUM		512
	struct page *pml_pg;
763 764

	u64 current_tsc_ratio;
765 766
};

767 768 769 770 771 772 773 774 775
enum segment_cache_field {
	SEG_FIELD_SEL = 0,
	SEG_FIELD_BASE = 1,
	SEG_FIELD_LIMIT = 2,
	SEG_FIELD_AR = 3,

	SEG_FIELD_NR = 4
};

776 777
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
778
	return container_of(vcpu, struct vcpu_vmx, vcpu);
779 780
}

781 782 783 784 785
static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
{
	return &(to_vmx(vcpu)->pi_desc);
}

786 787 788 789 790
#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
#define FIELD(number, name)	[number] = VMCS12_OFFSET(name)
#define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \
				[number##_HIGH] = VMCS12_OFFSET(name)+4

791

792
static unsigned long shadow_read_only_fields[] = {
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	/*
	 * We do NOT shadow fields that are modified when L0
	 * traps and emulates any vmx instruction (e.g. VMPTRLD,
	 * VMXON...) executed by L1.
	 * For example, VM_INSTRUCTION_ERROR is read
	 * by L1 if a vmx instruction fails (part of the error path).
	 * Note the code assumes this logic. If for some reason
	 * we start shadowing these fields then we need to
	 * force a shadow sync when L0 emulates vmx instructions
	 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
	 * by nested_vmx_failValid)
	 */
	VM_EXIT_REASON,
	VM_EXIT_INTR_INFO,
	VM_EXIT_INSTRUCTION_LEN,
	IDT_VECTORING_INFO_FIELD,
	IDT_VECTORING_ERROR_CODE,
	VM_EXIT_INTR_ERROR_CODE,
	EXIT_QUALIFICATION,
	GUEST_LINEAR_ADDRESS,
	GUEST_PHYSICAL_ADDRESS
};
815
static int max_shadow_read_only_fields =
816 817
	ARRAY_SIZE(shadow_read_only_fields);

818
static unsigned long shadow_read_write_fields[] = {
819
	TPR_THRESHOLD,
820 821 822 823 824 825 826 827 828 829 830 831
	GUEST_RIP,
	GUEST_RSP,
	GUEST_CR0,
	GUEST_CR3,
	GUEST_CR4,
	GUEST_INTERRUPTIBILITY_INFO,
	GUEST_RFLAGS,
	GUEST_CS_SELECTOR,
	GUEST_CS_AR_BYTES,
	GUEST_CS_LIMIT,
	GUEST_CS_BASE,
	GUEST_ES_BASE,
832
	GUEST_BNDCFGS,
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	CR0_GUEST_HOST_MASK,
	CR0_READ_SHADOW,
	CR4_READ_SHADOW,
	TSC_OFFSET,
	EXCEPTION_BITMAP,
	CPU_BASED_VM_EXEC_CONTROL,
	VM_ENTRY_EXCEPTION_ERROR_CODE,
	VM_ENTRY_INTR_INFO_FIELD,
	VM_ENTRY_INSTRUCTION_LEN,
	VM_ENTRY_EXCEPTION_ERROR_CODE,
	HOST_FS_BASE,
	HOST_GS_BASE,
	HOST_FS_SELECTOR,
	HOST_GS_SELECTOR
};
848
static int max_shadow_read_write_fields =
849 850
	ARRAY_SIZE(shadow_read_write_fields);

851
static const unsigned short vmcs_field_to_offset_table[] = {
852
	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
853
	FIELD(POSTED_INTR_NV, posted_intr_nv),
854 855 856 857 858 859 860 861
	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
862
	FIELD(GUEST_INTR_STATUS, guest_intr_status),
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	FIELD(HOST_ES_SELECTOR, host_es_selector),
	FIELD(HOST_CS_SELECTOR, host_cs_selector),
	FIELD(HOST_SS_SELECTOR, host_ss_selector),
	FIELD(HOST_DS_SELECTOR, host_ds_selector),
	FIELD(HOST_FS_SELECTOR, host_fs_selector),
	FIELD(HOST_GS_SELECTOR, host_gs_selector),
	FIELD(HOST_TR_SELECTOR, host_tr_selector),
	FIELD64(IO_BITMAP_A, io_bitmap_a),
	FIELD64(IO_BITMAP_B, io_bitmap_b),
	FIELD64(MSR_BITMAP, msr_bitmap),
	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
	FIELD64(TSC_OFFSET, tsc_offset),
	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
879
	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
880
	FIELD64(EPT_POINTER, ept_pointer),
881 882 883 884
	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
885
	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
886 887 888 889 890 891 892 893 894 895
	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
	FIELD64(GUEST_PDPTR0, guest_pdptr0),
	FIELD64(GUEST_PDPTR1, guest_pdptr1),
	FIELD64(GUEST_PDPTR2, guest_pdptr2),
	FIELD64(GUEST_PDPTR3, guest_pdptr3),
896
	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	FIELD64(HOST_IA32_PAT, host_ia32_pat),
	FIELD64(HOST_IA32_EFER, host_ia32_efer),
	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
	FIELD(EXCEPTION_BITMAP, exception_bitmap),
	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
	FIELD(CR3_TARGET_COUNT, cr3_target_count),
	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
	FIELD(TPR_THRESHOLD, tpr_threshold),
	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
	FIELD(VM_EXIT_REASON, vm_exit_reason),
	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
	FIELD(GUEST_ES_LIMIT, guest_es_limit),
	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
946
	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
	FIELD(EXIT_QUALIFICATION, exit_qualification),
	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
	FIELD(GUEST_CR0, guest_cr0),
	FIELD(GUEST_CR3, guest_cr3),
	FIELD(GUEST_CR4, guest_cr4),
	FIELD(GUEST_ES_BASE, guest_es_base),
	FIELD(GUEST_CS_BASE, guest_cs_base),
	FIELD(GUEST_SS_BASE, guest_ss_base),
	FIELD(GUEST_DS_BASE, guest_ds_base),
	FIELD(GUEST_FS_BASE, guest_fs_base),
	FIELD(GUEST_GS_BASE, guest_gs_base),
	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
	FIELD(GUEST_TR_BASE, guest_tr_base),
	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
	FIELD(GUEST_DR7, guest_dr7),
	FIELD(GUEST_RSP, guest_rsp),
	FIELD(GUEST_RIP, guest_rip),
	FIELD(GUEST_RFLAGS, guest_rflags),
	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
	FIELD(HOST_CR0, host_cr0),
	FIELD(HOST_CR3, host_cr3),
	FIELD(HOST_CR4, host_cr4),
	FIELD(HOST_FS_BASE, host_fs_base),
	FIELD(HOST_GS_BASE, host_gs_base),
	FIELD(HOST_TR_BASE, host_tr_base),
	FIELD(HOST_GDTR_BASE, host_gdtr_base),
	FIELD(HOST_IDTR_BASE, host_idtr_base),
	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
	FIELD(HOST_RSP, host_rsp),
	FIELD(HOST_RIP, host_rip),
};

static inline short vmcs_field_to_offset(unsigned long field)
{
993 994
	const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
	unsigned short offset;
995

996 997
	BUILD_BUG_ON(size > SHRT_MAX);
	if (field >= size)
998 999
		return -ENOENT;

1000 1001 1002
	field = array_index_nospec(field, size);
	offset = vmcs_field_to_offset_table[field];
	if (offset == 0)
1003
		return -ENOENT;
1004
	return offset;
1005 1006
}

1007 1008 1009 1010 1011 1012 1013
static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
{
	return to_vmx(vcpu)->nested.current_vmcs12;
}

static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
{
1014
	struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
1015
	if (is_error_page(page))
1016
		return NULL;
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	return page;
}

static void nested_release_page(struct page *page)
{
	kvm_release_page_dirty(page);
}

static void nested_release_page_clean(struct page *page)
{
	kvm_release_page_clean(page);
}

Nadav Har'El's avatar
Nadav Har'El committed
1031
static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
1032
static u64 construct_eptp(unsigned long root_hpa);
1033 1034
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
1035
static bool vmx_xsaves_supported(void);
1036
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
1037 1038 1039 1040
static void vmx_set_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg);
static void vmx_get_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg);
1041 1042
static bool guest_state_valid(struct kvm_vcpu *vcpu);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
1043
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
1044
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
1045
static int alloc_identity_pagetable(struct kvm *kvm);
1046
static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
Ashok Raj's avatar
Ashok Raj committed
1047 1048
static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
							  u32 msr, int type);
1049

1050 1051
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
1052 1053 1054 1055 1056
/*
 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 */
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
1057
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
1058

1059 1060 1061 1062 1063 1064 1065
/*
 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
 * can find which vCPU should be waken up.
 */
static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);

1066 1067
static unsigned long *vmx_io_bitmap_a;
static unsigned long *vmx_io_bitmap_b;
1068 1069
static unsigned long *vmx_vmread_bitmap;
static unsigned long *vmx_vmwrite_bitmap;
1070

1071
static bool cpu_has_load_ia32_efer;
1072
static bool cpu_has_load_perf_global_ctrl;
1073

1074 1075 1076
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);

1077
static struct vmcs_config {
1078 1079 1080
	int size;
	int order;
	u32 revision_id;
1081 1082
	u32 pin_based_exec_ctrl;
	u32 cpu_based_exec_ctrl;
1083
	u32 cpu_based_2nd_exec_ctrl;
1084 1085 1086
	u32 vmexit_ctrl;
	u32 vmentry_ctrl;
} vmcs_config;
1087

Hannes Eder's avatar
Hannes Eder committed
1088
static struct vmx_capability {
Sheng Yang's avatar
Sheng Yang committed
1089 1090 1091 1092
	u32 ept;
	u32 vpid;
} vmx_capability;

1093 1094 1095 1096 1097 1098 1099 1100
#define VMX_SEGMENT_FIELD(seg)					\
	[VCPU_SREG_##seg] = {                                   \
		.selector = GUEST_##seg##_SELECTOR,		\
		.base = GUEST_##seg##_BASE,		   	\
		.limit = GUEST_##seg##_LIMIT,		   	\
		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
	}

1101
static const struct kvm_vmx_segment_field {
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	unsigned selector;
	unsigned base;
	unsigned limit;
	unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
	VMX_SEGMENT_FIELD(CS),
	VMX_SEGMENT_FIELD(DS),
	VMX_SEGMENT_FIELD(ES),
	VMX_SEGMENT_FIELD(FS),
	VMX_SEGMENT_FIELD(GS),
	VMX_SEGMENT_FIELD(SS),
	VMX_SEGMENT_FIELD(TR),
	VMX_SEGMENT_FIELD(LDTR),
};

1117 1118
static u64 host_efer;

Avi Kivity's avatar
Avi Kivity committed
1119 1120
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);

1121
/*
Brian Gerst's avatar
Brian Gerst committed
1122
 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1123 1124
 * away by decrementing the array size.
 */
1125
static const u32 vmx_msr_index[] = {
1126
#ifdef CONFIG_X86_64
1127
	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1128
#endif
Brian Gerst's avatar
Brian Gerst committed
1129
	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1130 1131
};

1132
static inline bool is_page_fault(u32 intr_info)
1133 1134 1135
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
1136
		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
1137 1138
}

1139
static inline bool is_no_device(u32 intr_info)
1140 1141 1142
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
1143
		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
1144 1145
}

1146
static inline bool is_invalid_opcode(u32 intr_info)
1147 1148 1149
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
1150
		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
1151 1152
}

1153
static inline bool is_external_interrupt(u32 intr_info)
1154 1155 1156 1157 1158
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}

1159
static inline bool is_machine_check(u32 intr_info)
1160 1161 1162 1163 1164 1165
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
			     INTR_INFO_VALID_MASK)) ==
		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
}

1166 1167 1168 1169 1170 1171 1172
/* Undocumented: icebp/int1 */
static inline bool is_icebp(u32 intr_info)
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
}

1173
static inline bool cpu_has_vmx_msr_bitmap(void)
1174
{
1175
	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1176 1177
}

1178
static inline bool cpu_has_vmx_tpr_shadow(void)
1179
{
1180
	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1181 1182
}

1183
static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1184
{
1185
	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1186 1187
}

1188
static inline bool cpu_has_secondary_exec_ctrls(void)
1189
{
1190 1191
	return vmcs_config.cpu_based_exec_ctrl &
		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1192 1193
}

1194
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1195
{
1196 1197 1198 1199
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}

1200 1201 1202 1203 1204 1205
static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
}

1206 1207 1208 1209 1210 1211
static inline bool cpu_has_vmx_apic_register_virt(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_APIC_REGISTER_VIRT;
}

1212 1213 1214 1215 1216 1217
static inline bool cpu_has_vmx_virtual_intr_delivery(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
}

1218 1219
static inline bool cpu_has_vmx_posted_intr(void)
{
1220 1221
	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1222 1223 1224 1225 1226 1227 1228 1229 1230
}

static inline bool cpu_has_vmx_apicv(void)
{
	return cpu_has_vmx_apic_register_virt() &&
		cpu_has_vmx_virtual_intr_delivery() &&
		cpu_has_vmx_posted_intr();
}

1231 1232 1233 1234
static inline bool cpu_has_vmx_flexpriority(void)
{
	return cpu_has_vmx_tpr_shadow() &&
		cpu_has_vmx_virtualize_apic_accesses();
1235 1236
}

1237 1238
static inline bool cpu_has_vmx_ept_execute_only(void)
{
1239
	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1240 1241 1242 1243
}

static inline bool cpu_has_vmx_ept_2m_page(void)
{
1244
	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1245 1246
}

1247 1248
static inline bool cpu_has_vmx_ept_1g_page(void)
{
1249
	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1250 1251
}

1252 1253 1254 1255 1256
static inline bool cpu_has_vmx_ept_4levels(void)
{
	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
}

1257 1258 1259 1260 1261
static inline bool cpu_has_vmx_ept_ad_bits(void)
{
	return vmx_capability.ept & VMX_EPT_AD_BIT;
}

1262
static inline bool cpu_has_vmx_invept_context(void)
Sheng Yang's avatar
Sheng Yang committed
1263
{
1264
	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
Sheng Yang's avatar
Sheng Yang committed
1265 1266
}

1267
static inline bool cpu_has_vmx_invept_global(void)
Sheng Yang's avatar
Sheng Yang committed
1268
{
1269
	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
Sheng Yang's avatar
Sheng Yang committed
1270 1271
}

1272 1273 1274 1275 1276
static inline bool cpu_has_vmx_invvpid_single(void)
{
	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
}

1277 1278 1279 1280 1281
static inline bool cpu_has_vmx_invvpid_global(void)
{
	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
}

1282 1283 1284 1285 1286
static inline bool cpu_has_vmx_invvpid(void)
{
	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
}

1287
static inline bool cpu_has_vmx_ept(void)
Sheng Yang's avatar
Sheng Yang committed
1288
{
1289 1290
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_ENABLE_EPT;
Sheng Yang's avatar
Sheng Yang committed
1291 1292
}

1293
static inline bool cpu_has_vmx_unrestricted_guest(void)
1294 1295 1296 1297 1298
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_UNRESTRICTED_GUEST;
}

1299
static inline bool cpu_has_vmx_ple(void)
1300 1301 1302 1303 1304
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
}

1305
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1306
{
1307
	return flexpriority_enabled && lapic_in_kernel(vcpu);
1308 1309
}

1310
static inline bool cpu_has_vmx_vpid(void)
1311
{
1312 1313
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_ENABLE_VPID;
1314 1315
}

1316
static inline bool cpu_has_vmx_rdtscp(void)
1317 1318 1319 1320 1321
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_RDTSCP;
}

1322 1323 1324 1325 1326 1327
static inline bool cpu_has_vmx_invpcid(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_ENABLE_INVPCID;
}

1328
static inline bool cpu_has_virtual_nmis(void)
1329 1330 1331 1332
{
	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
}

1333 1334 1335 1336 1337 1338
static inline bool cpu_has_vmx_wbinvd_exit(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_WBINVD_EXITING;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static inline bool cpu_has_vmx_shadow_vmcs(void)
{
	u64 vmx_msr;
	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
	/* check if the cpu supports writing r/o exit information fields */
	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
		return false;

	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_SHADOW_VMCS;
}

Kai Huang's avatar
Kai Huang committed
1351 1352 1353 1354 1355
static inline bool cpu_has_vmx_pml(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
}

1356 1357 1358 1359 1360 1361
static inline bool cpu_has_vmx_tsc_scaling(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_TSC_SCALING;
}

1362 1363 1364 1365 1366
static inline bool report_flexpriority(void)
{
	return flexpriority_enabled;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
{
	return vmcs12->cpu_based_vm_exec_control & bit;
}

static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
{
	return (vmcs12->cpu_based_vm_exec_control &
			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
		(vmcs12->secondary_vm_exec_control & bit);
}

Nadav Har'El's avatar
Nadav Har'El committed
1379
static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1380 1381 1382 1383
{
	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
}

1384 1385 1386 1387 1388 1389
static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
{
	return vmcs12->pin_based_vm_exec_control &
		PIN_BASED_VMX_PREEMPTION_TIMER;
}

1390 1391 1392 1393 1394
static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
{
	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
}

1395 1396 1397 1398 1399 1400
static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
{
	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
		vmx_xsaves_supported();
}

1401 1402 1403 1404 1405
static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
{
	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
}

1406 1407 1408 1409 1410
static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
{
	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
}

1411 1412 1413 1414 1415
static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
{
	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
}

1416 1417 1418 1419 1420
static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
{
	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
}

1421 1422 1423 1424 1425
static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
{
	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
}

1426
static inline bool is_nmi(u32 intr_info)
1427 1428
{
	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1429
		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1430 1431
}

1432 1433 1434
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
			      u32 exit_intr_info,
			      unsigned long exit_qualification);
1435 1436 1437 1438
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
			struct vmcs12 *vmcs12,
			u32 reason, unsigned long qualification);

1439
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1440 1441 1442
{
	int i;

1443
	for (i = 0; i < vmx->nmsrs; ++i)
1444
		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1445 1446 1447 1448
			return i;
	return -1;
}

1449 1450 1451 1452 1453 1454 1455 1456
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
{
    struct {
	u64 vpid : 16;
	u64 rsvd : 48;
	u64 gva;
    } operand = { vpid, 0, gva };

1457
    asm volatile (__ex(ASM_VMX_INVVPID)
1458 1459 1460 1461 1462
		  /* CF==1 or ZF==1 --> rc = -1 */
		  "; ja 1f ; ud2 ; 1:"
		  : : "a"(&operand), "c"(ext) : "cc", "memory");
}

1463 1464 1465 1466 1467 1468
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
{
	struct {
		u64 eptp, gpa;
	} operand = {eptp, gpa};

1469
	asm volatile (__ex(ASM_VMX_INVEPT)
1470 1471 1472 1473 1474
			/* CF==1 or ZF==1 --> rc = -1 */
			"; ja 1f ; ud2 ; 1:\n"
			: : "a" (&operand), "c" (ext) : "cc", "memory");
}

1475
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1476 1477 1478
{
	int i;

1479
	i = __find_msr_index(vmx, msr);
1480
	if (i >= 0)
1481
		return &vmx->guest_msrs[i];
Al Viro's avatar
Al Viro committed
1482
	return NULL;
1483 1484
}

1485 1486 1487 1488 1489
static void vmcs_clear(struct vmcs *vmcs)
{
	u64 phys_addr = __pa(vmcs);
	u8 error;

1490
	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1491
		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1492 1493 1494 1495 1496 1497
		      : "cc", "memory");
	if (error)
		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
		       vmcs, phys_addr);
}

1498 1499 1500 1501 1502 1503 1504
static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
	vmcs_clear(loaded_vmcs->vmcs);
	loaded_vmcs->cpu = -1;
	loaded_vmcs->launched = 0;
}

1505 1506 1507 1508 1509 1510
static void vmcs_load(struct vmcs *vmcs)
{
	u64 phys_addr = __pa(vmcs);
	u8 error;

	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1511
			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1512 1513
			: "cc", "memory");
	if (error)
1514
		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1515
		       vmcs, phys_addr);
1516

1517 1518
}

1519
#ifdef CONFIG_KEXEC_CORE
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/*
 * This bitmap is used to indicate whether the vmclear
 * operation is enabled on all cpus. All disabled by
 * default.
 */
static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;

static inline void crash_enable_local_vmclear(int cpu)
{
	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
}

static inline void crash_disable_local_vmclear(int cpu)
{
	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
}

static inline int crash_local_vmclear_enabled(int cpu)
{
	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
}

static void crash_vmclear_local_loaded_vmcss(void)
{
	int cpu = raw_smp_processor_id();
	struct loaded_vmcs *v;

	if (!crash_local_vmclear_enabled(cpu))
		return;

	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
			    loaded_vmcss_on_cpu_link)
		vmcs_clear(v->vmcs);
}
#else
static inline void crash_enable_local_vmclear(int cpu) { }
static inline void crash_disable_local_vmclear(int cpu) { }
1557
#endif /* CONFIG_KEXEC_CORE */
1558

1559
static void __loaded_vmcs_clear(void *arg)
1560
{
1561
	struct loaded_vmcs *loaded_vmcs = arg;
1562
	int cpu = raw_smp_processor_id();
1563

1564 1565 1566
	if (loaded_vmcs->cpu != cpu)
		return; /* vcpu migration can race with cpu offline */
	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1567
		per_cpu(current_vmcs, cpu) = NULL;
1568
	crash_disable_local_vmclear(cpu);
1569
	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1570 1571 1572 1573 1574 1575 1576 1577 1578

	/*
	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
	 * is before setting loaded_vmcs->vcpu to -1 which is done in
	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
	 * then adds the vmcs into percpu list before it is deleted.
	 */
	smp_wmb();

1579
	loaded_vmcs_init(loaded_vmcs);
1580
	crash_enable_local_vmclear(cpu);
1581 1582
}

1583
static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1584
{
1585 1586 1587 1588 1589
	int cpu = loaded_vmcs->cpu;

	if (cpu != -1)
		smp_call_function_single(cpu,
			 __loaded_vmcs_clear, loaded_vmcs, 1);
1590 1591
}

1592
static inline void vpid_sync_vcpu_single(int vpid)
1593
{
1594
	if (vpid == 0)
1595 1596
		return;

1597
	if (cpu_has_vmx_invvpid_single())
1598
		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1599 1600
}

1601 1602 1603 1604 1605 1606
static inline void vpid_sync_vcpu_global(void)
{
	if (cpu_has_vmx_invvpid_global())
		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
}

1607
static inline void vpid_sync_context(int vpid)
1608 1609
{
	if (cpu_has_vmx_invvpid_single())
1610
		vpid_sync_vcpu_single(vpid);
1611 1612 1613 1614
	else
		vpid_sync_vcpu_global();
}

1615 1616 1617 1618 1619 1620 1621 1622
static inline void ept_sync_global(void)
{
	if (cpu_has_vmx_invept_global())
		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
}

static inline void ept_sync_context(u64 eptp)
{
1623
	if (enable_ept) {
1624 1625 1626 1627 1628 1629 1630
		if (cpu_has_vmx_invept_context())
			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
		else
			ept_sync_global();
	}
}

Avi Kivity's avatar
Avi Kivity committed
1631
static __always_inline unsigned long vmcs_readl(unsigned long field)
1632
{
1633
	unsigned long value;
1634

1635 1636
	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
		      : "=a"(value) : "d"(field) : "cc");
1637 1638 1639
	return value;
}

Avi Kivity's avatar
Avi Kivity committed
1640
static __always_inline u16 vmcs_read16(unsigned long field)
1641 1642 1643 1644
{
	return vmcs_readl(field);
}

Avi Kivity's avatar
Avi Kivity committed
1645
static __always_inline u32 vmcs_read32(unsigned long field)
1646 1647 1648 1649
{
	return vmcs_readl(field);
}

Avi Kivity's avatar
Avi Kivity committed
1650
static __always_inline u64 vmcs_read64(unsigned long field)
1651
{
1652
#ifdef CONFIG_X86_64
1653 1654 1655 1656 1657 1658
	return vmcs_readl(field);
#else
	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
#endif
}

1659 1660 1661 1662 1663 1664 1665
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
	dump_stack();
}

1666 1667 1668 1669
static void vmcs_writel(unsigned long field, unsigned long value)
{
	u8 error;

1670
	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
Mike Day's avatar
Mike Day committed
1671
		       : "=q"(error) : "a"(value), "d"(field) : "cc");
1672 1673
	if (unlikely(error))
		vmwrite_error(field, value);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
}

static void vmcs_write16(unsigned long field, u16 value)
{
	vmcs_writel(field, value);
}

static void vmcs_write32(unsigned long field, u32 value)
{
	vmcs_writel(field, value);
}

static void vmcs_write64(unsigned long field, u64 value)
{
	vmcs_writel(field, value);
1689
#ifndef CONFIG_X86_64
1690 1691 1692 1693 1694
	asm volatile ("");
	vmcs_writel(field+1, value >> 32);
#endif
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static void vmcs_clear_bits(unsigned long field, u32 mask)
{
	vmcs_writel(field, vmcs_readl(field) & ~mask);
}

static void vmcs_set_bits(unsigned long field, u32 mask)
{
	vmcs_writel(field, vmcs_readl(field) | mask);
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
{
	vmcs_write32(VM_ENTRY_CONTROLS, val);
	vmx->vm_entry_controls_shadow = val;
}

static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
{
	if (vmx->vm_entry_controls_shadow != val)
		vm_entry_controls_init(vmx, val);
}

static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
{
	return vmx->vm_entry_controls_shadow;
}


static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
{
	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
}

static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
{
	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
}

static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
{
	vmcs_write32(VM_EXIT_CONTROLS, val);
	vmx->vm_exit_controls_shadow = val;
}

static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
{
	if (vmx->vm_exit_controls_shadow != val)
		vm_exit_controls_init(vmx, val);
}

static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
{
	return vmx->vm_exit_controls_shadow;
}


static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
{
	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
}

static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
{
	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
	vmx->segment_cache.bitmask = 0;
}

static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
				       unsigned field)
{
	bool ret;
	u32 mask = 1 << (seg * SEG_FIELD_NR + field);

	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
		vmx->segment_cache.bitmask = 0;
	}
	ret = vmx->segment_cache.bitmask & mask;
	vmx->segment_cache.bitmask |= mask;
	return ret;
}

static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
	u16 *p = &vmx->segment_cache.seg[seg].selector;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
	return *p;
}

static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
	ulong *p = &vmx->segment_cache.seg[seg].base;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
	return *p;
}

static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
	u32 *p = &vmx->segment_cache.seg[seg].limit;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
	return *p;
}

static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
	u32 *p = &vmx->segment_cache.seg[seg].ar;

	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
	return *p;
}

1817 1818 1819 1820
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
	u32 eb;

1821
	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1822
	     (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1823 1824 1825 1826
	if ((vcpu->guest_debug &
	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
		eb |= 1u << BP_VECTOR;
1827
	if (to_vmx(vcpu)->rmode.vm86_active)
1828
		eb = ~0;
1829
	if (enable_ept)
1830
		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1831 1832
	if (vcpu->fpu_active)
		eb &= ~(1u << NM_VECTOR);
1833 1834 1835 1836 1837 1838 1839 1840 1841

	/* When we are running a nested L2 guest and L1 specified for it a
	 * certain exception bitmap, we must trap the same exceptions and pass
	 * them to L1. When running L2, we will only handle the exceptions
	 * specified above if L1 did not want them.
	 */
	if (is_guest_mode(vcpu))
		eb |= get_vmcs12(vcpu)->exception_bitmap;

1842 1843 1844
	vmcs_write32(EXCEPTION_BITMAP, eb);
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
/*
 * Check if MSR is intercepted for currently loaded MSR bitmap.
 */
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
{
	unsigned long *msr_bitmap;
	int f = sizeof(unsigned long);

	if (!cpu_has_vmx_msr_bitmap())
		return true;

	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;

	if (msr <= 0x1fff) {
		return !!test_bit(msr, msr_bitmap + 0x800 / f);
	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
	}

	return true;
}

Ashok Raj's avatar
Ashok Raj committed
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
/*
 * Check if MSR is intercepted for L01 MSR bitmap.
 */
static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
{
	unsigned long *msr_bitmap;
	int f = sizeof(unsigned long);

	if (!cpu_has_vmx_msr_bitmap())
		return true;

	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;

	if (msr <= 0x1fff) {
		return !!test_bit(msr, msr_bitmap + 0x800 / f);
	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
	}

	return true;
}

1891 1892
static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
		unsigned long entry, unsigned long exit)
1893
{
1894 1895
	vm_entry_controls_clearbit(vmx, entry);
	vm_exit_controls_clearbit(vmx, exit);
1896 1897
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
static int find_msr(struct vmx_msrs *m, int msr)
{
	unsigned int i;

	for (i = 0; i < m->nr; ++i) {
		if (m->val[i].index == msr)
			return i;
	}
	return -ENOENT;
}

1909 1910
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
1911
	int i;
1912 1913
	struct msr_autoload *m = &vmx->msr_autoload;

1914 1915 1916
	switch (msr) {
	case MSR_EFER:
		if (cpu_has_load_ia32_efer) {
1917 1918
			clear_atomic_switch_msr_special(vmx,
					VM_ENTRY_LOAD_IA32_EFER,
1919 1920 1921 1922 1923 1924
					VM_EXIT_LOAD_IA32_EFER);
			return;
		}
		break;
	case MSR_CORE_PERF_GLOBAL_CTRL:
		if (cpu_has_load_perf_global_ctrl) {
1925
			clear_atomic_switch_msr_special(vmx,
1926 1927 1928 1929 1930
					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
			return;
		}
		break;
1931
	}
1932 1933
	i = find_msr(&m->guest, msr);
	if (i < 0)
1934
		goto skip_guest;
1935 1936 1937
	--m->guest.nr;
	m->guest.val[i] = m->guest.val[m->guest.nr];
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1938 1939 1940 1941 1942 1943 1944

skip_guest:
	i = find_msr(&m->host, msr);
	if (i < 0)
		return;
	--m->host.nr;
	m->host.val[i] = m->host.val[m->host.nr];
1945
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1946 1947
}

1948 1949 1950 1951
static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
		unsigned long entry, unsigned long exit,
		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
		u64 guest_val, u64 host_val)
1952 1953 1954
{
	vmcs_write64(guest_val_vmcs, guest_val);
	vmcs_write64(host_val_vmcs, host_val);
1955 1956
	vm_entry_controls_setbit(vmx, entry);
	vm_exit_controls_setbit(vmx, exit);
1957 1958
}

1959
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1960
				  u64 guest_val, u64 host_val, bool entry_only)
1961
{
1962
	int i, j = 0;
1963 1964
	struct msr_autoload *m = &vmx->msr_autoload;

1965 1966 1967
	switch (msr) {
	case MSR_EFER:
		if (cpu_has_load_ia32_efer) {
1968 1969
			add_atomic_switch_msr_special(vmx,
					VM_ENTRY_LOAD_IA32_EFER,
1970 1971 1972 1973 1974 1975 1976 1977 1978
					VM_EXIT_LOAD_IA32_EFER,
					GUEST_IA32_EFER,
					HOST_IA32_EFER,
					guest_val, host_val);
			return;
		}
		break;
	case MSR_CORE_PERF_GLOBAL_CTRL:
		if (cpu_has_load_perf_global_ctrl) {
1979
			add_atomic_switch_msr_special(vmx,
1980 1981 1982 1983 1984 1985 1986 1987
					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
					GUEST_IA32_PERF_GLOBAL_CTRL,
					HOST_IA32_PERF_GLOBAL_CTRL,
					guest_val, host_val);
			return;
		}
		break;
1988 1989 1990 1991 1992 1993 1994
	case MSR_IA32_PEBS_ENABLE:
		/* PEBS needs a quiescent period after being disabled (to write
		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
		 * provide that period, so a CPU could write host's record into
		 * guest's memory.
		 */
		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1995 1996
	}

1997
	i = find_msr(&m->guest, msr);
1998 1999 2000
	if (!entry_only)
		j = find_msr(&m->host, msr);

2001
	if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
2002
		printk_once(KERN_WARNING "Not enough msr switch entries. "
2003 2004
				"Can't add msr %x\n", msr);
		return;
2005 2006
	}
	if (i < 0) {
2007
		i = m->guest.nr++;
2008
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
2009
	}
2010 2011 2012 2013 2014 2015
	m->guest.val[i].index = msr;
	m->guest.val[i].value = guest_val;

	if (entry_only)
		return;

2016 2017
	if (j < 0) {
		j = m->host.nr++;
2018
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
2019
	}
2020 2021
	m->host.val[j].index = msr;
	m->host.val[j].value = host_val;
2022 2023
}

2024 2025 2026 2027 2028
static void reload_tss(void)
{
	/*
	 * VT restores TR but not its size.  Useless.
	 */
2029
	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2030
	struct desc_struct *descs;
2031

2032
	descs = (void *)gdt->address;
2033 2034 2035 2036
	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
	load_TR_desc();
}

2037
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2038
{
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	u64 guest_efer = vmx->vcpu.arch.efer;
	u64 ignore_bits = 0;

	if (!enable_ept) {
		/*
		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
		 * host CPUID is more efficient than testing guest CPUID
		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
		 */
		if (boot_cpu_has(X86_FEATURE_SMEP))
			guest_efer |= EFER_NX;
		else if (!(guest_efer & EFER_NX))
			ignore_bits |= EFER_NX;
	}
2053

2054
	/*
2055
	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2056
	 */
2057
	ignore_bits |= EFER_SCE;
2058 2059 2060 2061 2062 2063
#ifdef CONFIG_X86_64
	ignore_bits |= EFER_LMA | EFER_LME;
	/* SCE is meaningful only in long mode on Intel */
	if (guest_efer & EFER_LMA)
		ignore_bits &= ~(u64)EFER_SCE;
#endif
2064 2065

	clear_atomic_switch_msr(vmx, MSR_EFER);
2066 2067 2068 2069 2070 2071 2072 2073

	/*
	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
	 * On CPUs that support "load IA32_EFER", always switch EFER
	 * atomically, since it's faster than switching it manually.
	 */
	if (cpu_has_load_ia32_efer ||
	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2074 2075
		if (!(guest_efer & EFER_LMA))
			guest_efer &= ~EFER_LME;
2076 2077
		if (guest_efer != host_efer)
			add_atomic_switch_msr(vmx, MSR_EFER,
2078
					      guest_efer, host_efer, false);
2079
		return false;
2080 2081 2082 2083 2084 2085
	} else {
		guest_efer &= ~ignore_bits;
		guest_efer |= host_efer & ignore_bits;

		vmx->guest_msrs[efer_offset].data = guest_efer;
		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2086

2087 2088
		return true;
	}
2089 2090
}

2091 2092
static unsigned long segment_base(u16 selector)
{
2093
	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2094 2095 2096 2097 2098 2099 2100
	struct desc_struct *d;
	unsigned long table_base;
	unsigned long v;

	if (!(selector & ~3))
		return 0;

2101
	table_base = gdt->address;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector = kvm_read_ldt();

		if (!(ldt_selector & ~3))
			return 0;

		table_base = segment_base(ldt_selector);
	}
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = get_desc_base(d);
#ifdef CONFIG_X86_64
       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
#endif
	return v;
}

static inline unsigned long kvm_read_tr_base(void)
{
	u16 tr;
	asm("str %0" : "=g"(tr));
	return segment_base(tr);
}

2127
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2128
{
2129
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2130
	int i;
2131

2132
	if (vmx->host_state.loaded)
2133 2134
		return;

2135
	vmx->host_state.loaded = 1;
2136 2137 2138 2139
	/*
	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
	 * allow segment selectors with cpl > 0 or ti == 1.
	 */
2140
	vmx->host_state.ldt_sel = kvm_read_ldt();
2141
	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2142
	savesegment(fs, vmx->host_state.fs_sel);
2143
	if (!(vmx->host_state.fs_sel & 7)) {
2144
		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2145 2146
		vmx->host_state.fs_reload_needed = 0;
	} else {
2147
		vmcs_write16(HOST_FS_SELECTOR, 0);
2148
		vmx->host_state.fs_reload_needed = 1;
2149
	}
2150
	savesegment(gs, vmx->host_state.gs_sel);
2151 2152
	if (!(vmx->host_state.gs_sel & 7))
		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2153 2154
	else {
		vmcs_write16(HOST_GS_SELECTOR, 0);
2155
		vmx->host_state.gs_ldt_reload_needed = 1;
2156 2157
	}

2158 2159 2160 2161 2162
#ifdef CONFIG_X86_64
	savesegment(ds, vmx->host_state.ds_sel);
	savesegment(es, vmx->host_state.es_sel);
#endif

2163 2164 2165 2166
#ifdef CONFIG_X86_64
	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
2167 2168
	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2169
#endif
2170 2171

#ifdef CONFIG_X86_64
2172 2173
	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
	if (is_long_mode(&vmx->vcpu))
2174
		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2175
#endif
2176 2177
	if (boot_cpu_has(X86_FEATURE_MPX))
		rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2178 2179
	for (i = 0; i < vmx->save_nmsrs; ++i)
		kvm_set_shared_msr(vmx->guest_msrs[i].index,
2180 2181
				   vmx->guest_msrs[i].data,
				   vmx->guest_msrs[i].mask);
2182 2183
}

2184
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2185
{
2186
	if (!vmx->host_state.loaded)
2187 2188
		return;

2189
	++vmx->vcpu.stat.host_state_reload;
2190
	vmx->host_state.loaded = 0;
2191 2192 2193 2194
#ifdef CONFIG_X86_64
	if (is_long_mode(&vmx->vcpu))
		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
2195
	if (vmx->host_state.gs_ldt_reload_needed) {
2196
		kvm_load_ldt(vmx->host_state.ldt_sel);
2197
#ifdef CONFIG_X86_64
2198 2199 2200
		load_gs_index(vmx->host_state.gs_sel);
#else
		loadsegment(gs, vmx->host_state.gs_sel);
2201 2202
#endif
	}
2203 2204
	if (vmx->host_state.fs_reload_needed)
		loadsegment(fs, vmx->host_state.fs_sel);
2205 2206 2207 2208 2209 2210
#ifdef CONFIG_X86_64
	if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
		loadsegment(ds, vmx->host_state.ds_sel);
		loadsegment(es, vmx->host_state.es_sel);
	}
#endif
2211
	reload_tss();
2212
#ifdef CONFIG_X86_64
2213
	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2214
#endif
2215 2216
	if (vmx->host_state.msr_host_bndcfgs)
		wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2217 2218 2219 2220
	/*
	 * If the FPU is not active (through the host task or
	 * the guest vcpu), then restore the cr0.TS bit.
	 */
2221
	if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2222
		stts();
2223
	load_gdt(this_cpu_ptr(&host_gdt));
2224 2225
}

2226 2227 2228 2229 2230 2231 2232
static void vmx_load_host_state(struct vcpu_vmx *vmx)
{
	preempt_disable();
	__vmx_load_host_state(vmx);
	preempt_enable();
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
{
	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
	struct pi_desc old, new;
	unsigned int dest;

	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
		!irq_remapping_cap(IRQ_POSTING_CAP))
		return;

	do {
		old.control = new.control = pi_desc->control;

		/*
		 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
		 * are two possible cases:
		 * 1. After running 'pre_block', context switch
		 *    happened. For this case, 'sn' was set in
		 *    vmx_vcpu_put(), so we need to clear it here.
		 * 2. After running 'pre_block', we were blocked,
		 *    and woken up by some other guy. For this case,
		 *    we don't need to do anything, 'pi_post_block'
		 *    will do everything for us. However, we cannot
		 *    check whether it is case #1 or case #2 here
		 *    (maybe, not needed), so we also clear sn here,
		 *    I think it is not a big deal.
		 */
		if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
			if (vcpu->cpu != cpu) {
				dest = cpu_physical_id(cpu);

				if (x2apic_enabled())
					new.ndst = dest;
				else
					new.ndst = (dest << 8) & 0xFF00;
			}

			/* set 'NV' to 'notification vector' */
			new.nv = POSTED_INTR_VECTOR;
		}

		/* Allow posting non-urgent interrupts */
		new.sn = 0;
Paolo Bonzini's avatar
Paolo Bonzini committed
2276 2277
	} while (cmpxchg64(&pi_desc->control, old.control,
			   new.control) != old.control);
2278
}
2279 2280 2281 2282
/*
 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
 * vcpu mutex is already taken.
 */
2283
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2284
{
2285
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2286
	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2287

2288 2289
	if (!vmm_exclusive)
		kvm_cpu_vmxon(phys_addr);
2290 2291
	else if (vmx->loaded_vmcs->cpu != cpu)
		loaded_vmcs_clear(vmx->loaded_vmcs);
2292

2293 2294 2295
	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
		vmcs_load(vmx->loaded_vmcs->vmcs);
2296
		indirect_branch_prediction_barrier();
2297 2298
	}

2299
	if (vmx->loaded_vmcs->cpu != cpu) {
2300
		struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2301 2302
		unsigned long sysenter_esp;

2303
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2304
		local_irq_disable();
2305
		crash_disable_local_vmclear(cpu);
2306 2307 2308 2309 2310 2311 2312 2313

		/*
		 * Read loaded_vmcs->cpu should be before fetching
		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
		 * See the comments in __loaded_vmcs_clear().
		 */
		smp_rmb();

2314 2315
		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
			 &per_cpu(loaded_vmcss_on_cpu, cpu));
2316
		crash_enable_local_vmclear(cpu);
2317 2318
		local_irq_enable();

2319 2320 2321 2322
		/*
		 * Linux uses per-cpu TSS and GDT, so set these when switching
		 * processors.
		 */
2323
		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2324
		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
2325 2326 2327

		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2328

2329
		vmx->loaded_vmcs->cpu = cpu;
2330
	}
2331

2332 2333 2334 2335 2336 2337 2338
	/* Setup TSC multiplier */
	if (kvm_has_tsc_control &&
	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
		vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
		vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
	}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	vmx_vcpu_pi_load(vcpu, cpu);
}

static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
{
	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);

	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
		!irq_remapping_cap(IRQ_POSTING_CAP))
		return;

	/* Set SN when the vCPU is preempted */
	if (vcpu->preempted)
		pi_set_sn(pi_desc);
2353 2354 2355 2356
}

static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
2357 2358
	vmx_vcpu_pi_put(vcpu);

2359
	__vmx_load_host_state(to_vmx(vcpu));
2360
	if (!vmm_exclusive) {
2361 2362
		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
		vcpu->cpu = -1;
2363 2364
		kvm_cpu_vmxoff();
	}
2365 2366
}

2367 2368
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
{
2369 2370
	ulong cr0;

2371 2372 2373
	if (vcpu->fpu_active)
		return;
	vcpu->fpu_active = 1;
2374 2375 2376 2377
	cr0 = vmcs_readl(GUEST_CR0);
	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
	vmcs_writel(GUEST_CR0, cr0);
2378
	update_exception_bitmap(vcpu);
2379
	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2380 2381 2382
	if (is_guest_mode(vcpu))
		vcpu->arch.cr0_guest_owned_bits &=
			~get_vmcs12(vcpu)->cr0_guest_host_mask;
2383
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2384 2385
}

2386 2387
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
/*
 * Return the cr0 value that a nested guest would read. This is a combination
 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
 * its hypervisor (cr0_read_shadow).
 */
static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
{
	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
}
static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
{
	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
}

2404 2405
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
{
2406 2407 2408
	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
	 * set this *before* calling this function.
	 */
2409
	vmx_decache_cr0_guest_bits(vcpu);
2410
	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2411
	update_exception_bitmap(vcpu);
2412 2413
	vcpu->arch.cr0_guest_owned_bits = 0;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (is_guest_mode(vcpu)) {
		/*
		 * L1's specified read shadow might not contain the TS bit,
		 * so now that we turned on shadowing of this bit, we need to
		 * set this bit of the shadow. Like in nested_vmx_run we need
		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
		 * up-to-date here because we just decached cr0.TS (and we'll
		 * only update vmcs12->guest_cr0 on nested exit).
		 */
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
			(vcpu->arch.cr0 & X86_CR0_TS);
		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
	} else
		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2429 2430
}

2431 2432
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
2433
	unsigned long rflags, save_rflags;
2434

2435 2436 2437 2438 2439 2440 2441 2442 2443
	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
		rflags = vmcs_readl(GUEST_RFLAGS);
		if (to_vmx(vcpu)->rmode.vm86_active) {
			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
		}
		to_vmx(vcpu)->rflags = rflags;
2444
	}
2445
	return to_vmx(vcpu)->rflags;
2446 2447 2448 2449
}

static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
2450 2451
	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
	to_vmx(vcpu)->rflags = rflags;
2452 2453
	if (to_vmx(vcpu)->rmode.vm86_active) {
		to_vmx(vcpu)->rmode.save_rflags = rflags;
2454
		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2455
	}
2456 2457 2458
	vmcs_writel(GUEST_RFLAGS, rflags);
}

2459
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2460 2461 2462 2463 2464
{
	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
	int ret = 0;

	if (interruptibility & GUEST_INTR_STATE_STI)
2465
		ret |= KVM_X86_SHADOW_INT_STI;
2466
	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2467
		ret |= KVM_X86_SHADOW_INT_MOV_SS;
2468

2469
	return ret;
2470 2471 2472 2473 2474 2475 2476 2477 2478
}

static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
	u32 interruptibility = interruptibility_old;

	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);

2479
	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2480
		interruptibility |= GUEST_INTR_STATE_MOV_SS;
2481
	else if (mask & KVM_X86_SHADOW_INT_STI)
2482 2483 2484 2485 2486 2487
		interruptibility |= GUEST_INTR_STATE_STI;

	if ((interruptibility != interruptibility_old))
		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}

2488 2489 2490 2491
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
	unsigned long rip;

2492
	rip = kvm_rip_read(vcpu);
2493
	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2494
	kvm_rip_write(vcpu, rip);
2495

2496 2497
	/* skipping an emulated instruction also counts */
	vmx_set_interrupt_shadow(vcpu, 0);
2498 2499
}

2500 2501 2502 2503
/*
 * KVM wants to inject page-faults which it got to the guest. This function
 * checks whether in a nested guest, we need to inject them to L1 or L2.
 */
2504
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2505 2506 2507
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

2508
	if (!(vmcs12->exception_bitmap & (1u << nr)))
2509 2510
		return 0;

2511
	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2512 2513
			  vmcs_read32(VM_EXIT_INTR_INFO),
			  vmcs_readl(EXIT_QUALIFICATION));
2514 2515 2516
	return 1;
}

2517
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2518 2519
				bool has_error_code, u32 error_code,
				bool reinject)
2520
{
2521
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2522
	u32 intr_info = nr | INTR_INFO_VALID_MASK;
2523

2524 2525
	if (!reinject && is_guest_mode(vcpu) &&
	    nested_vmx_check_exception(vcpu, nr))
2526 2527
		return;

2528
	if (has_error_code) {
2529
		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2530 2531
		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
	}
2532

2533
	if (vmx->rmode.vm86_active) {
2534 2535 2536 2537
		int inc_eip = 0;
		if (kvm_exception_is_soft(nr))
			inc_eip = vcpu->arch.event_exit_inst_len;
		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2538
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2539 2540 2541
		return;
	}

2542 2543
	WARN_ON_ONCE(vmx->emulation_required);

2544 2545 2546
	if (kvm_exception_is_soft(nr)) {
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmx->vcpu.arch.event_exit_inst_len);
2547 2548 2549 2550 2551
		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
	} else
		intr_info |= INTR_TYPE_HARD_EXCEPTION;

	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2552 2553
}

2554 2555 2556 2557 2558
static bool vmx_rdtscp_supported(void)
{
	return cpu_has_vmx_rdtscp();
}

2559 2560 2561 2562 2563
static bool vmx_invpcid_supported(void)
{
	return cpu_has_vmx_invpcid() && enable_ept;
}

2564 2565 2566
/*
 * Swap MSR entry in host/guest MSR entry array.
 */
2567
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2568
{
2569
	struct shared_msr_entry tmp;
2570 2571 2572 2573

	tmp = vmx->guest_msrs[to];
	vmx->guest_msrs[to] = vmx->guest_msrs[from];
	vmx->guest_msrs[from] = tmp;
2574 2575
}

2576 2577 2578 2579 2580
/*
 * Set up the vmcs to automatically save and restore system
 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
 * mode, as fiddling with msrs is very expensive.
 */
2581
static void setup_msrs(struct vcpu_vmx *vmx)
2582
{
2583
	int save_nmsrs, index;
2584

2585 2586
	save_nmsrs = 0;
#ifdef CONFIG_X86_64
2587 2588
	if (is_long_mode(&vmx->vcpu)) {
		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2589
		if (index >= 0)
2590 2591
			move_msr_up(vmx, index, save_nmsrs++);
		index = __find_msr_index(vmx, MSR_LSTAR);
2592
		if (index >= 0)
2593 2594
			move_msr_up(vmx, index, save_nmsrs++);
		index = __find_msr_index(vmx, MSR_CSTAR);
2595
		if (index >= 0)
2596
			move_msr_up(vmx, index, save_nmsrs++);
2597
		index = __find_msr_index(vmx, MSR_TSC_AUX);
2598
		if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2599
			move_msr_up(vmx, index, save_nmsrs++);
2600
		/*
Brian Gerst's avatar
Brian Gerst committed
2601
		 * MSR_STAR is only needed on long mode guests, and only
2602 2603
		 * if efer.sce is enabled.
		 */
Brian Gerst's avatar
Brian Gerst committed
2604
		index = __find_msr_index(vmx, MSR_STAR);
2605
		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2606
			move_msr_up(vmx, index, save_nmsrs++);
2607 2608
	}
#endif
2609 2610
	index = __find_msr_index(vmx, MSR_EFER);
	if (index >= 0 && update_transition_efer(vmx, index))
2611
		move_msr_up(vmx, index, save_nmsrs++);
2612

2613
	vmx->save_nmsrs = save_nmsrs;
2614

2615
	if (cpu_has_vmx_msr_bitmap())
2616
		vmx_update_msr_bitmap(&vmx->vcpu);
2617 2618
}

2619 2620
/*
 * reads and returns guest's timestamp counter "register"
2621 2622
 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2623
 */
2624
static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2625 2626 2627
{
	u64 host_tsc, tsc_offset;

2628
	host_tsc = rdtsc();
2629
	tsc_offset = vmcs_read64(TSC_OFFSET);
2630
	return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2631 2632
}

Nadav Har'El's avatar
Nadav Har'El committed
2633 2634 2635 2636
/*
 * Like guest_read_tsc, but always returns L1's notion of the timestamp
 * counter, even if a nested guest (L2) is currently running.
 */
2637
static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
Nadav Har'El's avatar
Nadav Har'El committed
2638
{
2639
	u64 tsc_offset;
Nadav Har'El's avatar
Nadav Har'El committed
2640 2641 2642 2643 2644 2645 2646

	tsc_offset = is_guest_mode(vcpu) ?
		to_vmx(vcpu)->nested.vmcs01_tsc_offset :
		vmcs_read64(TSC_OFFSET);
	return host_tsc + tsc_offset;
}

2647 2648 2649 2650 2651
static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
{
	return vmcs_read64(TSC_OFFSET);
}

2652
/*
2653
 * writes 'offset' into guest's timestamp counter offset register
2654
 */
2655
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2656
{
2657
	if (is_guest_mode(vcpu)) {
2658
		/*
2659 2660 2661 2662
		 * We're here if L1 chose not to trap WRMSR to TSC. According
		 * to the spec, this should set L1's TSC; The offset that L1
		 * set for L2 remains unchanged, and still needs to be added
		 * to the newly set TSC to get L2's TSC.
2663
		 */
2664 2665 2666 2667 2668 2669 2670 2671
		struct vmcs12 *vmcs12;
		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
		/* recalculate vmcs02.TSC_OFFSET: */
		vmcs12 = get_vmcs12(vcpu);
		vmcs_write64(TSC_OFFSET, offset +
			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
			 vmcs12->tsc_offset : 0));
	} else {
2672 2673
		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
					   vmcs_read64(TSC_OFFSET), offset);
2674 2675
		vmcs_write64(TSC_OFFSET, offset);
	}
2676 2677
}

2678
static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
Zachary Amsden's avatar
Zachary Amsden committed
2679 2680
{
	u64 offset = vmcs_read64(TSC_OFFSET);
2681

Zachary Amsden's avatar
Zachary Amsden committed
2682
	vmcs_write64(TSC_OFFSET, offset + adjustment);
2683 2684 2685
	if (is_guest_mode(vcpu)) {
		/* Even when running L2, the adjustment needs to apply to L1 */
		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2686 2687 2688
	} else
		trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
					   offset + adjustment);
Zachary Amsden's avatar
Zachary Amsden committed
2689 2690
}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
}

/*
 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
 * all guests if the "nested" module option is off, and can also be disabled
 * for a single guest by disabling its VMX cpuid bit.
 */
static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
{
	return nested && guest_cpuid_has_vmx(vcpu);
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/*
 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 * returned for the various VMX controls MSRs when nested VMX is enabled.
 * The same values should also be used to verify that vmcs12 control fields are
 * valid during nested entry from L1 to L2.
 * Each of these control msrs has a low and high 32-bit half: A low bit is on
 * if the corresponding bit in the (32-bit) control field *must* be on, and a
 * bit in the high half is on if the corresponding bit in the control field
 * may be on. See also vmx_control_verify().
 */
2718
static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
{
	/*
	 * Note that as a general rule, the high half of the MSRs (bits in
	 * the control fields which may be 1) should be initialized by the
	 * intersection of the underlying hardware's MSR (i.e., features which
	 * can be supported) and the list of features we want to expose -
	 * because they are known to be properly supported in our code.
	 * Also, usually, the low half of the MSRs (bits which must be 1) can
	 * be set to 0, meaning that L1 may turn off any of these bits. The
	 * reason is that if one of these bits is necessary, it will appear
	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
	 * fields of vmcs01 and vmcs02, will turn these bits off - and
	 * nested_vmx_exit_handled() will not pass related exits to L1.
	 * These rules have exceptions below.
	 */

	/* pin-based controls */
2736
	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
		vmx->nested.nested_vmx_pinbased_ctls_low,
		vmx->nested.nested_vmx_pinbased_ctls_high);
	vmx->nested.nested_vmx_pinbased_ctls_low |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	vmx->nested.nested_vmx_pinbased_ctls_high &=
		PIN_BASED_EXT_INTR_MASK |
		PIN_BASED_NMI_EXITING |
		PIN_BASED_VIRTUAL_NMIS;
	vmx->nested.nested_vmx_pinbased_ctls_high |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2747
		PIN_BASED_VMX_PREEMPTION_TIMER;
2748
	if (kvm_vcpu_apicv_active(&vmx->vcpu))
2749 2750
		vmx->nested.nested_vmx_pinbased_ctls_high |=
			PIN_BASED_POSTED_INTR;
2751

2752
	/* exit controls */
2753
	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2754 2755 2756 2757
		vmx->nested.nested_vmx_exit_ctls_low,
		vmx->nested.nested_vmx_exit_ctls_high);
	vmx->nested.nested_vmx_exit_ctls_low =
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2758

2759
	vmx->nested.nested_vmx_exit_ctls_high &=
2760
#ifdef CONFIG_X86_64
2761
		VM_EXIT_HOST_ADDR_SPACE_SIZE |
2762
#endif
2763
		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2764 2765
	vmx->nested.nested_vmx_exit_ctls_high |=
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2766
		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2767 2768
		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;

2769
	if (kvm_mpx_supported())
2770
		vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2771

2772
	/* We support free control of debug control saving. */
2773 2774
	vmx->nested.nested_vmx_true_exit_ctls_low =
		vmx->nested.nested_vmx_exit_ctls_low &
2775 2776
		~VM_EXIT_SAVE_DEBUG_CONTROLS;

2777 2778
	/* entry controls */
	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2779 2780 2781 2782 2783
		vmx->nested.nested_vmx_entry_ctls_low,
		vmx->nested.nested_vmx_entry_ctls_high);
	vmx->nested.nested_vmx_entry_ctls_low =
		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
	vmx->nested.nested_vmx_entry_ctls_high &=
2784 2785 2786 2787
#ifdef CONFIG_X86_64
		VM_ENTRY_IA32E_MODE |
#endif
		VM_ENTRY_LOAD_IA32_PAT;
2788 2789
	vmx->nested.nested_vmx_entry_ctls_high |=
		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2790
	if (kvm_mpx_supported())
2791
		vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2792

2793
	/* We support free control of debug control loading. */
2794 2795
	vmx->nested.nested_vmx_true_entry_ctls_low =
		vmx->nested.nested_vmx_entry_ctls_low &
2796 2797
		~VM_ENTRY_LOAD_DEBUG_CONTROLS;

2798 2799
	/* cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2800 2801 2802 2803 2804
		vmx->nested.nested_vmx_procbased_ctls_low,
		vmx->nested.nested_vmx_procbased_ctls_high);
	vmx->nested.nested_vmx_procbased_ctls_low =
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	vmx->nested.nested_vmx_procbased_ctls_high &=
2805 2806
		CPU_BASED_VIRTUAL_INTR_PENDING |
		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2807 2808 2809 2810 2811 2812 2813
		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
		CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2814 2815 2816 2817
		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2818 2819 2820 2821 2822 2823
	/*
	 * We can allow some features even when not supported by the
	 * hardware. For example, L1 can specify an MSR bitmap - and we
	 * can use it to avoid exits to L1 - even when L0 runs L2
	 * without MSR bitmaps.
	 */
2824 2825
	vmx->nested.nested_vmx_procbased_ctls_high |=
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2826
		CPU_BASED_USE_MSR_BITMAPS;
2827

2828
	/* We support free control of CR3 access interception. */
2829 2830
	vmx->nested.nested_vmx_true_procbased_ctls_low =
		vmx->nested.nested_vmx_procbased_ctls_low &
2831 2832
		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);

2833 2834
	/* secondary cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2835 2836 2837 2838
		vmx->nested.nested_vmx_secondary_ctls_low,
		vmx->nested.nested_vmx_secondary_ctls_high);
	vmx->nested.nested_vmx_secondary_ctls_low = 0;
	vmx->nested.nested_vmx_secondary_ctls_high &=
2839
		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2840
		SECONDARY_EXEC_RDTSCP |
2841
		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2842
		SECONDARY_EXEC_ENABLE_VPID |
2843
		SECONDARY_EXEC_APIC_REGISTER_VIRT |
2844
		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2845
		SECONDARY_EXEC_WBINVD_EXITING |
2846 2847
		SECONDARY_EXEC_XSAVES |
		SECONDARY_EXEC_PCOMMIT;
2848

2849 2850
	if (enable_ept) {
		/* nested EPT: emulate EPT also to L1 */
2851
		vmx->nested.nested_vmx_secondary_ctls_high |=
2852
			SECONDARY_EXEC_ENABLE_EPT;
2853
		vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2854 2855
			 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
			 VMX_EPT_INVEPT_BIT;
2856
		vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2857
		/*
2858 2859 2860
		 * For nested guests, we don't do anything specific
		 * for single context invalidation. Hence, only advertise
		 * support for global context invalidation.
2861
		 */
2862
		vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2863
	} else
2864
		vmx->nested.nested_vmx_ept_caps = 0;
2865

2866 2867 2868 2869 2870 2871
	/*
	 * Old versions of KVM use the single-context version without
	 * checking for support, so declare that it is supported even
	 * though it is treated as global context.  The alternative is
	 * not failing the single-context invvpid, and it is worse.
	 */
2872 2873
	if (enable_vpid)
		vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2874
			VMX_VPID_EXTENT_SUPPORTED_MASK;
2875 2876
	else
		vmx->nested.nested_vmx_vpid_caps = 0;
2877

2878 2879 2880 2881
	if (enable_unrestricted_guest)
		vmx->nested.nested_vmx_secondary_ctls_high |=
			SECONDARY_EXEC_UNRESTRICTED_GUEST;

2882
	/* miscellaneous data */
2883 2884 2885 2886 2887 2888
	rdmsr(MSR_IA32_VMX_MISC,
		vmx->nested.nested_vmx_misc_low,
		vmx->nested.nested_vmx_misc_high);
	vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
	vmx->nested.nested_vmx_misc_low |=
		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2889
		VMX_MISC_ACTIVITY_HLT;
2890
	vmx->nested.nested_vmx_misc_high = 0;
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
}

static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
	/*
	 * Bits 0 in high must be 0, and bits 1 in low must be 1.
	 */
	return ((control & high) | low) == control;
}

static inline u64 vmx_control_msr(u32 low, u32 high)
{
	return low | ((u64)high << 32);
}

2906
/* Returns 0 on success, non-0 otherwise. */
2907 2908
static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
2909 2910
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2911 2912 2913 2914 2915 2916 2917 2918
	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		/*
		 * This MSR reports some information about VMX support. We
		 * should return information about the VMX we emulate for the
		 * guest, and the VMCS structure we give it - not about the
		 * VMX support of the underlying hardware.
		 */
2919
		*pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2920 2921 2922 2923 2924
			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
		break;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_PINBASED_CTLS:
2925 2926 2927
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_pinbased_ctls_low,
			vmx->nested.nested_vmx_pinbased_ctls_high);
2928 2929
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2930 2931 2932
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_true_procbased_ctls_low,
			vmx->nested.nested_vmx_procbased_ctls_high);
2933
		break;
2934
	case MSR_IA32_VMX_PROCBASED_CTLS:
2935 2936 2937
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_procbased_ctls_low,
			vmx->nested.nested_vmx_procbased_ctls_high);
2938 2939
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2940 2941 2942
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_true_exit_ctls_low,
			vmx->nested.nested_vmx_exit_ctls_high);
2943
		break;
2944
	case MSR_IA32_VMX_EXIT_CTLS:
2945 2946 2947
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_exit_ctls_low,
			vmx->nested.nested_vmx_exit_ctls_high);
2948 2949
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2950 2951 2952
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_true_entry_ctls_low,
			vmx->nested.nested_vmx_entry_ctls_high);
2953
		break;
2954
	case MSR_IA32_VMX_ENTRY_CTLS:
2955 2956 2957
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_entry_ctls_low,
			vmx->nested.nested_vmx_entry_ctls_high);
2958 2959
		break;
	case MSR_IA32_VMX_MISC:
2960 2961 2962
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_misc_low,
			vmx->nested.nested_vmx_misc_high);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
		break;
	/*
	 * These MSRs specify bits which the guest must keep fixed (on or off)
	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
	 * We picked the standard core2 setting.
	 */
#define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON	X86_CR4_VMXE
	case MSR_IA32_VMX_CR0_FIXED0:
		*pdata = VMXON_CR0_ALWAYSON;
		break;
	case MSR_IA32_VMX_CR0_FIXED1:
		*pdata = -1ULL;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		*pdata = VMXON_CR4_ALWAYSON;
		break;
	case MSR_IA32_VMX_CR4_FIXED1:
		*pdata = -1ULL;
		break;
	case MSR_IA32_VMX_VMCS_ENUM:
2984
		*pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2985 2986
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
2987 2988 2989
		*pdata = vmx_control_msr(
			vmx->nested.nested_vmx_secondary_ctls_low,
			vmx->nested.nested_vmx_secondary_ctls_high);
2990 2991
		break;
	case MSR_IA32_VMX_EPT_VPID_CAP:
2992
		/* Currently, no nested vpid support */
2993 2994
		*pdata = vmx->nested.nested_vmx_ept_caps |
			((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2995 2996 2997
		break;
	default:
		return 1;
2998 2999
	}

3000 3001 3002
	return 0;
}

3003 3004 3005 3006 3007
static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
{
	return 1;
}

3008 3009 3010 3011 3012
/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
3013
static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3014
{
3015
	struct shared_msr_entry *msr;
3016

3017
	switch (msr_info->index) {
3018
#ifdef CONFIG_X86_64
3019
	case MSR_FS_BASE:
3020
		msr_info->data = vmcs_readl(GUEST_FS_BASE);
3021 3022
		break;
	case MSR_GS_BASE:
3023
		msr_info->data = vmcs_readl(GUEST_GS_BASE);
3024
		break;
3025 3026
	case MSR_KERNEL_GS_BASE:
		vmx_load_host_state(to_vmx(vcpu));
3027
		msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3028
		break;
3029
#endif
3030
	case MSR_EFER:
3031
		return kvm_get_msr_common(vcpu, msr_info);
3032
	case MSR_IA32_TSC:
3033
		msr_info->data = guest_read_tsc(vcpu);
3034
		break;
3035
	case MSR_IA32_SPEC_CTRL:
3036 3037 3038 3039 3040
		if (!msr_info->host_initiated &&
		    !guest_cpuid_has_spec_ctrl(vcpu))
			return 1;

		msr_info->data = to_vmx(vcpu)->spec_ctrl;
3041
		break;
3042 3043 3044 3045 3046 3047
	case MSR_IA32_ARCH_CAPABILITIES:
		if (!msr_info->host_initiated &&
		    !guest_cpuid_has_arch_capabilities(vcpu))
			return 1;
		msr_info->data = to_vmx(vcpu)->arch_capabilities;
		break;
3048
	case MSR_IA32_SYSENTER_CS:
3049
		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3050 3051
		break;
	case MSR_IA32_SYSENTER_EIP:
3052
		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3053 3054
		break;
	case MSR_IA32_SYSENTER_ESP:
3055
		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3056
		break;
3057
	case MSR_IA32_BNDCFGS:
3058 3059
		if (!kvm_mpx_supported() ||
		    (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3060
			return 1;
3061
		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3062
		break;
3063 3064 3065
	case MSR_IA32_FEATURE_CONTROL:
		if (!nested_vmx_allowed(vcpu))
			return 1;
3066
		msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
3067 3068 3069 3070
		break;
	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
		if (!nested_vmx_allowed(vcpu))
			return 1;
3071
		return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3072 3073 3074
	case MSR_IA32_XSS:
		if (!vmx_xsaves_supported())
			return 1;
3075
		msr_info->data = vcpu->arch.ia32_xss;
3076
		break;
3077
	case MSR_TSC_AUX:
3078
		if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3079 3080
			return 1;
		/* Otherwise falls through */
3081
	default:
3082
		msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3083
		if (msr) {
3084
			msr_info->data = msr->data;
3085
			break;
3086
		}
3087
		return kvm_get_msr_common(vcpu, msr_info);
3088 3089 3090 3091 3092
	}

	return 0;
}

3093 3094
static void vmx_leave_nested(struct kvm_vcpu *vcpu);

3095 3096 3097 3098 3099
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
3100
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3101
{
3102
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3103
	struct shared_msr_entry *msr;
3104
	int ret = 0;
3105 3106
	u32 msr_index = msr_info->index;
	u64 data = msr_info->data;
3107

3108
	switch (msr_index) {
3109
	case MSR_EFER:
3110
		ret = kvm_set_msr_common(vcpu, msr_info);
3111
		break;
3112
#ifdef CONFIG_X86_64
3113
	case MSR_FS_BASE:
3114
		vmx_segment_cache_clear(vmx);
3115 3116 3117
		vmcs_writel(GUEST_FS_BASE, data);
		break;
	case MSR_GS_BASE:
3118
		vmx_segment_cache_clear(vmx);
3119 3120
		vmcs_writel(GUEST_GS_BASE, data);
		break;
3121 3122 3123 3124
	case MSR_KERNEL_GS_BASE:
		vmx_load_host_state(vmx);
		vmx->msr_guest_kernel_gs_base = data;
		break;
3125 3126 3127 3128 3129
#endif
	case MSR_IA32_SYSENTER_CS:
		vmcs_write32(GUEST_SYSENTER_CS, data);
		break;
	case MSR_IA32_SYSENTER_EIP:
Avi Kivity's avatar
Avi Kivity committed
3130
		vmcs_writel(GUEST_SYSENTER_EIP, data);
3131 3132
		break;
	case MSR_IA32_SYSENTER_ESP:
Avi Kivity's avatar
Avi Kivity committed
3133
		vmcs_writel(GUEST_SYSENTER_ESP, data);
3134
		break;
3135
	case MSR_IA32_BNDCFGS:
3136 3137
		if (!kvm_mpx_supported() ||
		    (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3138
			return 1;
3139 3140 3141
		if (is_noncanonical_address(data & PAGE_MASK) ||
		    (data & MSR_IA32_BNDCFGS_RSVD))
			return 1;
3142 3143
		vmcs_write64(GUEST_BNDCFGS, data);
		break;
3144
	case MSR_IA32_TSC:
3145
		kvm_write_tsc(vcpu, msr_info);
3146
		break;
3147
	case MSR_IA32_SPEC_CTRL:
3148 3149 3150 3151
		if (!msr_info->host_initiated &&
		    !guest_cpuid_has_spec_ctrl(vcpu))
			return 1;

3152
		/* The STIBP bit doesn't fault even if it's not advertised */
3153
		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
3154 3155
			return 1;

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
		vmx->spec_ctrl = data;

		if (!data)
			break;

		/*
		 * For non-nested:
		 * When it's written (to non-zero) for the first time, pass
		 * it through.
		 *
		 * For nested:
		 * The handling of the MSR bitmap for L2 guests is done in
		 * nested_vmx_merge_msr_bitmap. We should not touch the
		 * vmcs02.msr_bitmap here since it gets completely overwritten
		 * in the merging. We update the vmcs01 here for L1 as well
		 * since it will end up touching the MSR anyway now.
		 */
		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
					      MSR_IA32_SPEC_CTRL,
					      MSR_TYPE_RW);
3176
		break;
Ashok Raj's avatar
Ashok Raj committed
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
	case MSR_IA32_PRED_CMD:
		if (!msr_info->host_initiated &&
		    !guest_cpuid_has_ibpb(vcpu))
			return 1;

		if (data & ~PRED_CMD_IBPB)
			return 1;

		if (!data)
			break;

		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);

		/*
		 * For non-nested:
		 * When it's written (to non-zero) for the first time, pass
		 * it through.
		 *
		 * For nested:
		 * The handling of the MSR bitmap for L2 guests is done in
		 * nested_vmx_merge_msr_bitmap. We should not touch the
		 * vmcs02.msr_bitmap here since it gets completely overwritten
		 * in the merging.
		 */
		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
					      MSR_TYPE_W);
		break;
3204 3205 3206 3207 3208
	case MSR_IA32_ARCH_CAPABILITIES:
		if (!msr_info->host_initiated)
			return 1;
		vmx->arch_capabilities = data;
		break;
3209 3210
	case MSR_IA32_CR_PAT:
		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3211 3212
			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
				return 1;
3213 3214 3215 3216
			vmcs_write64(GUEST_IA32_PAT, data);
			vcpu->arch.pat = data;
			break;
		}
3217
		ret = kvm_set_msr_common(vcpu, msr_info);
3218
		break;
3219 3220
	case MSR_IA32_TSC_ADJUST:
		ret = kvm_set_msr_common(vcpu, msr_info);
3221
		break;
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	case MSR_IA32_FEATURE_CONTROL:
		if (!nested_vmx_allowed(vcpu) ||
		    (to_vmx(vcpu)->nested.msr_ia32_feature_control &
		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
			return 1;
		vmx->nested.msr_ia32_feature_control = data;
		if (msr_info->host_initiated && data == 0)
			vmx_leave_nested(vcpu);
		break;
	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
		return 1; /* they are read-only */
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	case MSR_IA32_XSS:
		if (!vmx_xsaves_supported())
			return 1;
		/*
		 * The only supported bit as of Skylake is bit 8, but
		 * it is not supported on KVM.
		 */
		if (data != 0)
			return 1;
		vcpu->arch.ia32_xss = data;
		if (vcpu->arch.ia32_xss != host_xss)
			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3245
				vcpu->arch.ia32_xss, host_xss, false);
3246 3247 3248
		else
			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
		break;
3249
	case MSR_TSC_AUX:
3250
		if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3251 3252 3253 3254 3255
			return 1;
		/* Check reserved bit, higher 32 bits should be zero */
		if ((data >> 32) != 0)
			return 1;
		/* Otherwise falls through */
3256
	default:
3257
		msr = find_msr_entry(vmx, msr_index);
3258
		if (msr) {
3259
			u64 old_msr_data = msr->data;
3260
			msr->data = data;
3261 3262
			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
				preempt_disable();
3263 3264
				ret = kvm_set_shared_msr(msr->index, msr->data,
							 msr->mask);
3265
				preempt_enable();
3266 3267
				if (ret)
					msr->data = old_msr_data;
3268
			}
3269
			break;
3270
		}
3271
		ret = kvm_set_msr_common(vcpu, msr_info);
3272 3273
	}

3274
	return ret;
3275 3276
}

3277
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3278
{
3279 3280 3281 3282 3283 3284 3285 3286
	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
	switch (reg) {
	case VCPU_REGS_RSP:
		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
		break;
	case VCPU_REGS_RIP:
		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
		break;
Avi Kivity's avatar
Avi Kivity committed
3287 3288 3289 3290
	case VCPU_EXREG_PDPTR:
		if (enable_ept)
			ept_save_pdptrs(vcpu);
		break;
3291 3292 3293
	default:
		break;
	}
3294 3295 3296 3297
}

static __init int cpu_has_kvm_support(void)
{
3298
	return cpu_has_vmx();
3299 3300 3301 3302 3303 3304 3305
}

static __init int vmx_disabled_by_bios(void)
{
	u64 msr;

	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3306
	if (msr & FEATURE_CONTROL_LOCKED) {
3307
		/* launched w/ TXT and VMX disabled */
3308 3309 3310
		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
			&& tboot_enabled())
			return 1;
3311
		/* launched w/o TXT and VMX only enabled w/ TXT */
3312
		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3313
			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3314 3315
			&& !tboot_enabled()) {
			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3316
				"activate TXT before enabling KVM\n");
3317
			return 1;
3318
		}
3319 3320 3321 3322
		/* launched w/o TXT and VMX disabled */
		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
			&& !tboot_enabled())
			return 1;
3323 3324 3325
	}

	return 0;
3326 3327
}

3328 3329 3330 3331 3332 3333 3334
static void kvm_cpu_vmxon(u64 addr)
{
	asm volatile (ASM_VMX_VMXON_RAX
			: : "a"(&addr), "m"(addr)
			: "memory", "cc");
}

3335
static int hardware_enable(void)
3336 3337 3338
{
	int cpu = raw_smp_processor_id();
	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3339
	u64 old, test_bits;
3340

3341
	if (cr4_read_shadow() & X86_CR4_VMXE)
3342 3343
		return -EBUSY;

3344
	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3345 3346
	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

	/*
	 * Now we can enable the vmclear operation in kdump
	 * since the loaded_vmcss_on_cpu list on this cpu
	 * has been initialized.
	 *
	 * Though the cpu is not in VMX operation now, there
	 * is no problem to enable the vmclear operation
	 * for the loaded_vmcss_on_cpu list is empty!
	 */
	crash_enable_local_vmclear(cpu);

3359
	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3360 3361 3362 3363 3364 3365 3366

	test_bits = FEATURE_CONTROL_LOCKED;
	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
	if (tboot_enabled())
		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;

	if ((old & test_bits) != test_bits) {
3367
		/* enable and lock */
3368 3369
		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
	}
3370
	cr4_set_bits(X86_CR4_VMXE);
3371

3372 3373 3374 3375
	if (vmm_exclusive) {
		kvm_cpu_vmxon(phys_addr);
		ept_sync_global();
	}
3376

3377
	native_store_gdt(this_cpu_ptr(&host_gdt));
3378

3379
	return 0;
3380 3381
}

3382
static void vmclear_local_loaded_vmcss(void)
3383 3384
{
	int cpu = raw_smp_processor_id();
3385
	struct loaded_vmcs *v, *n;
3386

3387 3388 3389
	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
				 loaded_vmcss_on_cpu_link)
		__loaded_vmcs_clear(v);
3390 3391
}

3392 3393 3394 3395 3396

/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
 * tricks.
 */
static void kvm_cpu_vmxoff(void)
3397
{
3398
	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3399 3400
}

3401
static void hardware_disable(void)
3402
{
3403
	if (vmm_exclusive) {
3404
		vmclear_local_loaded_vmcss();
3405 3406
		kvm_cpu_vmxoff();
	}
3407
	cr4_clear_bits(X86_CR4_VMXE);
3408 3409
}

3410
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
Mike Day's avatar
Mike Day committed
3411
				      u32 msr, u32 *result)
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
{
	u32 vmx_msr_low, vmx_msr_high;
	u32 ctl = ctl_min | ctl_opt;

	rdmsr(msr, vmx_msr_low, vmx_msr_high);

	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */

	/* Ensure minimum (required) set of control bits are supported. */
	if (ctl_min & ~ctl)
3423
		return -EIO;
3424 3425 3426 3427 3428

	*result = ctl;
	return 0;
}

3429 3430 3431 3432 3433 3434 3435 3436
static __init bool allow_1_setting(u32 msr, u32 ctl)
{
	u32 vmx_msr_low, vmx_msr_high;

	rdmsr(msr, vmx_msr_low, vmx_msr_high);
	return vmx_msr_high & ctl;
}

3437
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3438 3439
{
	u32 vmx_msr_low, vmx_msr_high;
Sheng Yang's avatar
Sheng Yang committed
3440
	u32 min, opt, min2, opt2;
3441 3442
	u32 _pin_based_exec_control = 0;
	u32 _cpu_based_exec_control = 0;
3443
	u32 _cpu_based_2nd_exec_control = 0;
3444 3445 3446
	u32 _vmexit_control = 0;
	u32 _vmentry_control = 0;

3447
	min = CPU_BASED_HLT_EXITING |
3448 3449 3450 3451
#ifdef CONFIG_X86_64
	      CPU_BASED_CR8_LOAD_EXITING |
	      CPU_BASED_CR8_STORE_EXITING |
#endif
Sheng Yang's avatar
Sheng Yang committed
3452 3453
	      CPU_BASED_CR3_LOAD_EXITING |
	      CPU_BASED_CR3_STORE_EXITING |
3454 3455
	      CPU_BASED_USE_IO_BITMAPS |
	      CPU_BASED_MOV_DR_EXITING |
Marcelo Tosatti's avatar
Marcelo Tosatti committed
3456
	      CPU_BASED_USE_TSC_OFFSETING |
3457 3458
	      CPU_BASED_MWAIT_EXITING |
	      CPU_BASED_MONITOR_EXITING |
Avi Kivity's avatar
Avi Kivity committed
3459 3460
	      CPU_BASED_INVLPG_EXITING |
	      CPU_BASED_RDPMC_EXITING;
3461

3462
	opt = CPU_BASED_TPR_SHADOW |
3463
	      CPU_BASED_USE_MSR_BITMAPS |
3464
	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3465 3466
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
				&_cpu_based_exec_control) < 0)
3467
		return -EIO;
3468 3469 3470 3471 3472
#ifdef CONFIG_X86_64
	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
					   ~CPU_BASED_CR8_STORE_EXITING;
#endif
3473
	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
Sheng Yang's avatar
Sheng Yang committed
3474 3475
		min2 = 0;
		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3476
			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3477
			SECONDARY_EXEC_WBINVD_EXITING |
Sheng Yang's avatar
Sheng Yang committed
3478
			SECONDARY_EXEC_ENABLE_VPID |
3479
			SECONDARY_EXEC_ENABLE_EPT |
3480
			SECONDARY_EXEC_UNRESTRICTED_GUEST |
3481
			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3482
			SECONDARY_EXEC_RDTSCP |
3483
			SECONDARY_EXEC_ENABLE_INVPCID |
3484
			SECONDARY_EXEC_APIC_REGISTER_VIRT |
3485
			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3486
			SECONDARY_EXEC_SHADOW_VMCS |
Kai Huang's avatar
Kai Huang committed
3487
			SECONDARY_EXEC_XSAVES |
3488
			SECONDARY_EXEC_ENABLE_PML |
3489 3490
			SECONDARY_EXEC_PCOMMIT |
			SECONDARY_EXEC_TSC_SCALING;
Sheng Yang's avatar
Sheng Yang committed
3491 3492
		if (adjust_vmx_controls(min2, opt2,
					MSR_IA32_VMX_PROCBASED_CTLS2,
3493 3494 3495 3496 3497 3498 3499 3500
					&_cpu_based_2nd_exec_control) < 0)
			return -EIO;
	}
#ifndef CONFIG_X86_64
	if (!(_cpu_based_2nd_exec_control &
				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
3501 3502 3503

	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
		_cpu_based_2nd_exec_control &= ~(
3504
				SECONDARY_EXEC_APIC_REGISTER_VIRT |
3505 3506
				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3507

Sheng Yang's avatar
Sheng Yang committed
3508
	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
Marcelo Tosatti's avatar
Marcelo Tosatti committed
3509 3510
		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
		   enabled */
3511 3512 3513
		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
					     CPU_BASED_CR3_STORE_EXITING |
					     CPU_BASED_INVLPG_EXITING);
Sheng Yang's avatar
Sheng Yang committed
3514 3515 3516
		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
		      vmx_capability.ept, vmx_capability.vpid);
	}
3517

3518
	min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3519 3520 3521
#ifdef CONFIG_X86_64
	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
3522
	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3523
		VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3524 3525
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
				&_vmexit_control) < 0)
3526
		return -EIO;
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
				&_pin_based_exec_control) < 0)
		return -EIO;

	if (!(_cpu_based_2nd_exec_control &
		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
		!(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;

3539
	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3540
	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3541 3542
	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
				&_vmentry_control) < 0)
3543
		return -EIO;
3544

3545
	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3546 3547 3548

	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3549
		return -EIO;
3550 3551 3552 3553

#ifdef CONFIG_X86_64
	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
	if (vmx_msr_high & (1u<<16))
3554
		return -EIO;
3555 3556 3557 3558
#endif

	/* Require Write-Back (WB) memory type for VMCS accesses. */
	if (((vmx_msr_high >> 18) & 15) != 6)
3559
		return -EIO;
3560

3561 3562 3563
	vmcs_conf->size = vmx_msr_high & 0x1fff;
	vmcs_conf->order = get_order(vmcs_config.size);
	vmcs_conf->revision_id = vmx_msr_low;
3564

3565 3566
	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3567
	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3568 3569
	vmcs_conf->vmexit_ctrl         = _vmexit_control;
	vmcs_conf->vmentry_ctrl        = _vmentry_control;
3570

3571 3572 3573 3574 3575 3576
	cpu_has_load_ia32_efer =
		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
				VM_ENTRY_LOAD_IA32_EFER)
		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
				   VM_EXIT_LOAD_IA32_EFER);

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	cpu_has_load_perf_global_ctrl =
		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);

	/*
	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
	 * but due to arrata below it can't be used. Workaround is to use
	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
	 *
	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
	 *
	 * AAK155             (model 26)
	 * AAP115             (model 30)
	 * AAT100             (model 37)
	 * BC86,AAY89,BD102   (model 44)
	 * BA97               (model 46)
	 *
	 */
	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
		switch (boot_cpu_data.x86_model) {
		case 26:
		case 30:
		case 37:
		case 44:
		case 46:
			cpu_has_load_perf_global_ctrl = false;
			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
					"does not work properly. Using workaround\n");
			break;
		default:
			break;
		}
	}

3613 3614 3615
	if (cpu_has_xsaves)
		rdmsrl(MSR_IA32_XSS, host_xss);

3616
	return 0;
3617
}
3618 3619 3620 3621 3622 3623 3624

static struct vmcs *alloc_vmcs_cpu(int cpu)
{
	int node = cpu_to_node(cpu);
	struct page *pages;
	struct vmcs *vmcs;

3625
	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3626 3627 3628
	if (!pages)
		return NULL;
	vmcs = page_address(pages);
3629 3630
	memset(vmcs, 0, vmcs_config.size);
	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3631 3632 3633 3634 3635
	return vmcs;
}

static void free_vmcs(struct vmcs *vmcs)
{
3636
	free_pages((unsigned long)vmcs, vmcs_config.order);
3637 3638
}

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
/*
 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
 */
static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
	if (!loaded_vmcs->vmcs)
		return;
	loaded_vmcs_clear(loaded_vmcs);
	free_vmcs(loaded_vmcs->vmcs);
	loaded_vmcs->vmcs = NULL;
3649 3650
	if (loaded_vmcs->msr_bitmap)
		free_page((unsigned long)loaded_vmcs->msr_bitmap);
3651 3652
}

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
static struct vmcs *alloc_vmcs(void)
{
	return alloc_vmcs_cpu(raw_smp_processor_id());
}

static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
	loaded_vmcs->vmcs = alloc_vmcs();
	if (!loaded_vmcs->vmcs)
		return -ENOMEM;

	loaded_vmcs_init(loaded_vmcs);
3665 3666 3667 3668 3669 3670 3671

	if (cpu_has_vmx_msr_bitmap()) {
		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
		if (!loaded_vmcs->msr_bitmap)
			goto out_vmcs;
		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
	}
3672
	return 0;
3673 3674 3675 3676

out_vmcs:
	free_loaded_vmcs(loaded_vmcs);
	return -ENOMEM;
3677 3678
}

3679
static void free_kvm_area(void)
3680 3681 3682
{
	int cpu;

Zachary Amsden's avatar
Zachary Amsden committed
3683
	for_each_possible_cpu(cpu) {
3684
		free_vmcs(per_cpu(vmxarea, cpu));
Zachary Amsden's avatar
Zachary Amsden committed
3685 3686
		per_cpu(vmxarea, cpu) = NULL;
	}
3687 3688
}

3689 3690 3691 3692 3693 3694 3695 3696 3697
static void init_vmcs_shadow_fields(void)
{
	int i, j;

	/* No checks for read only fields yet */

	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
		switch (shadow_read_write_fields[i]) {
		case GUEST_BNDCFGS:
3698
			if (!kvm_mpx_supported())
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
				continue;
			break;
		default:
			break;
		}

		if (j < i)
			shadow_read_write_fields[j] =
				shadow_read_write_fields[i];
		j++;
	}
	max_shadow_read_write_fields = j;

	/* shadowed fields guest access without vmexit */
	for (i = 0; i < max_shadow_read_write_fields; i++) {
		clear_bit(shadow_read_write_fields[i],
			  vmx_vmwrite_bitmap);
		clear_bit(shadow_read_write_fields[i],
			  vmx_vmread_bitmap);
	}
	for (i = 0; i < max_shadow_read_only_fields; i++)
		clear_bit(shadow_read_only_fields[i],
			  vmx_vmread_bitmap);
}

3724 3725 3726 3727
static __init int alloc_kvm_area(void)
{
	int cpu;

Zachary Amsden's avatar
Zachary Amsden committed
3728
	for_each_possible_cpu(cpu) {
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
		struct vmcs *vmcs;

		vmcs = alloc_vmcs_cpu(cpu);
		if (!vmcs) {
			free_kvm_area();
			return -ENOMEM;
		}

		per_cpu(vmxarea, cpu) = vmcs;
	}
	return 0;
}

3742 3743 3744 3745 3746
static bool emulation_required(struct kvm_vcpu *vcpu)
{
	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
}

3747
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3748
		struct kvm_segment *save)
3749
{
3750 3751 3752 3753 3754 3755 3756 3757 3758
	if (!emulate_invalid_guest_state) {
		/*
		 * CS and SS RPL should be equal during guest entry according
		 * to VMX spec, but in reality it is not always so. Since vcpu
		 * is in the middle of the transition from real mode to
		 * protected mode it is safe to assume that RPL 0 is a good
		 * default value.
		 */
		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3759 3760
			save->selector &= ~SEGMENT_RPL_MASK;
		save->dpl = save->selector & SEGMENT_RPL_MASK;
3761
		save->s = 1;
3762
	}
3763
	vmx_set_segment(vcpu, save, seg);
3764 3765 3766 3767 3768
}

static void enter_pmode(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
3769
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3770

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	/*
	 * Update real mode segment cache. It may be not up-to-date if sement
	 * register was written while vcpu was in a guest mode.
	 */
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);

3782
	vmx->rmode.vm86_active = 0;
3783

3784 3785
	vmx_segment_cache_clear(vmx);

3786
	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3787 3788

	flags = vmcs_readl(GUEST_RFLAGS);
3789 3790
	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3791 3792
	vmcs_writel(GUEST_RFLAGS, flags);

3793 3794
	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3795 3796 3797

	update_exception_bitmap(vcpu);

3798 3799 3800 3801 3802 3803
	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3804 3805
}

3806
static void fix_rmode_seg(int seg, struct kvm_segment *save)
3807
{
3808
	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	struct kvm_segment var = *save;

	var.dpl = 0x3;
	if (seg == VCPU_SREG_CS)
		var.type = 0x3;

	if (!emulate_invalid_guest_state) {
		var.selector = var.base >> 4;
		var.base = var.base & 0xffff0;
		var.limit = 0xffff;
		var.g = 0;
		var.db = 0;
		var.present = 1;
		var.s = 1;
		var.l = 0;
		var.unusable = 0;
		var.type = 0x3;
		var.avl = 0;
		if (save->base & 0xf)
			printk_once(KERN_WARNING "kvm: segment base is not "
					"paragraph aligned when entering "
					"protected mode (seg=%d)", seg);
	}
3832

3833
	vmcs_write16(sf->selector, var.selector);
3834
	vmcs_writel(sf->base, var.base);
3835 3836
	vmcs_write32(sf->limit, var.limit);
	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3837 3838 3839 3840 3841
}

static void enter_rmode(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
3842
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3843

3844 3845 3846 3847 3848
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3849 3850
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3851

3852
	vmx->rmode.vm86_active = 1;
3853

3854 3855
	/*
	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3856
	 * vcpu. Warn the user that an update is overdue.
3857
	 */
3858
	if (!vcpu->kvm->arch.tss_addr)
3859 3860 3861
		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
			     "called before entering vcpu\n");

3862 3863
	vmx_segment_cache_clear(vmx);

3864
	vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3865 3866 3867 3868
	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);

	flags = vmcs_readl(GUEST_RFLAGS);
3869
	vmx->rmode.save_rflags = flags;
3870

3871
	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3872 3873

	vmcs_writel(GUEST_RFLAGS, flags);
3874
	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3875 3876
	update_exception_bitmap(vcpu);

3877 3878 3879 3880 3881 3882
	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3883

3884
	kvm_mmu_reset_context(vcpu);
3885 3886
}

3887 3888 3889
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3890 3891 3892 3893
	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);

	if (!msr)
		return;
3894

3895 3896 3897 3898 3899
	/*
	 * Force kernel_gs_base reloading before EFER changes, as control
	 * of this msr depends on is_long_mode().
	 */
	vmx_load_host_state(to_vmx(vcpu));
3900
	vcpu->arch.efer = efer;
3901
	if (efer & EFER_LMA) {
3902
		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3903 3904
		msr->data = efer;
	} else {
3905
		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3906 3907 3908 3909 3910 3911

		msr->data = efer & ~EFER_LME;
	}
	setup_msrs(vmx);
}

3912
#ifdef CONFIG_X86_64
3913 3914 3915 3916 3917

static void enter_lmode(struct kvm_vcpu *vcpu)
{
	u32 guest_tr_ar;

3918 3919
	vmx_segment_cache_clear(to_vmx(vcpu));

3920
	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3921
	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3922 3923
		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
				     __func__);
3924
		vmcs_write32(GUEST_TR_AR_BYTES,
3925 3926
			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
			     | VMX_AR_TYPE_BUSY_64_TSS);
3927
	}
3928
	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3929 3930 3931 3932
}

static void exit_lmode(struct kvm_vcpu *vcpu)
{
3933
	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3934
	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3935 3936 3937 3938
}

#endif

3939
static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3940
{
3941
	vpid_sync_context(vpid);
3942 3943 3944
	if (enable_ept) {
		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
			return;
3945
		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3946
	}
3947 3948
}

3949 3950 3951 3952 3953
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
}

3954 3955 3956 3957 3958 3959 3960 3961
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;

	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
}

3962 3963 3964 3965 3966 3967 3968
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
{
	if (enable_ept && is_paging(vcpu))
		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}

3969
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3970
{
3971 3972 3973 3974
	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;

	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3975 3976
}

3977 3978
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
{
Gleb Natapov's avatar
Gleb Natapov committed
3979 3980
	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;

Avi Kivity's avatar
Avi Kivity committed
3981 3982 3983 3984
	if (!test_bit(VCPU_EXREG_PDPTR,
		      (unsigned long *)&vcpu->arch.regs_dirty))
		return;

3985
	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
Gleb Natapov's avatar
Gleb Natapov committed
3986 3987 3988 3989
		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3990 3991 3992
	}
}

3993 3994
static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
{
Gleb Natapov's avatar
Gleb Natapov committed
3995 3996
	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;

3997
	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
Gleb Natapov's avatar
Gleb Natapov committed
3998 3999 4000 4001
		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4002
	}
Avi Kivity's avatar
Avi Kivity committed
4003 4004 4005 4006 4007

	__set_bit(VCPU_EXREG_PDPTR,
		  (unsigned long *)&vcpu->arch.regs_avail);
	__set_bit(VCPU_EXREG_PDPTR,
		  (unsigned long *)&vcpu->arch.regs_dirty);
4008 4009
}

4010
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4011 4012 4013 4014 4015

static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
					unsigned long cr0,
					struct kvm_vcpu *vcpu)
{
4016 4017
	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
		vmx_decache_cr3(vcpu);
4018 4019 4020
	if (!(cr0 & X86_CR0_PG)) {
		/* From paging/starting to nonpaging */
		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4021
			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4022 4023 4024
			     (CPU_BASED_CR3_LOAD_EXITING |
			      CPU_BASED_CR3_STORE_EXITING));
		vcpu->arch.cr0 = cr0;
4025
		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4026 4027 4028
	} else if (!is_paging(vcpu)) {
		/* From nonpaging to paging */
		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4029
			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4030 4031 4032
			     ~(CPU_BASED_CR3_LOAD_EXITING |
			       CPU_BASED_CR3_STORE_EXITING));
		vcpu->arch.cr0 = cr0;
4033
		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4034
	}
4035 4036 4037

	if (!(cr0 & X86_CR0_WP))
		*hw_cr0 &= ~X86_CR0_WP;
4038 4039
}

4040 4041
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
4042
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4043 4044
	unsigned long hw_cr0;

4045
	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4046
	if (enable_unrestricted_guest)
4047
		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4048
	else {
4049
		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4050

4051 4052
		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
			enter_pmode(vcpu);
4053

4054 4055 4056
		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
			enter_rmode(vcpu);
	}
4057

4058
#ifdef CONFIG_X86_64
4059
	if (vcpu->arch.efer & EFER_LME) {
4060
		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4061
			enter_lmode(vcpu);
4062
		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4063 4064 4065 4066
			exit_lmode(vcpu);
	}
#endif

4067
	if (enable_ept)
4068 4069
		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);

4070
	if (!vcpu->fpu_active)
4071
		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
4072

4073
	vmcs_writel(CR0_READ_SHADOW, cr0);
4074
	vmcs_writel(GUEST_CR0, hw_cr0);
4075
	vcpu->arch.cr0 = cr0;
4076 4077 4078

	/* depends on vcpu->arch.cr0 to be set to a new value */
	vmx->emulation_required = emulation_required(vcpu);
4079 4080
}

4081 4082 4083 4084 4085 4086 4087
static u64 construct_eptp(unsigned long root_hpa)
{
	u64 eptp;

	/* TODO write the value reading from MSR */
	eptp = VMX_EPT_DEFAULT_MT |
		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4088 4089
	if (enable_ept_ad_bits)
		eptp |= VMX_EPT_AD_ENABLE_BIT;
4090 4091 4092 4093 4094
	eptp |= (root_hpa & PAGE_MASK);

	return eptp;
}

4095 4096
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
4097 4098 4099 4100
	unsigned long guest_cr3;
	u64 eptp;

	guest_cr3 = cr3;
4101
	if (enable_ept) {
4102 4103
		eptp = construct_eptp(cr3);
		vmcs_write64(EPT_POINTER, eptp);
4104 4105 4106 4107
		if (is_paging(vcpu) || is_guest_mode(vcpu))
			guest_cr3 = kvm_read_cr3(vcpu);
		else
			guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4108
		ept_load_pdptrs(vcpu);
4109 4110
	}

4111
	vmx_flush_tlb(vcpu);
4112
	vmcs_writel(GUEST_CR3, guest_cr3);
4113 4114
}

4115
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4116
{
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	/*
	 * Pass through host's Machine Check Enable value to hw_cr4, which
	 * is in force while we are in guest mode.  Do not let guests control
	 * this bit, even if host CR4.MCE == 0.
	 */
	unsigned long hw_cr4 =
		(cr4_read_shadow() & X86_CR4_MCE) |
		(cr4 & ~X86_CR4_MCE) |
		(to_vmx(vcpu)->rmode.vm86_active ?
		 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4127

4128 4129 4130 4131 4132 4133 4134 4135 4136
	if (cr4 & X86_CR4_VMXE) {
		/*
		 * To use VMXON (and later other VMX instructions), a guest
		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
		 * So basically the check on whether to allow nested VMX
		 * is here.
		 */
		if (!nested_vmx_allowed(vcpu))
			return 1;
4137 4138 4139
	}
	if (to_vmx(vcpu)->nested.vmxon &&
	    ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
4140 4141
		return 1;

4142
	vcpu->arch.cr4 = cr4;
4143 4144 4145 4146 4147 4148 4149 4150
	if (enable_ept) {
		if (!is_paging(vcpu)) {
			hw_cr4 &= ~X86_CR4_PAE;
			hw_cr4 |= X86_CR4_PSE;
		} else if (!(cr4 & X86_CR4_PAE)) {
			hw_cr4 &= ~X86_CR4_PAE;
		}
	}
4151

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	if (!enable_unrestricted_guest && !is_paging(vcpu))
		/*
		 * SMEP/SMAP is disabled if CPU is in non-paging mode in
		 * hardware.  However KVM always uses paging mode without
		 * unrestricted guest.
		 * To emulate this behavior, SMEP/SMAP needs to be manually
		 * disabled when guest switches to non-paging mode.
		 */
		hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);

4162 4163
	vmcs_writel(CR4_READ_SHADOW, cr4);
	vmcs_writel(GUEST_CR4, hw_cr4);
4164
	return 0;
4165 4166 4167 4168 4169
}

static void vmx_get_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
4170
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4171 4172
	u32 ar;

4173
	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4174
		*var = vmx->rmode.segs[seg];
4175
		if (seg == VCPU_SREG_TR
4176
		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4177
			return;
4178 4179 4180
		var->base = vmx_read_guest_seg_base(vmx, seg);
		var->selector = vmx_read_guest_seg_selector(vmx, seg);
		return;
4181
	}
4182 4183 4184 4185
	var->base = vmx_read_guest_seg_base(vmx, seg);
	var->limit = vmx_read_guest_seg_limit(vmx, seg);
	var->selector = vmx_read_guest_seg_selector(vmx, seg);
	ar = vmx_read_guest_seg_ar(vmx, seg);
4186
	var->unusable = (ar >> 16) & 1;
4187 4188 4189
	var->type = ar & 15;
	var->s = (ar >> 4) & 1;
	var->dpl = (ar >> 5) & 3;
4190 4191 4192 4193 4194 4195 4196 4197
	/*
	 * Some userspaces do not preserve unusable property. Since usable
	 * segment has to be present according to VMX spec we can use present
	 * property to amend userspace bug by making unusable segment always
	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
	 * segment as unusable.
	 */
	var->present = !var->unusable;
4198 4199 4200 4201 4202 4203
	var->avl = (ar >> 12) & 1;
	var->l = (ar >> 13) & 1;
	var->db = (ar >> 14) & 1;
	var->g = (ar >> 15) & 1;
}

4204 4205 4206 4207 4208 4209 4210 4211
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment s;

	if (to_vmx(vcpu)->rmode.vm86_active) {
		vmx_get_segment(vcpu, &s, seg);
		return s.base;
	}
4212
	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4213 4214
}

4215
static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4216
{
4217 4218
	struct vcpu_vmx *vmx = to_vmx(vcpu);

4219
	if (unlikely(vmx->rmode.vm86_active))
4220
		return 0;
4221 4222
	else {
		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4223
		return VMX_AR_DPL(ar);
Avi Kivity's avatar
Avi Kivity committed
4224 4225 4226
	}
}

4227
static u32 vmx_segment_access_rights(struct kvm_segment *var)
4228 4229 4230
{
	u32 ar;

4231
	if (var->unusable || !var->present)
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
		ar = 1 << 16;
	else {
		ar = var->type & 15;
		ar |= (var->s & 1) << 4;
		ar |= (var->dpl & 3) << 5;
		ar |= (var->present & 1) << 7;
		ar |= (var->avl & 1) << 12;
		ar |= (var->l & 1) << 13;
		ar |= (var->db & 1) << 14;
		ar |= (var->g & 1) << 15;
	}
4243 4244 4245 4246 4247 4248 4249

	return ar;
}

static void vmx_set_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
4250
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4251
	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4252

4253 4254
	vmx_segment_cache_clear(vmx);

4255 4256 4257 4258 4259 4260
	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
		vmx->rmode.segs[seg] = *var;
		if (seg == VCPU_SREG_TR)
			vmcs_write16(sf->selector, var->selector);
		else if (var->s)
			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4261
		goto out;
4262
	}
4263

4264 4265 4266
	vmcs_writel(sf->base, var->base);
	vmcs_write32(sf->limit, var->limit);
	vmcs_write16(sf->selector, var->selector);
4267 4268 4269 4270 4271 4272

	/*
	 *   Fix the "Accessed" bit in AR field of segment registers for older
	 * qemu binaries.
	 *   IA32 arch specifies that at the time of processor reset the
	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
Guo Chao's avatar
Guo Chao committed
4273
	 * is setting it to 0 in the userland code. This causes invalid guest
4274 4275 4276 4277 4278 4279
	 * state vmexit when "unrestricted guest" mode is turned on.
	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
	 * tree. Newer qemu binaries with that qemu fix would not need this
	 * kvm hack.
	 */
	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4280
		var->type |= 0x1; /* Accessed */
4281

4282
	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4283 4284

out:
4285
	vmx->emulation_required = emulation_required(vcpu);
4286 4287 4288 4289
}

static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
4290
	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4291 4292 4293 4294 4295

	*db = (ar >> 14) & 1;
	*l = (ar >> 13) & 1;
}

4296
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4297
{
4298 4299
	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
	dt->address = vmcs_readl(GUEST_IDTR_BASE);
4300 4301
}

4302
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4303
{
4304 4305
	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
	vmcs_writel(GUEST_IDTR_BASE, dt->address);
4306 4307
}

4308
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4309
{
4310 4311
	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
	dt->address = vmcs_readl(GUEST_GDTR_BASE);
4312 4313
}

4314
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4315
{
4316 4317
	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
	vmcs_writel(GUEST_GDTR_BASE, dt->address);
4318 4319
}

4320 4321 4322 4323 4324 4325
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment var;
	u32 ar;

	vmx_get_segment(vcpu, &var, seg);
4326
	var.dpl = 0x3;
4327 4328
	if (seg == VCPU_SREG_CS)
		var.type = 0x3;
4329 4330 4331 4332
	ar = vmx_segment_access_rights(&var);

	if (var.base != (var.selector << 4))
		return false;
4333
	if (var.limit != 0xffff)
4334
		return false;
4335
	if (ar != 0xf3)
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
		return false;

	return true;
}

static bool code_segment_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs;
	unsigned int cs_rpl;

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4347
	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4348

4349 4350
	if (cs.unusable)
		return false;
4351
	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4352 4353 4354
		return false;
	if (!cs.s)
		return false;
4355
	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4356 4357
		if (cs.dpl > cs_rpl)
			return false;
4358
	} else {
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
		if (cs.dpl != cs_rpl)
			return false;
	}
	if (!cs.present)
		return false;

	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
	return true;
}

static bool stack_segment_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment ss;
	unsigned int ss_rpl;

	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4375
	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4376

4377 4378 4379
	if (ss.unusable)
		return true;
	if (ss.type != 3 && ss.type != 7)
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
		return false;
	if (!ss.s)
		return false;
	if (ss.dpl != ss_rpl) /* DPL != RPL */
		return false;
	if (!ss.present)
		return false;

	return true;
}

static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment var;
	unsigned int rpl;

	vmx_get_segment(vcpu, &var, seg);
4397
	rpl = var.selector & SEGMENT_RPL_MASK;
4398

4399 4400
	if (var.unusable)
		return true;
4401 4402 4403 4404
	if (!var.s)
		return false;
	if (!var.present)
		return false;
4405
	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
		if (var.dpl < rpl) /* DPL < RPL */
			return false;
	}

	/* TODO: Add other members to kvm_segment_field to allow checking for other access
	 * rights flags
	 */
	return true;
}

static bool tr_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment tr;

	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);

4422 4423
	if (tr.unusable)
		return false;
4424
	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
4425
		return false;
4426
	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		return false;
	if (!tr.present)
		return false;

	return true;
}

static bool ldtr_valid(struct kvm_vcpu *vcpu)
{
	struct kvm_segment ldtr;

	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);

4440 4441
	if (ldtr.unusable)
		return true;
4442
	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
		return false;
	if (ldtr.type != 2)
		return false;
	if (!ldtr.present)
		return false;

	return true;
}

static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs, ss;

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);

4459 4460
	return ((cs.selector & SEGMENT_RPL_MASK) ==
		 (ss.selector & SEGMENT_RPL_MASK));
4461 4462 4463 4464 4465 4466 4467 4468 4469
}

/*
 * Check if guest state is valid. Returns true if valid, false if
 * not.
 * We assume that registers are always usable
 */
static bool guest_state_valid(struct kvm_vcpu *vcpu)
{
4470 4471 4472
	if (enable_unrestricted_guest)
		return true;

4473
	/* real mode guest state checks */
4474
	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
			return false;
		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
			return false;
	} else {
	/* protected mode guest state checks */
		if (!cs_ss_rpl_check(vcpu))
			return false;
		if (!code_segment_valid(vcpu))
			return false;
		if (!stack_segment_valid(vcpu))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
			return false;
		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
			return false;
		if (!tr_valid(vcpu))
			return false;
		if (!ldtr_valid(vcpu))
			return false;
	}
	/* TODO:
	 * - Add checks on RIP
	 * - Add checks on RFLAGS
	 */

	return true;
}

Mike Day's avatar
Mike Day committed
4516
static int init_rmode_tss(struct kvm *kvm)
4517
{
4518
	gfn_t fn;
4519
	u16 data = 0;
4520
	int idx, r;
4521

4522
	idx = srcu_read_lock(&kvm->srcu);
4523
	fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4524 4525
	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
	if (r < 0)
4526
		goto out;
4527
	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4528 4529
	r = kvm_write_guest_page(kvm, fn++, &data,
			TSS_IOPB_BASE_OFFSET, sizeof(u16));
4530
	if (r < 0)
4531
		goto out;
4532 4533
	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
	if (r < 0)
4534
		goto out;
4535 4536
	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
	if (r < 0)
4537
		goto out;
4538
	data = ~0;
4539 4540 4541 4542
	r = kvm_write_guest_page(kvm, fn, &data,
				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
				 sizeof(u8));
out:
4543
	srcu_read_unlock(&kvm->srcu, idx);
4544
	return r;
4545 4546
}

4547 4548
static int init_rmode_identity_map(struct kvm *kvm)
{
4549
	int i, idx, r = 0;
4550 4551 4552
	pfn_t identity_map_pfn;
	u32 tmp;

4553
	if (!enable_ept)
4554
		return 0;
4555 4556 4557 4558

	/* Protect kvm->arch.ept_identity_pagetable_done. */
	mutex_lock(&kvm->slots_lock);

4559
	if (likely(kvm->arch.ept_identity_pagetable_done))
4560 4561
		goto out2;

4562
	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4563 4564

	r = alloc_identity_pagetable(kvm);
4565
	if (r < 0)
4566 4567
		goto out2;

4568
	idx = srcu_read_lock(&kvm->srcu);
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
	if (r < 0)
		goto out;
	/* Set up identity-mapping pagetable for EPT in real mode */
	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
		r = kvm_write_guest_page(kvm, identity_map_pfn,
				&tmp, i * sizeof(tmp), sizeof(tmp));
		if (r < 0)
			goto out;
	}
	kvm->arch.ept_identity_pagetable_done = true;
4582

4583
out:
4584
	srcu_read_unlock(&kvm->srcu, idx);
4585 4586 4587

out2:
	mutex_unlock(&kvm->slots_lock);
4588
	return r;
4589 4590
}

4591 4592
static void seg_setup(int seg)
{
4593
	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4594
	unsigned int ar;
4595 4596 4597 4598

	vmcs_write16(sf->selector, 0);
	vmcs_writel(sf->base, 0);
	vmcs_write32(sf->limit, 0xffff);
4599 4600 4601
	ar = 0x93;
	if (seg == VCPU_SREG_CS)
		ar |= 0x08; /* code segment */
4602 4603

	vmcs_write32(sf->ar_bytes, ar);
4604 4605
}

4606 4607
static int alloc_apic_access_page(struct kvm *kvm)
{
4608
	struct page *page;
4609 4610
	int r = 0;

4611
	mutex_lock(&kvm->slots_lock);
4612
	if (kvm->arch.apic_access_page_done)
4613
		goto out;
4614 4615
	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4616 4617
	if (r)
		goto out;
4618

4619
	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4620 4621 4622 4623 4624
	if (is_error_page(page)) {
		r = -EFAULT;
		goto out;
	}

4625 4626 4627 4628 4629 4630
	/*
	 * Do not pin the page in memory, so that memory hot-unplug
	 * is able to migrate it.
	 */
	put_page(page);
	kvm->arch.apic_access_page_done = true;
4631
out:
4632
	mutex_unlock(&kvm->slots_lock);
4633 4634 4635
	return r;
}

4636 4637
static int alloc_identity_pagetable(struct kvm *kvm)
{
4638 4639
	/* Called with kvm->slots_lock held. */

4640 4641
	int r = 0;

4642 4643
	BUG_ON(kvm->arch.ept_identity_pagetable_done);

4644 4645
	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
				    kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4646 4647 4648 4649

	return r;
}

4650
static int allocate_vpid(void)
4651 4652 4653
{
	int vpid;

4654
	if (!enable_vpid)
4655
		return 0;
4656 4657
	spin_lock(&vmx_vpid_lock);
	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4658
	if (vpid < VMX_NR_VPIDS)
4659
		__set_bit(vpid, vmx_vpid_bitmap);
4660 4661
	else
		vpid = 0;
4662
	spin_unlock(&vmx_vpid_lock);
4663
	return vpid;
4664 4665
}

4666
static void free_vpid(int vpid)
4667
{
4668
	if (!enable_vpid || vpid == 0)
4669 4670
		return;
	spin_lock(&vmx_vpid_lock);
4671
	__clear_bit(vpid, vmx_vpid_bitmap);
4672 4673 4674
	spin_unlock(&vmx_vpid_lock);
}

4675 4676
static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
							  u32 msr, int type)
4677
{
4678
	int f = sizeof(unsigned long);
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

	if (!cpu_has_vmx_msr_bitmap())
		return;

	/*
	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
	 * have the write-low and read-high bitmap offsets the wrong way round.
	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
	 */
	if (msr <= 0x1fff) {
4689 4690 4691 4692 4693 4694 4695 4696
		if (type & MSR_TYPE_R)
			/* read-low */
			__clear_bit(msr, msr_bitmap + 0x000 / f);

		if (type & MSR_TYPE_W)
			/* write-low */
			__clear_bit(msr, msr_bitmap + 0x800 / f);

4697 4698
	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
		if (type & MSR_TYPE_R)
			/* read-high */
			__clear_bit(msr, msr_bitmap + 0x400 / f);

		if (type & MSR_TYPE_W)
			/* write-high */
			__clear_bit(msr, msr_bitmap + 0xc00 / f);

	}
}

4710 4711
static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
							 u32 msr, int type)
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
{
	int f = sizeof(unsigned long);

	if (!cpu_has_vmx_msr_bitmap())
		return;

	/*
	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
	 * have the write-low and read-high bitmap offsets the wrong way round.
	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
	 */
	if (msr <= 0x1fff) {
		if (type & MSR_TYPE_R)
			/* read-low */
			__set_bit(msr, msr_bitmap + 0x000 / f);

		if (type & MSR_TYPE_W)
			/* write-low */
			__set_bit(msr, msr_bitmap + 0x800 / f);

	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
		if (type & MSR_TYPE_R)
			/* read-high */
			__set_bit(msr, msr_bitmap + 0x400 / f);

		if (type & MSR_TYPE_W)
			/* write-high */
			__set_bit(msr, msr_bitmap + 0xc00 / f);

4742 4743 4744
	}
}

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
/*
 * If a msr is allowed by L0, we should check whether it is allowed by L1.
 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
 */
static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
					       unsigned long *msr_bitmap_nested,
					       u32 msr, int type)
{
	int f = sizeof(unsigned long);

	if (!cpu_has_vmx_msr_bitmap()) {
		WARN_ON(1);
		return;
	}

	/*
	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
	 * have the write-low and read-high bitmap offsets the wrong way round.
	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
	 */
	if (msr <= 0x1fff) {
		if (type & MSR_TYPE_R &&
		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
			/* read-low */
			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);

		if (type & MSR_TYPE_W &&
		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
			/* write-low */
			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);

	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
		if (type & MSR_TYPE_R &&
		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
			/* read-high */
			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);

		if (type & MSR_TYPE_W &&
		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
			/* write-high */
			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);

	}
}

4791 4792
static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
			     			      u32 msr, int type, bool value)
4793
{
4794 4795 4796 4797
	if (value)
		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
	else
		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
4798 4799
}

4800
static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
4801
{
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	u8 mode = 0;

	if (cpu_has_secondary_exec_ctrls() &&
	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
		mode |= MSR_BITMAP_MODE_X2APIC;
		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
	}

	if (is_long_mode(vcpu))
		mode |= MSR_BITMAP_MODE_LM;

	return mode;
4816 4817
}

4818 4819 4820 4821
#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))

static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
					 u8 mode)
4822
{
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	int msr;

	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
		unsigned word = msr / BITS_PER_LONG;
		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
	}

	if (mode & MSR_BITMAP_MODE_X2APIC) {
		/*
		 * TPR reads and writes can be virtualized even if virtual interrupt
		 * delivery is not in use.
		 */
		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_ID), MSR_TYPE_R);
			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
		}
	}
4844 4845
}

4846
static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
4847
{
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
	u8 mode = vmx_msr_bitmap_mode(vcpu);
	u8 changed = mode ^ vmx->msr_bitmap_mode;

	if (!changed)
		return;

	vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
				  !(mode & MSR_BITMAP_MODE_LM));

	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);

	vmx->msr_bitmap_mode = mode;
4863 4864
}

4865
static bool vmx_get_enable_apicv(void)
4866
{
4867
	return enable_apicv;
4868 4869
}

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	gfn_t gfn;

	/*
	 * Don't need to mark the APIC access page dirty; it is never
	 * written to by the CPU during APIC virtualization.
	 */

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
}


4892
static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4893 4894 4895 4896 4897 4898
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int max_irr;
	void *vapic_page;
	u16 status;

4899 4900
	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
		return;
4901

4902 4903 4904
	vmx->nested.pi_pending = false;
	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
		return;
4905

4906 4907
	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
	if (max_irr != 256) {
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
		vapic_page = kmap(vmx->nested.virtual_apic_page);
		__kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
		kunmap(vmx->nested.virtual_apic_page);

		status = vmcs_read16(GUEST_INTR_STATUS);
		if ((u8)max_irr > ((u8)status & 0xff)) {
			status &= ~0xff;
			status |= (u8)max_irr;
			vmcs_write16(GUEST_INTR_STATUS, status);
		}
	}
4919 4920

	nested_mark_vmcs12_pages_dirty(vcpu);
4921 4922
}

4923 4924 4925 4926
static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_SMP
	if (vcpu->mode == IN_GUEST_MODE) {
4927
		/*
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
		 * The vector of interrupt to be delivered to vcpu had
		 * been set in PIR before this function.
		 *
		 * Following cases will be reached in this block, and
		 * we always send a notification event in all cases as
		 * explained below.
		 *
		 * Case 1: vcpu keeps in non-root mode. Sending a
		 * notification event posts the interrupt to vcpu.
		 *
		 * Case 2: vcpu exits to root mode and is still
		 * runnable. PIR will be synced to vIRR before the
		 * next vcpu entry. Sending a notification event in
		 * this case has no effect, as vcpu is not in root
		 * mode.
4943
		 *
4944 4945 4946 4947 4948 4949
		 * Case 3: vcpu exits to root mode and is blocked.
		 * vcpu_block() has already synced PIR to vIRR and
		 * never blocks vcpu if vIRR is not cleared. Therefore,
		 * a blocked vcpu here does not wait for any requested
		 * interrupts in PIR, and sending a notification event
		 * which has no effect is safe here.
4950 4951
		 */

4952 4953 4954 4955 4956 4957 4958 4959
		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
				POSTED_INTR_VECTOR);
		return true;
	}
#endif
	return false;
}

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
						int vector)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (is_guest_mode(vcpu) &&
	    vector == vmx->nested.posted_intr_nv) {
		/*
		 * If a posted intr is not recognized by hardware,
		 * we will accomplish it in the next vmentry.
		 */
		vmx->nested.pi_pending = true;
		kvm_make_request(KVM_REQ_EVENT, vcpu);
4973 4974 4975
		/* the PIR and ON have been set by L1. */
		if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
			kvm_vcpu_kick(vcpu);
4976 4977 4978 4979
		return 0;
	}
	return -1;
}
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
/*
 * Send interrupt to vcpu via posted interrupt way.
 * 1. If target vcpu is running(non-root mode), send posted interrupt
 * notification to vcpu and hardware will sync PIR to vIRR atomically.
 * 2. If target vcpu isn't running(root mode), kick it to pick up the
 * interrupt from PIR in next vmentry.
 */
static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int r;

4992 4993 4994 4995
	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
	if (!r)
		return;

4996 4997 4998 4999 5000
	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
		return;

	r = pi_test_and_set_on(&vmx->pi_desc);
	kvm_make_request(KVM_REQ_EVENT, vcpu);
5001
	if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
		kvm_vcpu_kick(vcpu);
}

static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!pi_test_and_clear_on(&vmx->pi_desc))
		return;

	kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
}

5015 5016 5017 5018 5019 5020
/*
 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
 * will not change in the lifetime of the guest.
 * Note that host-state that does change is set elsewhere. E.g., host-state
 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
 */
5021
static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5022 5023 5024 5025
{
	u32 low32, high32;
	unsigned long tmpl;
	struct desc_ptr dt;
5026
	unsigned long cr4;
5027

5028
	vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
5029 5030
	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */

5031
	/* Save the most likely value for this task's CR4 in the VMCS. */
5032
	cr4 = cr4_read_shadow();
5033 5034 5035
	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
	vmx->host_state.vmcs_host_cr4 = cr4;

5036
	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5037 5038 5039 5040 5041 5042 5043 5044 5045
#ifdef CONFIG_X86_64
	/*
	 * Load null selectors, so we can avoid reloading them in
	 * __vmx_load_host_state(), in case userspace uses the null selectors
	 * too (the expected case).
	 */
	vmcs_write16(HOST_DS_SELECTOR, 0);
	vmcs_write16(HOST_ES_SELECTOR, 0);
#else
5046 5047
	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5048
#endif
5049 5050 5051 5052 5053
	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */

	native_store_idt(&dt);
	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5054
	vmx->host_idt_base = dt.address;
5055

Avi Kivity's avatar
Avi Kivity committed
5056
	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */

	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
		rdmsr(MSR_IA32_CR_PAT, low32, high32);
		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
	}
}

5069 5070 5071 5072 5073
static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
{
	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
	if (enable_ept)
		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5074 5075 5076
	if (is_guest_mode(&vmx->vcpu))
		vmx->vcpu.arch.cr4_guest_owned_bits &=
			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5077 5078 5079
	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
}

5080 5081 5082 5083
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
{
	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;

5084
	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5085 5086 5087 5088
		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
	return pin_based_exec_ctrl;
}

5089 5090 5091 5092 5093
static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	if (cpu_has_secondary_exec_ctrls()) {
		if (kvm_vcpu_apicv_active(vcpu))
			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
		else
			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
					SECONDARY_EXEC_APIC_REGISTER_VIRT |
					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
	}

	if (cpu_has_vmx_msr_bitmap())
5106
		vmx_update_msr_bitmap(vcpu);
5107 5108
}

5109 5110 5111
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
{
	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5112 5113 5114 5115

	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
		exec_control &= ~CPU_BASED_MOV_DR_EXITING;

5116
	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
		exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
		exec_control |= CPU_BASED_CR8_STORE_EXITING |
				CPU_BASED_CR8_LOAD_EXITING;
#endif
	}
	if (!enable_ept)
		exec_control |= CPU_BASED_CR3_STORE_EXITING |
				CPU_BASED_CR3_LOAD_EXITING  |
				CPU_BASED_INVLPG_EXITING;
	return exec_control;
}

static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
{
	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5133
	if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5134 5135 5136 5137 5138 5139
		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
	if (vmx->vpid == 0)
		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
	if (!enable_ept) {
		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
		enable_unrestricted_guest = 0;
5140 5141
		/* Enable INVPCID for non-ept guests may cause performance regression. */
		exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5142 5143 5144 5145 5146
	}
	if (!enable_unrestricted_guest)
		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
	if (!ple_gap)
		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5147
	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5148 5149
		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5150
	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5151 5152 5153 5154 5155 5156
	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
	   (handle_vmptrld).
	   We can NOT enable shadow_vmcs here because we don't have yet
	   a current VMCS12
	*/
	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5157 5158 5159

	if (!enable_pml)
		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
Kai Huang's avatar
Kai Huang committed
5160

5161 5162 5163
	/* Currently, we allow L1 guest to directly run pcommit instruction. */
	exec_control &= ~SECONDARY_EXEC_PCOMMIT;

5164 5165 5166
	return exec_control;
}

5167 5168 5169 5170 5171
static void ept_set_mmio_spte_mask(void)
{
	/*
	 * EPT Misconfigurations can be generated if the value of bits 2:0
	 * of an EPT paging-structure entry is 110b (write/execute).
5172
	 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
5173 5174
	 * spte.
	 */
5175
	kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
5176 5177
}

5178
#define VMX_XSS_EXIT_BITMAP 0
5179 5180 5181
/*
 * Sets up the vmcs for emulated real mode.
 */
5182
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5183
{
5184
#ifdef CONFIG_X86_64
5185
	unsigned long a;
5186
#endif
5187 5188 5189
	int i;

	/* I/O */
5190 5191
	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5192

5193 5194 5195 5196
	if (enable_shadow_vmcs) {
		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
	}
5197
	if (cpu_has_vmx_msr_bitmap())
5198
		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
5199

5200 5201 5202
	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */

	/* Control */
5203
	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5204

5205
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5206

5207
	if (cpu_has_secondary_exec_ctrls())
5208 5209
		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
				vmx_secondary_exec_control(vmx));
5210

5211
	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5212 5213 5214 5215 5216 5217
		vmcs_write64(EOI_EXIT_BITMAP0, 0);
		vmcs_write64(EOI_EXIT_BITMAP1, 0);
		vmcs_write64(EOI_EXIT_BITMAP2, 0);
		vmcs_write64(EOI_EXIT_BITMAP3, 0);

		vmcs_write16(GUEST_INTR_STATUS, 0);
5218 5219 5220

		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5221 5222
	}

5223 5224
	if (ple_gap) {
		vmcs_write32(PLE_GAP, ple_gap);
5225 5226
		vmx->ple_window = ple_window;
		vmx->ple_window_dirty = true;
5227 5228
	}

5229 5230
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5231 5232
	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */

5233 5234
	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5235
	vmx_set_constant_host_state(vmx);
5236
#ifdef CONFIG_X86_64
5237 5238 5239 5240 5241 5242 5243 5244 5245
	rdmsrl(MSR_FS_BASE, a);
	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
	rdmsrl(MSR_GS_BASE, a);
	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif

5246 5247
	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5248
	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
5249
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5250
	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
5251

5252 5253
	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5254

5255
	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5256 5257
		u32 index = vmx_msr_index[i];
		u32 data_low, data_high;
5258
		int j = vmx->nmsrs;
5259 5260 5261

		if (rdmsr_safe(index, &data_low, &data_high) < 0)
			continue;
5262 5263
		if (wrmsr_safe(index, data_low, data_high) < 0)
			continue;
5264 5265
		vmx->guest_msrs[j].index = i;
		vmx->guest_msrs[j].data = 0;
5266
		vmx->guest_msrs[j].mask = -1ull;
5267
		++vmx->nmsrs;
5268 5269
	}

5270
	vmx->arch_capabilities = kvm_get_arch_capabilities();
5271 5272

	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5273 5274

	/* 22.2.1, 20.8.1 */
5275
	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5276

5277
	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5278
	set_cr4_guest_host_mask(vmx);
5279

5280 5281 5282
	if (vmx_xsaves_supported())
		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);

5283 5284 5285 5286 5287 5288
	if (enable_pml) {
		ASSERT(vmx->pml_pg);
		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
	}

5289 5290 5291
	return 0;
}

5292
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5293 5294
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
5295
	struct msr_data apic_base_msr;
5296
	u64 cr0;
5297

5298
	vmx->rmode.vm86_active = 0;
5299
	vmx->spec_ctrl = 0;
5300

5301 5302
	vmx->soft_vnmi_blocked = 0;

5303
	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
	kvm_set_cr8(vcpu, 0);

	if (!init_event) {
		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
				     MSR_IA32_APICBASE_ENABLE;
		if (kvm_vcpu_is_reset_bsp(vcpu))
			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
		apic_base_msr.host_initiated = true;
		kvm_set_apic_base(vcpu, &apic_base_msr);
	}
5314

5315 5316
	vmx_segment_cache_clear(vmx);

5317
	seg_setup(VCPU_SREG_CS);
5318
	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5319
	vmcs_write32(GUEST_CS_BASE, 0xffff0000);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336

	seg_setup(VCPU_SREG_DS);
	seg_setup(VCPU_SREG_ES);
	seg_setup(VCPU_SREG_FS);
	seg_setup(VCPU_SREG_GS);
	seg_setup(VCPU_SREG_SS);

	vmcs_write16(GUEST_TR_SELECTOR, 0);
	vmcs_writel(GUEST_TR_BASE, 0);
	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);

	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
	vmcs_writel(GUEST_LDTR_BASE, 0);
	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);

5337 5338 5339 5340 5341 5342
	if (!init_event) {
		vmcs_write32(GUEST_SYSENTER_CS, 0);
		vmcs_writel(GUEST_SYSENTER_ESP, 0);
		vmcs_writel(GUEST_SYSENTER_EIP, 0);
		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
	}
5343

5344
	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5345
	kvm_rip_write(vcpu, 0xfff0);
5346 5347 5348 5349 5350 5351 5352

	vmcs_writel(GUEST_GDTR_BASE, 0);
	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);

	vmcs_writel(GUEST_IDTR_BASE, 0);
	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);

5353
	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5354 5355 5356 5357 5358
	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);

	setup_msrs(vmx);

5359 5360
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */

5361
	if (cpu_has_vmx_tpr_shadow() && !init_event) {
5362
		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5363
		if (cpu_need_tpr_shadow(vcpu))
5364
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5365
				     __pa(vcpu->arch.apic->regs));
5366 5367 5368
		vmcs_write32(TPR_THRESHOLD, 0);
	}

5369
	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5370

5371
	if (kvm_vcpu_apicv_active(vcpu))
5372 5373
		memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));

5374 5375 5376
	if (vmx->vpid != 0)
		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);

5377 5378
	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
	vmx->vcpu.arch.cr0 = cr0;
5379
	vmx_set_cr0(vcpu, cr0); /* enter rmode */
5380
	vmx_set_cr4(vcpu, 0);
5381
	vmx_set_efer(vcpu, 0);
5382 5383
	vmx_fpu_activate(vcpu);
	update_exception_bitmap(vcpu);
5384

5385
	vpid_sync_context(vmx->vpid);
5386 5387
}

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
/*
 * In nested virtualization, check if L1 asked to exit on external interrupts.
 * For most existing hypervisors, this will always return true.
 */
static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
		PIN_BASED_EXT_INTR_MASK;
}

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
/*
 * In nested virtualization, check if L1 has set
 * VM_EXIT_ACK_INTR_ON_EXIT
 */
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->vm_exit_controls &
		VM_EXIT_ACK_INTR_ON_EXIT;
}

5408 5409 5410 5411 5412 5413
static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
		PIN_BASED_NMI_EXITING;
}

5414
static void enable_irq_window(struct kvm_vcpu *vcpu)
5415 5416
{
	u32 cpu_based_vm_exec_control;
5417

5418 5419 5420 5421 5422
	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}

5423
static void enable_nmi_window(struct kvm_vcpu *vcpu)
5424 5425 5426
{
	u32 cpu_based_vm_exec_control;

5427 5428 5429 5430 5431
	if (!cpu_has_virtual_nmis() ||
	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
		enable_irq_window(vcpu);
		return;
	}
5432 5433 5434 5435 5436 5437

	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}

5438
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5439
{
5440
	struct vcpu_vmx *vmx = to_vmx(vcpu);
5441 5442
	uint32_t intr;
	int irq = vcpu->arch.interrupt.nr;
5443

5444
	trace_kvm_inj_virq(irq);
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
5445

5446
	++vcpu->stat.irq_injections;
5447
	if (vmx->rmode.vm86_active) {
5448 5449 5450 5451
		int inc_eip = 0;
		if (vcpu->arch.interrupt.soft)
			inc_eip = vcpu->arch.event_exit_inst_len;
		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5452
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5453 5454
		return;
	}
5455 5456 5457 5458 5459 5460 5461 5462
	intr = irq | INTR_INFO_VALID_MASK;
	if (vcpu->arch.interrupt.soft) {
		intr |= INTR_TYPE_SOFT_INTR;
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmx->vcpu.arch.event_exit_inst_len);
	} else
		intr |= INTR_TYPE_EXT_INTR;
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5463 5464
}

5465 5466
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
5467 5468
	struct vcpu_vmx *vmx = to_vmx(vcpu);

5469 5470 5471
	if (is_guest_mode(vcpu))
		return;

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
	if (!cpu_has_virtual_nmis()) {
		/*
		 * Tracking the NMI-blocked state in software is built upon
		 * finding the next open IRQ window. This, in turn, depends on
		 * well-behaving guests: They have to keep IRQs disabled at
		 * least as long as the NMI handler runs. Otherwise we may
		 * cause NMI nesting, maybe breaking the guest. But as this is
		 * highly unlikely, we can live with the residual risk.
		 */
		vmx->soft_vnmi_blocked = 1;
		vmx->vnmi_blocked_time = 0;
	}

5485
	++vcpu->stat.nmi_injections;
5486
	vmx->nmi_known_unmasked = false;
5487
	if (vmx->rmode.vm86_active) {
5488
		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5489
			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5490 5491
		return;
	}
5492 5493 5494 5495
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
}

5496 5497 5498 5499
static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
{
	if (!cpu_has_virtual_nmis())
		return to_vmx(vcpu)->soft_vnmi_blocked;
5500 5501
	if (to_vmx(vcpu)->nmi_known_unmasked)
		return false;
5502
	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
}

static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!cpu_has_virtual_nmis()) {
		if (vmx->soft_vnmi_blocked != masked) {
			vmx->soft_vnmi_blocked = masked;
			vmx->vnmi_blocked_time = 0;
		}
	} else {
5515
		vmx->nmi_known_unmasked = !masked;
5516 5517 5518 5519 5520 5521 5522 5523 5524
		if (masked)
			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
				      GUEST_INTR_STATE_NMI);
		else
			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
					GUEST_INTR_STATE_NMI);
	}
}

5525 5526
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
{
5527 5528
	if (to_vmx(vcpu)->nested.nested_run_pending)
		return 0;
5529

5530 5531 5532 5533 5534 5535 5536 5537
	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
		return 0;

	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
		   | GUEST_INTR_STATE_NMI));
}

5538 5539
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
{
5540 5541
	return (!to_vmx(vcpu)->nested.nested_run_pending &&
		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5542 5543
		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5544 5545
}

5546 5547 5548 5549
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
	int ret;

5550 5551
	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
				    PAGE_SIZE * 3);
5552 5553
	if (ret)
		return ret;
5554
	kvm->arch.tss_addr = addr;
5555
	return init_rmode_tss(kvm);
5556 5557
}

5558
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5559
{
5560 5561
	switch (vec) {
	case BP_VECTOR:
5562 5563 5564 5565 5566 5567
		/*
		 * Update instruction length as we may reinject the exception
		 * from user space while in guest debugging mode.
		 */
		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
Jan Kiszka's avatar
Jan Kiszka committed
5568
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5569 5570 5571 5572 5573 5574
			return false;
		/* fall through */
	case DB_VECTOR:
		if (vcpu->guest_debug &
			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
			return false;
Jan Kiszka's avatar
Jan Kiszka committed
5575 5576
		/* fall through */
	case DE_VECTOR:
5577 5578 5579 5580 5581 5582 5583
	case OF_VECTOR:
	case BR_VECTOR:
	case UD_VECTOR:
	case DF_VECTOR:
	case SS_VECTOR:
	case GP_VECTOR:
	case MF_VECTOR:
5584 5585
		return true;
	break;
5586
	}
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
	return false;
}

static int handle_rmode_exception(struct kvm_vcpu *vcpu,
				  int vec, u32 err_code)
{
	/*
	 * Instruction with address size override prefix opcode 0x67
	 * Cause the #SS fault with 0 error code in VM86 mode.
	 */
	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
		if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
			if (vcpu->arch.halt_request) {
				vcpu->arch.halt_request = 0;
5601
				return kvm_vcpu_halt(vcpu);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
			}
			return 1;
		}
		return 0;
	}

	/*
	 * Forward all other exceptions that are valid in real mode.
	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
	 *        the required debugging infrastructure rework.
	 */
	kvm_queue_exception(vcpu, vec);
	return 1;
5615 5616
}

5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
/*
 * Trigger machine check on the host. We assume all the MSRs are already set up
 * by the CPU and that we still run on the same CPU as the MCE occurred on.
 * We pass a fake environment to the machine check handler because we want
 * the guest to be always treated like user space, no matter what context
 * it used internally.
 */
static void kvm_machine_check(void)
{
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
	struct pt_regs regs = {
		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
		.flags = X86_EFLAGS_IF,
	};

	do_machine_check(&regs, 0);
#endif
}

5636
static int handle_machine_check(struct kvm_vcpu *vcpu)
5637 5638 5639 5640 5641
{
	/* already handled by vcpu_run */
	return 1;
}

5642
static int handle_exception(struct kvm_vcpu *vcpu)
5643
{
5644
	struct vcpu_vmx *vmx = to_vmx(vcpu);
5645
	struct kvm_run *kvm_run = vcpu->run;
Jan Kiszka's avatar
Jan Kiszka committed
5646
	u32 intr_info, ex_no, error_code;
5647
	unsigned long cr2, rip, dr6;
5648 5649 5650
	u32 vect_info;
	enum emulation_result er;

5651
	vect_info = vmx->idt_vectoring_info;
5652
	intr_info = vmx->exit_intr_info;
5653

5654
	if (is_machine_check(intr_info))
5655
		return handle_machine_check(vcpu);
5656

5657
	if (is_nmi(intr_info))
5658
		return 1;  /* already handled by vmx_vcpu_run() */
5659 5660

	if (is_no_device(intr_info)) {
5661
		vmx_fpu_activate(vcpu);
5662 5663 5664
		return 1;
	}

5665
	if (is_invalid_opcode(intr_info)) {
5666 5667 5668 5669
		if (is_guest_mode(vcpu)) {
			kvm_queue_exception(vcpu, UD_VECTOR);
			return 1;
		}
5670
		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5671 5672
		if (er == EMULATE_USER_EXIT)
			return 0;
5673
		if (er != EMULATE_DONE)
5674
			kvm_queue_exception(vcpu, UD_VECTOR);
5675 5676 5677
		return 1;
	}

5678
	error_code = 0;
5679
	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5680
		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690

	/*
	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
	 * MMIO, it is better to report an internal error.
	 * See the comments in vmx_handle_exit.
	 */
	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5691
		vcpu->run->internal.ndata = 3;
5692 5693
		vcpu->run->internal.data[0] = vect_info;
		vcpu->run->internal.data[1] = intr_info;
5694
		vcpu->run->internal.data[2] = error_code;
5695 5696 5697
		return 0;
	}

5698
	if (is_page_fault(intr_info)) {
5699
		/* EPT won't cause page fault directly */
Julia Lawall's avatar
Julia Lawall committed
5700
		BUG_ON(enable_ept);
5701
		cr2 = vmcs_readl(EXIT_QUALIFICATION);
5702
		vcpu->arch.l1tf_flush_l1d = true;
5703 5704
		trace_kvm_page_fault(cr2, error_code);

5705
		if (kvm_event_needs_reinjection(vcpu))
5706
			kvm_mmu_unprotect_page_virt(vcpu, cr2);
5707
		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5708 5709
	}

Jan Kiszka's avatar
Jan Kiszka committed
5710
	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5711 5712 5713 5714

	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
		return handle_rmode_exception(vcpu, ex_no, error_code);

5715
	switch (ex_no) {
5716 5717 5718
	case AC_VECTOR:
		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
		return 1;
5719 5720 5721 5722
	case DB_VECTOR:
		dr6 = vmcs_readl(EXIT_QUALIFICATION);
		if (!(vcpu->guest_debug &
		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5723
			vcpu->arch.dr6 &= ~15;
5724
			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5725
			if (is_icebp(intr_info))
5726 5727
				skip_emulated_instruction(vcpu);

5728 5729 5730 5731 5732 5733 5734
			kvm_queue_exception(vcpu, DB_VECTOR);
			return 1;
		}
		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
		/* fall through */
	case BP_VECTOR:
5735 5736 5737 5738 5739 5740 5741
		/*
		 * Update instruction length as we may reinject #BP from
		 * user space while in guest debugging mode. Reading it for
		 * #DB as well causes no harm, it is not used in that case.
		 */
		vmx->vcpu.arch.event_exit_inst_len =
			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5742
		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5743
		rip = kvm_rip_read(vcpu);
Jan Kiszka's avatar
Jan Kiszka committed
5744 5745
		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
		kvm_run->debug.arch.exception = ex_no;
5746 5747
		break;
	default:
Jan Kiszka's avatar
Jan Kiszka committed
5748 5749 5750
		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
		kvm_run->ex.exception = ex_no;
		kvm_run->ex.error_code = error_code;
5751
		break;
5752 5753 5754 5755
	}
	return 0;
}

5756
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5757
{
Avi Kivity's avatar
Avi Kivity committed
5758
	++vcpu->stat.irq_exits;
5759 5760 5761
	return 1;
}

5762
static int handle_triple_fault(struct kvm_vcpu *vcpu)
5763
{
5764
	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5765 5766
	return 0;
}
5767

5768
static int handle_io(struct kvm_vcpu *vcpu)
5769
{
5770
	unsigned long exit_qualification;
5771
	int size, in, string;
5772
	unsigned port;
5773

5774
	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5775
	string = (exit_qualification & 16) != 0;
5776
	in = (exit_qualification & 8) != 0;
5777

5778
	++vcpu->stat.io_exits;
5779

5780
	if (string || in)
5781
		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5782

5783 5784
	port = exit_qualification >> 16;
	size = (exit_qualification & 7) + 1;
5785
	skip_emulated_instruction(vcpu);
5786 5787

	return kvm_fast_pio_out(vcpu, size, port);
5788 5789
}

5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
	/*
	 * Patch in the VMCALL instruction:
	 */
	hypercall[0] = 0x0f;
	hypercall[1] = 0x01;
	hypercall[2] = 0xc1;
}

5801
static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5802 5803
{
	unsigned long always_on = VMXON_CR0_ALWAYSON;
5804
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5805

5806
	if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5807 5808 5809 5810 5811 5812
		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
		always_on &= ~(X86_CR0_PE | X86_CR0_PG);
	return (val & always_on) == always_on;
}

Guo Chao's avatar
Guo Chao committed
5813
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5814 5815 5816
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
	if (is_guest_mode(vcpu)) {
5817 5818 5819
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
		unsigned long orig_val = val;

5820 5821 5822
		/*
		 * We get here when L2 changed cr0 in a way that did not change
		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5823 5824 5825 5826
		 * but did change L0 shadowed bits. So we first calculate the
		 * effective cr0 value that L1 would like to write into the
		 * hardware. It consists of the L2-owned bits from the new
		 * value combined with the L1-owned bits from L1's guest_cr0.
5827
		 */
5828 5829 5830
		val = (val & ~vmcs12->cr0_guest_host_mask) |
			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);

5831
		if (!nested_cr0_valid(vcpu, val))
5832
			return 1;
5833 5834 5835 5836

		if (kvm_set_cr0(vcpu, val))
			return 1;
		vmcs_writel(CR0_READ_SHADOW, orig_val);
5837
		return 0;
5838 5839 5840 5841
	} else {
		if (to_vmx(vcpu)->nested.vmxon &&
		    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
			return 1;
5842
		return kvm_set_cr0(vcpu, val);
5843
	}
5844 5845 5846 5847 5848
}

static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
{
	if (is_guest_mode(vcpu)) {
5849 5850 5851 5852 5853 5854 5855
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
		unsigned long orig_val = val;

		/* analogously to handle_set_cr0 */
		val = (val & ~vmcs12->cr4_guest_host_mask) |
			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
		if (kvm_set_cr4(vcpu, val))
5856
			return 1;
5857
		vmcs_writel(CR4_READ_SHADOW, orig_val);
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
		return 0;
	} else
		return kvm_set_cr4(vcpu, val);
}

/* called to set cr0 as approriate for clts instruction exit. */
static void handle_clts(struct kvm_vcpu *vcpu)
{
	if (is_guest_mode(vcpu)) {
		/*
		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
		 * just pretend it's off (also in arch.cr0 for fpu_activate).
		 */
		vmcs_writel(CR0_READ_SHADOW,
			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
		vcpu->arch.cr0 &= ~X86_CR0_TS;
	} else
		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
}

5879
static int handle_cr(struct kvm_vcpu *vcpu)
5880
{
5881
	unsigned long exit_qualification, val;
5882 5883
	int cr;
	int reg;
5884
	int err;
5885

5886
	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5887 5888 5889 5890
	cr = exit_qualification & 15;
	reg = (exit_qualification >> 8) & 15;
	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
5891
		val = kvm_register_readl(vcpu, reg);
5892
		trace_kvm_cr_write(cr, val);
5893 5894
		switch (cr) {
		case 0:
5895
			err = handle_set_cr0(vcpu, val);
5896
			kvm_complete_insn_gp(vcpu, err);
5897 5898
			return 1;
		case 3:
5899
			err = kvm_set_cr3(vcpu, val);
5900
			kvm_complete_insn_gp(vcpu, err);
5901 5902
			return 1;
		case 4:
5903
			err = handle_set_cr4(vcpu, val);
5904
			kvm_complete_insn_gp(vcpu, err);
5905
			return 1;
5906 5907
		case 8: {
				u8 cr8_prev = kvm_get_cr8(vcpu);
5908
				u8 cr8 = (u8)val;
Andre Przywara's avatar
Andre Przywara committed
5909
				err = kvm_set_cr8(vcpu, cr8);
5910
				kvm_complete_insn_gp(vcpu, err);
5911
				if (lapic_in_kernel(vcpu))
5912 5913 5914
					return 1;
				if (cr8_prev <= cr8)
					return 1;
5915
				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5916 5917
				return 0;
			}
5918
		}
5919
		break;
5920
	case 2: /* clts */
5921
		handle_clts(vcpu);
5922
		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5923
		skip_emulated_instruction(vcpu);
Avi Kivity's avatar
Avi Kivity committed
5924
		vmx_fpu_activate(vcpu);
5925
		return 1;
5926 5927 5928
	case 1: /*mov from cr*/
		switch (cr) {
		case 3:
5929 5930 5931
			val = kvm_read_cr3(vcpu);
			kvm_register_write(vcpu, reg, val);
			trace_kvm_cr_read(cr, val);
5932 5933 5934
			skip_emulated_instruction(vcpu);
			return 1;
		case 8:
5935 5936 5937
			val = kvm_get_cr8(vcpu);
			kvm_register_write(vcpu, reg, val);
			trace_kvm_cr_read(cr, val);
5938 5939 5940 5941 5942
			skip_emulated_instruction(vcpu);
			return 1;
		}
		break;
	case 3: /* lmsw */
5943
		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5944
		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5945
		kvm_lmsw(vcpu, val);
5946 5947 5948 5949 5950 5951

		skip_emulated_instruction(vcpu);
		return 1;
	default:
		break;
	}
5952
	vcpu->run->exit_reason = 0;
5953
	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5954 5955 5956 5957
	       (int)(exit_qualification >> 4) & 3, cr);
	return 0;
}

5958
static int handle_dr(struct kvm_vcpu *vcpu)
5959
{
5960
	unsigned long exit_qualification;
5961 5962 5963 5964 5965 5966 5967 5968
	int dr, dr7, reg;

	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;

	/* First, if DR does not exist, trigger UD */
	if (!kvm_require_dr(vcpu, dr))
		return 1;
5969

5970
	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5971 5972
	if (!kvm_require_cpl(vcpu, 0))
		return 1;
5973 5974
	dr7 = vmcs_readl(GUEST_DR7);
	if (dr7 & DR7_GD) {
5975 5976 5977 5978 5979 5980
		/*
		 * As the vm-exit takes precedence over the debug trap, we
		 * need to emulate the latter, either for the host or the
		 * guest debugging itself.
		 */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5981
			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5982
			vcpu->run->debug.arch.dr7 = dr7;
5983
			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5984 5985
			vcpu->run->debug.arch.exception = DB_VECTOR;
			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5986 5987
			return 0;
		} else {
5988
			vcpu->arch.dr6 &= ~15;
5989
			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5990 5991 5992 5993 5994
			kvm_queue_exception(vcpu, DB_VECTOR);
			return 1;
		}
	}

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
	if (vcpu->guest_debug == 0) {
		u32 cpu_based_vm_exec_control;

		cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
		cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);

		/*
		 * No more DR vmexits; force a reload of the debug registers
		 * and reenter on this instruction.  The next vmexit will
		 * retrieve the full state of the debug registers.
		 */
		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
		return 1;
	}

6011 6012
	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
	if (exit_qualification & TYPE_MOV_FROM_DR) {
6013
		unsigned long val;
6014 6015 6016 6017

		if (kvm_get_dr(vcpu, dr, &val))
			return 1;
		kvm_register_write(vcpu, reg, val);
6018
	} else
6019
		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6020 6021
			return 1;

6022 6023 6024 6025
	skip_emulated_instruction(vcpu);
	return 1;
}

Jan Kiszka's avatar
Jan Kiszka committed
6026 6027 6028 6029 6030 6031 6032 6033 6034
static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.dr6;
}

static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
{
}

6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
	u32 cpu_based_vm_exec_control;

	get_debugreg(vcpu->arch.db[0], 0);
	get_debugreg(vcpu->arch.db[1], 1);
	get_debugreg(vcpu->arch.db[2], 2);
	get_debugreg(vcpu->arch.db[3], 3);
	get_debugreg(vcpu->arch.dr6, 6);
	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);

	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;

	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}

6053 6054 6055 6056 6057
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
	vmcs_writel(GUEST_DR7, val);
}

6058
static int handle_cpuid(struct kvm_vcpu *vcpu)
6059
{
6060 6061
	kvm_emulate_cpuid(vcpu);
	return 1;
6062 6063
}

6064
static int handle_rdmsr(struct kvm_vcpu *vcpu)
6065
{
6066
	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6067
	struct msr_data msr_info;
6068

6069 6070
	msr_info.index = ecx;
	msr_info.host_initiated = false;
6071

6072
	if (vmx_get_msr(vcpu, &msr_info)) {
6073
		trace_kvm_msr_read_ex(ecx);
6074
		kvm_inject_gp(vcpu, 0);
6075 6076 6077
		return 1;
	}

6078
	trace_kvm_msr_read(ecx, msr_info.data);
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
6079

6080
	/* FIXME: handling of bits 32:63 of rax, rdx */
6081 6082
	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6083 6084 6085 6086
	skip_emulated_instruction(vcpu);
	return 1;
}

6087
static int handle_wrmsr(struct kvm_vcpu *vcpu)
6088
{
6089
	struct msr_data msr;
6090 6091 6092
	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6093

6094 6095 6096
	msr.data = data;
	msr.index = ecx;
	msr.host_initiated = false;
6097
	if (kvm_set_msr(vcpu, &msr) != 0) {
6098
		trace_kvm_msr_write_ex(ecx, data);
6099
		kvm_inject_gp(vcpu, 0);
6100 6101 6102
		return 1;
	}

6103
	trace_kvm_msr_write(ecx, data);
6104 6105 6106 6107
	skip_emulated_instruction(vcpu);
	return 1;
}

6108
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6109
{
6110
	kvm_make_request(KVM_REQ_EVENT, vcpu);
6111 6112 6113
	return 1;
}

6114
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6115
{
6116 6117 6118 6119 6120 6121
	u32 cpu_based_vm_exec_control;

	/* clear pending irq */
	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
Feng (Eric) Liu's avatar
Feng (Eric) Liu committed
6122

6123 6124
	kvm_make_request(KVM_REQ_EVENT, vcpu);

6125
	++vcpu->stat.irq_window_exits;
6126 6127 6128
	return 1;
}

6129
static int handle_halt(struct kvm_vcpu *vcpu)
6130
{
6131
	return kvm_emulate_halt(vcpu);
6132 6133
}

6134
static int handle_vmcall(struct kvm_vcpu *vcpu)
6135
{
6136 6137
	kvm_emulate_hypercall(vcpu);
	return 1;
6138 6139
}

6140 6141
static int handle_invd(struct kvm_vcpu *vcpu)
{
6142
	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6143 6144
}

6145
static int handle_invlpg(struct kvm_vcpu *vcpu)
Marcelo Tosatti's avatar
Marcelo Tosatti committed
6146
{
6147
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
Marcelo Tosatti's avatar
Marcelo Tosatti committed
6148 6149 6150 6151 6152 6153

	kvm_mmu_invlpg(vcpu, exit_qualification);
	skip_emulated_instruction(vcpu);
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
static int handle_rdpmc(struct kvm_vcpu *vcpu)
{
	int err;

	err = kvm_rdpmc(vcpu);
	kvm_complete_insn_gp(vcpu, err);

	return 1;
}

6164
static int handle_wbinvd(struct kvm_vcpu *vcpu)
Eddie Dong's avatar
Eddie Dong committed
6165
{
6166
	kvm_emulate_wbinvd(vcpu);
Eddie Dong's avatar
Eddie Dong committed
6167 6168 6169
	return 1;
}

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
static int handle_xsetbv(struct kvm_vcpu *vcpu)
{
	u64 new_bv = kvm_read_edx_eax(vcpu);
	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);

	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
		skip_emulated_instruction(vcpu);
	return 1;
}

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
static int handle_xsaves(struct kvm_vcpu *vcpu)
{
	skip_emulated_instruction(vcpu);
	WARN(1, "this should never happen\n");
	return 1;
}

static int handle_xrstors(struct kvm_vcpu *vcpu)
{
	skip_emulated_instruction(vcpu);
	WARN(1, "this should never happen\n");
	return 1;
}

6194
static int handle_apic_access(struct kvm_vcpu *vcpu)
6195
{
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
	if (likely(fasteoi)) {
		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
		int access_type, offset;

		access_type = exit_qualification & APIC_ACCESS_TYPE;
		offset = exit_qualification & APIC_ACCESS_OFFSET;
		/*
		 * Sane guest uses MOV to write EOI, with written value
		 * not cared. So make a short-circuit here by avoiding
		 * heavy instruction emulation.
		 */
		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
		    (offset == APIC_EOI)) {
			kvm_lapic_set_eoi(vcpu);
			skip_emulated_instruction(vcpu);
			return 1;
		}
	}
6214
	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6215 6216
}

6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
{
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	int vector = exit_qualification & 0xff;

	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
	kvm_apic_set_eoi_accelerated(vcpu, vector);
	return 1;
}

6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
static int handle_apic_write(struct kvm_vcpu *vcpu)
{
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 offset = exit_qualification & 0xfff;

	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
	kvm_apic_write_nodecode(vcpu, offset);
	return 1;
}

6237
static int handle_task_switch(struct kvm_vcpu *vcpu)
6238
{
6239
	struct vcpu_vmx *vmx = to_vmx(vcpu);
6240
	unsigned long exit_qualification;
6241 6242
	bool has_error_code = false;
	u32 error_code = 0;
6243
	u16 tss_selector;
6244
	int reason, type, idt_v, idt_index;
6245 6246

	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6247
	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6248
	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6249 6250 6251 6252

	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);

	reason = (u32)exit_qualification >> 30;
6253 6254 6255 6256
	if (reason == TASK_SWITCH_GATE && idt_v) {
		switch (type) {
		case INTR_TYPE_NMI_INTR:
			vcpu->arch.nmi_injected = false;
6257
			vmx_set_nmi_mask(vcpu, true);
6258 6259
			break;
		case INTR_TYPE_EXT_INTR:
6260
		case INTR_TYPE_SOFT_INTR:
6261 6262 6263
			kvm_clear_interrupt_queue(vcpu);
			break;
		case INTR_TYPE_HARD_EXCEPTION:
6264 6265 6266 6267 6268 6269 6270
			if (vmx->idt_vectoring_info &
			    VECTORING_INFO_DELIVER_CODE_MASK) {
				has_error_code = true;
				error_code =
					vmcs_read32(IDT_VECTORING_ERROR_CODE);
			}
			/* fall through */
6271 6272 6273 6274 6275 6276
		case INTR_TYPE_SOFT_EXCEPTION:
			kvm_clear_exception_queue(vcpu);
			break;
		default:
			break;
		}
6277
	}
6278 6279
	tss_selector = exit_qualification;

6280 6281 6282 6283 6284
	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
		       type != INTR_TYPE_EXT_INTR &&
		       type != INTR_TYPE_NMI_INTR))
		skip_emulated_instruction(vcpu);

6285 6286 6287
	if (kvm_task_switch(vcpu, tss_selector,
			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
			    has_error_code, error_code) == EMULATE_FAIL) {
6288 6289 6290
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		vcpu->run->internal.ndata = 0;
6291
		return 0;
6292
	}
6293 6294 6295 6296 6297 6298 6299

	/*
	 * TODO: What about debug traps on tss switch?
	 *       Are we supposed to inject them and update dr6?
	 */

	return 1;
6300 6301
}

6302
static int handle_ept_violation(struct kvm_vcpu *vcpu)
6303
{
6304
	unsigned long exit_qualification;
6305
	gpa_t gpa;
6306
	u32 error_code;
6307 6308
	int gla_validity;

6309
	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6310 6311 6312 6313 6314 6315

	gla_validity = (exit_qualification >> 7) & 0x3;
	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6316
			vmcs_readl(GUEST_LINEAR_ADDRESS));
6317 6318
		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
			(long unsigned int)exit_qualification);
6319 6320
		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6321
		return 0;
6322 6323
	}

6324 6325 6326 6327 6328 6329
	/*
	 * EPT violation happened while executing iret from NMI,
	 * "blocked by NMI" bit has to be set before next VM entry.
	 * There are errata that may cause this bit to not be set:
	 * AAK134, BY25.
	 */
6330 6331 6332
	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
			cpu_has_virtual_nmis() &&
			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6333 6334
		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);

6335
	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6336
	trace_kvm_page_fault(gpa, exit_qualification);
6337 6338

	/* It is a write fault? */
6339
	error_code = exit_qualification & PFERR_WRITE_MASK;
6340
	/* It is a fetch fault? */
6341
	error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6342
	/* ept page table is present? */
6343
	error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
6344

6345 6346
	vcpu->arch.exit_qualification = exit_qualification;

6347
	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6348 6349
}

6350
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6351
{
6352
	int ret;
6353 6354 6355
	gpa_t gpa;

	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6356
	if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6357
		skip_emulated_instruction(vcpu);
6358
		trace_kvm_fast_mmio(gpa);
6359 6360
		return 1;
	}
6361

6362
	ret = handle_mmio_page_fault(vcpu, gpa, true);
6363
	if (likely(ret == RET_MMIO_PF_EMULATE))
6364 6365
		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
					      EMULATE_DONE;
6366 6367 6368 6369

	if (unlikely(ret == RET_MMIO_PF_INVALID))
		return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);

6370
	if (unlikely(ret == RET_MMIO_PF_RETRY))
6371 6372 6373
		return 1;

	/* It is the real ept misconfig */
6374
	WARN_ON(1);
6375

6376 6377
	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6378 6379 6380 6381

	return 0;
}

6382
static int handle_nmi_window(struct kvm_vcpu *vcpu)
6383 6384 6385 6386 6387 6388 6389 6390
{
	u32 cpu_based_vm_exec_control;

	/* clear pending NMI */
	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
	++vcpu->stat.nmi_window_exits;
6391
	kvm_make_request(KVM_REQ_EVENT, vcpu);
6392 6393 6394 6395

	return 1;
}

6396
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6397
{
6398 6399
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	enum emulation_result err = EMULATE_DONE;
6400
	int ret = 1;
6401 6402
	u32 cpu_exec_ctrl;
	bool intr_window_requested;
6403
	unsigned count = 130;
6404 6405 6406

	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6407

6408
	while (vmx->emulation_required && count-- != 0) {
6409
		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6410 6411
			return handle_interrupt_window(&vmx->vcpu);

6412 6413 6414
		if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
			return 1;

6415
		err = emulate_instruction(vcpu, 0);
6416

6417
		if (err == EMULATE_USER_EXIT) {
6418
			++vcpu->stat.mmio_exits;
6419 6420 6421
			ret = 0;
			goto out;
		}
6422

6423 6424 6425 6426 6427 6428
		if (err != EMULATE_DONE)
			goto emulation_error;

		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
		    vcpu->arch.exception.pending)
			goto emulation_error;
6429

6430 6431
		if (vcpu->arch.halt_request) {
			vcpu->arch.halt_request = 0;
6432
			ret = kvm_vcpu_halt(vcpu);
6433 6434 6435
			goto out;
		}

6436
		if (signal_pending(current))
6437
			goto out;
6438 6439 6440 6441
		if (need_resched())
			schedule();
	}

6442 6443
out:
	return ret;
6444 6445 6446 6447 6448 6449

emulation_error:
	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
	vcpu->run->internal.ndata = 0;
	return 0;
6450 6451
}

6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
static int __grow_ple_window(int val)
{
	if (ple_window_grow < 1)
		return ple_window;

	val = min(val, ple_window_actual_max);

	if (ple_window_grow < ple_window)
		val *= ple_window_grow;
	else
		val += ple_window_grow;

	return val;
}

static int __shrink_ple_window(int val, int modifier, int minimum)
{
	if (modifier < 1)
		return ple_window;

	if (modifier < ple_window)
		val /= modifier;
	else
		val -= modifier;

	return max(val, minimum);
}

static void grow_ple_window(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int old = vmx->ple_window;

	vmx->ple_window = __grow_ple_window(old);

	if (vmx->ple_window != old)
		vmx->ple_window_dirty = true;
6489 6490

	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
}

static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int old = vmx->ple_window;

	vmx->ple_window = __shrink_ple_window(old,
	                                      ple_window_shrink, ple_window);

	if (vmx->ple_window != old)
		vmx->ple_window_dirty = true;
6503 6504

	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
}

/*
 * ple_window_actual_max is computed to be one grow_ple_window() below
 * ple_window_max. (See __grow_ple_window for the reason.)
 * This prevents overflows, because ple_window_max is int.
 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
 * this process.
 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
 */
static void update_ple_window_actual_max(void)
{
	ple_window_actual_max =
			__shrink_ple_window(max(ple_window_max, ple_window),
			                    ple_window_grow, INT_MIN);
}

6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
/*
 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
 */
static void wakeup_handler(void)
{
	struct kvm_vcpu *vcpu;
	int cpu = smp_processor_id();

	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
			blocked_vcpu_list) {
		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);

		if (pi_test_on(pi_desc) == 1)
			kvm_vcpu_kick(vcpu);
	}
	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
}

6541 6542
static __init int hardware_setup(void)
{
6543
	int r = -ENOMEM, i;
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559

	rdmsrl_safe(MSR_EFER, &host_efer);

	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
		kvm_define_shared_msr(i, vmx_msr_index[i]);

	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
	if (!vmx_io_bitmap_a)
		return r;

	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
	if (!vmx_io_bitmap_b)
		goto out;

	vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
	if (!vmx_vmread_bitmap)
6560
		goto out1;
6561 6562 6563

	vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
	if (!vmx_vmwrite_bitmap)
6564
		goto out2;
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574

	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);

	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);

	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);

	if (setup_vmcs_config(&vmcs_config) < 0) {
		r = -EIO;
6575
		goto out3;
6576
	}
6577 6578 6579 6580

	if (boot_cpu_has(X86_FEATURE_NX))
		kvm_enable_efer_bits(EFER_NX);

6581 6582
	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
		!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6583
		enable_vpid = 0;
6584

6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
	if (!cpu_has_vmx_shadow_vmcs())
		enable_shadow_vmcs = 0;
	if (enable_shadow_vmcs)
		init_vmcs_shadow_fields();

	if (!cpu_has_vmx_ept() ||
	    !cpu_has_vmx_ept_4levels()) {
		enable_ept = 0;
		enable_unrestricted_guest = 0;
		enable_ept_ad_bits = 0;
	}

	if (!cpu_has_vmx_ept_ad_bits())
		enable_ept_ad_bits = 0;

	if (!cpu_has_vmx_unrestricted_guest())
		enable_unrestricted_guest = 0;

6603
	if (!cpu_has_vmx_flexpriority())
6604 6605
		flexpriority_enabled = 0;

6606 6607 6608 6609 6610 6611
	/*
	 * set_apic_access_page_addr() is used to reload apic access
	 * page upon invalidation.  No need to do anything if not
	 * using the APIC_ACCESS_ADDR VMCS field.
	 */
	if (!flexpriority_enabled)
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
		kvm_x86_ops->set_apic_access_page_addr = NULL;

	if (!cpu_has_vmx_tpr_shadow())
		kvm_x86_ops->update_cr8_intercept = NULL;

	if (enable_ept && !cpu_has_vmx_ept_2m_page())
		kvm_disable_largepages();

	if (!cpu_has_vmx_ple())
		ple_gap = 0;

	if (!cpu_has_vmx_apicv())
		enable_apicv = 0;

6626 6627 6628 6629 6630 6631
	if (cpu_has_vmx_tsc_scaling()) {
		kvm_has_tsc_control = true;
		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
		kvm_tsc_scaling_ratio_frac_bits = 48;
	}

6632 6633
	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */

6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
	if (enable_ept) {
		kvm_mmu_set_mask_ptes(0ull,
			(enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
			(enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
			0ull, VMX_EPT_EXECUTABLE_MASK);
		ept_set_mmio_spte_mask();
		kvm_enable_tdp();
	} else
		kvm_disable_tdp();

	update_ple_window_actual_max();

Kai Huang's avatar
Kai Huang committed
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	/*
	 * Only enable PML when hardware supports PML feature, and both EPT
	 * and EPT A/D bit features are enabled -- PML depends on them to work.
	 */
	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
		enable_pml = 0;

	if (!enable_pml) {
		kvm_x86_ops->slot_enable_log_dirty = NULL;
		kvm_x86_ops->slot_disable_log_dirty = NULL;
		kvm_x86_ops->flush_log_dirty = NULL;
		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
	}

6660 6661
	kvm_set_posted_intr_wakeup_handler(wakeup_handler);

6662
	return alloc_kvm_area();
6663 6664

out3:
6665
	free_page((unsigned long)vmx_vmwrite_bitmap);
6666
out2:
6667
	free_page((unsigned long)vmx_vmread_bitmap);
6668 6669 6670 6671 6672 6673
out1:
	free_page((unsigned long)vmx_io_bitmap_b);
out:
	free_page((unsigned long)vmx_io_bitmap_a);

    return r;
6674 6675 6676 6677
}

static __exit void hardware_unsetup(void)
{
6678 6679 6680 6681 6682
	free_page((unsigned long)vmx_io_bitmap_b);
	free_page((unsigned long)vmx_io_bitmap_a);
	free_page((unsigned long)vmx_vmwrite_bitmap);
	free_page((unsigned long)vmx_vmread_bitmap);

6683 6684 6685
	free_kvm_area();
}

6686 6687 6688 6689
/*
 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
 */
6690
static int handle_pause(struct kvm_vcpu *vcpu)
6691
{
6692 6693 6694
	if (ple_gap)
		grow_ple_window(vcpu);

6695 6696 6697 6698 6699 6700
	skip_emulated_instruction(vcpu);
	kvm_vcpu_on_spin(vcpu);

	return 1;
}

6701
static int handle_nop(struct kvm_vcpu *vcpu)
6702
{
6703
	skip_emulated_instruction(vcpu);
6704 6705 6706
	return 1;
}

6707 6708 6709 6710 6711 6712
static int handle_mwait(struct kvm_vcpu *vcpu)
{
	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
	return handle_nop(vcpu);
}

6713 6714 6715 6716 6717
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
{
	return 1;
}

6718 6719 6720 6721 6722 6723
static int handle_monitor(struct kvm_vcpu *vcpu)
{
	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
	return handle_nop(vcpu);
}

6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
/*
 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 * set the success or error code of an emulated VMX instruction, as specified
 * by Vol 2B, VMX Instruction Reference, "Conventions".
 */
static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
}

static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_CF);
}

Abel Gordon's avatar
Abel Gordon committed
6744
static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
					u32 vm_instruction_error)
{
	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
		/*
		 * failValid writes the error number to the current VMCS, which
		 * can't be done there isn't a current VMCS.
		 */
		nested_vmx_failInvalid(vcpu);
		return;
	}
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_ZF);
	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
	/*
	 * We don't need to force a shadow sync because
	 * VM_INSTRUCTION_ERROR is not shadowed
	 */
}
Abel Gordon's avatar
Abel Gordon committed
6765

6766 6767 6768 6769 6770 6771 6772
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
	/* TODO: not to reset guest simply here. */
	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
	pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
}

6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
	struct vcpu_vmx *vmx =
		container_of(timer, struct vcpu_vmx, nested.preemption_timer);

	vmx->nested.preemption_timer_expired = true;
	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
	kvm_vcpu_kick(&vmx->vcpu);

	return HRTIMER_NORESTART;
}

6785 6786 6787 6788 6789 6790 6791 6792
/*
 * Decode the memory-address operand of a vmx instruction, as recorded on an
 * exit caused by such an instruction (run by a guest hypervisor).
 * On success, returns 0. When the operand is invalid, returns 1 and throws
 * #UD or #GP.
 */
static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
				 unsigned long exit_qualification,
6793
				 u32 vmx_instruction_info, bool wr, gva_t *ret)
6794
{
6795 6796 6797 6798
	gva_t off;
	bool exn;
	struct kvm_segment s;

6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
	/*
	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
	 * Execution", on an exit, vmx_instruction_info holds most of the
	 * addressing components of the operand. Only the displacement part
	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
	 * For how an actual address is calculated from all these components,
	 * refer to Vol. 1, "Operand Addressing".
	 */
	int  scaling = vmx_instruction_info & 3;
	int  addr_size = (vmx_instruction_info >> 7) & 7;
	bool is_reg = vmx_instruction_info & (1u << 10);
	int  seg_reg = (vmx_instruction_info >> 15) & 7;
	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));

	if (is_reg) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* Addr = segment_base + offset */
	/* offset = base + [index * scale] + displacement */
6823
	off = exit_qualification; /* holds the displacement */
6824
	if (base_is_valid)
6825
		off += kvm_register_read(vcpu, base_reg);
6826
	if (index_is_valid)
6827 6828 6829
		off += kvm_register_read(vcpu, index_reg)<<scaling;
	vmx_get_segment(vcpu, &s, seg_reg);
	*ret = s.base + off;
6830 6831 6832 6833

	if (addr_size == 1) /* 32 bit */
		*ret &= 0xffffffff;

6834 6835
	/* Checks for #GP/#SS exceptions. */
	exn = false;
6836 6837 6838 6839 6840 6841 6842
	if (is_long_mode(vcpu)) {
		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
		 * non-canonical form. This is the only check on the memory
		 * destination for long mode!
		 */
		exn = is_noncanonical_address(*ret);
	} else if (is_protmode(vcpu)) {
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
		/* Protected mode: apply checks for segment validity in the
		 * following order:
		 * - segment type check (#GP(0) may be thrown)
		 * - usability check (#GP(0)/#SS(0))
		 * - limit check (#GP(0)/#SS(0))
		 */
		if (wr)
			/* #GP(0) if the destination operand is located in a
			 * read-only data segment or any code segment.
			 */
			exn = ((s.type & 0xa) == 0 || (s.type & 8));
		else
			/* #GP(0) if the source operand is located in an
			 * execute-only code segment
			 */
			exn = ((s.type & 0xa) == 8);
6859 6860 6861 6862
		if (exn) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
		 */
		exn = (s.unusable != 0);
		/* Protected mode: #GP(0)/#SS(0) if the memory
		 * operand is outside the segment limit.
		 */
		exn = exn || (off + sizeof(u64) > s.limit);
	}
	if (exn) {
		kvm_queue_exception_e(vcpu,
				      seg_reg == VCPU_SREG_SS ?
						SS_VECTOR : GP_VECTOR,
				      0);
		return 1;
	}

6879 6880 6881
	return 0;
}

6882 6883 6884 6885 6886
/*
 * This function performs the various checks including
 * - if it's 4KB aligned
 * - No bits beyond the physical address width are set
 * - Returns 0 on success or else 1
6887
 * (Intel SDM Section 30.3)
6888
 */
6889 6890
static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
				  gpa_t *vmpointer)
6891 6892 6893 6894 6895 6896 6897 6898 6899
{
	gva_t gva;
	gpa_t vmptr;
	struct x86_exception e;
	struct page *page;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int maxphyaddr = cpuid_maxphyaddr(vcpu);

	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6900
			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6901 6902
		return 1;

6903
	if (kvm_read_guest_virt(vcpu, gva, &vmptr, sizeof(vmptr), &e)) {
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}

	switch (exit_reason) {
	case EXIT_REASON_VMON:
		/*
		 * SDM 3: 24.11.5
		 * The first 4 bytes of VMXON region contain the supported
		 * VMCS revision identifier
		 *
		 * Note - IA32_VMX_BASIC[48] will never be 1
		 * for the nested case;
		 * which replaces physical address width with 32
		 *
		 */
6920
		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6921 6922 6923 6924 6925 6926
			nested_vmx_failInvalid(vcpu);
			skip_emulated_instruction(vcpu);
			return 1;
		}

		page = nested_get_page(vcpu, vmptr);
6927
		if (page == NULL) {
6928
			nested_vmx_failInvalid(vcpu);
6929 6930 6931 6932
			skip_emulated_instruction(vcpu);
			return 1;
		}
		if (*(u32 *)kmap(page) != VMCS12_REVISION) {
6933
			kunmap(page);
6934 6935
			nested_release_page_clean(page);
			nested_vmx_failInvalid(vcpu);
6936 6937 6938 6939
			skip_emulated_instruction(vcpu);
			return 1;
		}
		kunmap(page);
6940
		nested_release_page_clean(page);
6941 6942
		vmx->nested.vmxon_ptr = vmptr;
		break;
6943
	case EXIT_REASON_VMCLEAR:
6944
		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
			nested_vmx_failValid(vcpu,
					     VMXERR_VMCLEAR_INVALID_ADDRESS);
			skip_emulated_instruction(vcpu);
			return 1;
		}

		if (vmptr == vmx->nested.vmxon_ptr) {
			nested_vmx_failValid(vcpu,
					     VMXERR_VMCLEAR_VMXON_POINTER);
			skip_emulated_instruction(vcpu);
			return 1;
		}
		break;
	case EXIT_REASON_VMPTRLD:
6959
		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6960 6961 6962 6963 6964
			nested_vmx_failValid(vcpu,
					     VMXERR_VMPTRLD_INVALID_ADDRESS);
			skip_emulated_instruction(vcpu);
			return 1;
		}
6965

6966 6967 6968 6969 6970 6971 6972
		if (vmptr == vmx->nested.vmxon_ptr) {
			nested_vmx_failValid(vcpu,
					     VMXERR_VMCLEAR_VMXON_POINTER);
			skip_emulated_instruction(vcpu);
			return 1;
		}
		break;
6973 6974 6975 6976
	default:
		return 1; /* shouldn't happen */
	}

6977 6978
	if (vmpointer)
		*vmpointer = vmptr;
6979 6980 6981
	return 0;
}

6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
/*
 * Emulate the VMXON instruction.
 * Currently, we just remember that VMX is active, and do not save or even
 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
 * do not currently need to store anything in that guest-allocated memory
 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
 * argument is different from the VMXON pointer (which the spec says they do).
 */
static int handle_vmon(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
6994
	struct vmcs *shadow_vmcs;
6995 6996
	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6997
	int r;
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020

	/* The Intel VMX Instruction Reference lists a bunch of bits that
	 * are prerequisite to running VMXON, most notably cr4.VMXE must be
	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
	 * Otherwise, we should fail with #UD. We test these now:
	 */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
	if (is_long_mode(vcpu) && !cs.l) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}
7021

7022
	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7023 7024
		return 1;

Abel Gordon's avatar
Abel Gordon committed
7025 7026 7027 7028 7029
	if (vmx->nested.vmxon) {
		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
		skip_emulated_instruction(vcpu);
		return 1;
	}
7030 7031 7032 7033 7034 7035 7036

	if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
			!= VMXON_NEEDED_FEATURES) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

7037 7038
	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
	if (r < 0)
7039 7040
		goto out_vmcs02;

7041 7042 7043
	if (enable_shadow_vmcs) {
		shadow_vmcs = alloc_vmcs();
		if (!shadow_vmcs)
7044
			goto out_shadow_vmcs;
7045 7046 7047 7048 7049 7050
		/* mark vmcs as shadow */
		shadow_vmcs->revision_id |= (1u << 31);
		/* init shadow vmcs */
		vmcs_clear(shadow_vmcs);
		vmx->nested.current_shadow_vmcs = shadow_vmcs;
	}
7051

7052 7053 7054 7055
	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;

Roman Kagan's avatar
Roman Kagan committed
7056 7057
	vmx->nested.vpid02 = allocate_vpid();

7058 7059 7060
	vmx->nested.vmxon = true;

	skip_emulated_instruction(vcpu);
7061
	nested_vmx_succeed(vcpu);
7062
	return 1;
7063 7064

out_shadow_vmcs:
7065 7066 7067
	free_loaded_vmcs(&vmx->nested.vmcs02);

out_vmcs02:
7068
	return -ENOMEM;
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
}

/*
 * Intel's VMX Instruction Reference specifies a common set of prerequisites
 * for running VMX instructions (except VMXON, whose prerequisites are
 * slightly different). It also specifies what exception to inject otherwise.
 */
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
	struct kvm_segment cs;
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!vmx->nested.vmxon) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
	    (is_long_mode(vcpu) && !cs.l)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 0;
	}

	return 1;
}

Abel Gordon's avatar
Abel Gordon committed
7101 7102
static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
{
7103 7104 7105 7106 7107 7108 7109
	if (vmx->nested.current_vmptr == -1ull)
		return;

	/* current_vmptr and current_vmcs12 are always set/reset together */
	if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
		return;

7110
	if (enable_shadow_vmcs) {
7111 7112 7113 7114
		/* copy to memory all shadowed fields in case
		   they were modified */
		copy_shadow_to_vmcs12(vmx);
		vmx->nested.sync_shadow_vmcs = false;
7115 7116
		vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
				SECONDARY_EXEC_SHADOW_VMCS);
7117
		vmcs_write64(VMCS_LINK_POINTER, -1ull);
7118
	}
7119
	vmx->nested.posted_intr_nv = -1;
Abel Gordon's avatar
Abel Gordon committed
7120 7121
	kunmap(vmx->nested.current_vmcs12_page);
	nested_release_page(vmx->nested.current_vmcs12_page);
7122 7123
	vmx->nested.current_vmptr = -1ull;
	vmx->nested.current_vmcs12 = NULL;
Abel Gordon's avatar
Abel Gordon committed
7124 7125
}

7126 7127 7128 7129 7130 7131 7132 7133
/*
 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 * just stops using VMX.
 */
static void free_nested(struct vcpu_vmx *vmx)
{
	if (!vmx->nested.vmxon)
		return;
7134

7135
	vmx->nested.vmxon = false;
7136
	free_vpid(vmx->nested.vpid02);
7137
	nested_release_vmcs12(vmx);
Abel Gordon's avatar
Abel Gordon committed
7138 7139
	if (enable_shadow_vmcs)
		free_vmcs(vmx->nested.current_shadow_vmcs);
7140
	/* Unpin physical memory we referred to in the vmcs02 */
7141 7142
	if (vmx->nested.apic_access_page) {
		nested_release_page(vmx->nested.apic_access_page);
7143
		vmx->nested.apic_access_page = NULL;
7144
	}
7145 7146
	if (vmx->nested.virtual_apic_page) {
		nested_release_page(vmx->nested.virtual_apic_page);
7147
		vmx->nested.virtual_apic_page = NULL;
7148
	}
7149 7150 7151 7152 7153 7154
	if (vmx->nested.pi_desc_page) {
		kunmap(vmx->nested.pi_desc_page);
		nested_release_page(vmx->nested.pi_desc_page);
		vmx->nested.pi_desc_page = NULL;
		vmx->nested.pi_desc = NULL;
	}
7155

7156
	free_loaded_vmcs(&vmx->nested.vmcs02);
7157 7158 7159 7160 7161 7162 7163 7164 7165
}

/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
	if (!nested_vmx_check_permission(vcpu))
		return 1;
	free_nested(to_vmx(vcpu));
	skip_emulated_instruction(vcpu);
7166
	nested_vmx_succeed(vcpu);
7167 7168 7169
	return 1;
}

Nadav Har'El's avatar
Nadav Har'El committed
7170 7171 7172 7173
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
7174
	u32 zero = 0;
Nadav Har'El's avatar
Nadav Har'El committed
7175 7176 7177 7178 7179
	gpa_t vmptr;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

7180
	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
Nadav Har'El's avatar
Nadav Har'El committed
7181 7182
		return 1;

7183
	if (vmptr == vmx->nested.current_vmptr)
Abel Gordon's avatar
Abel Gordon committed
7184
		nested_release_vmcs12(vmx);
Nadav Har'El's avatar
Nadav Har'El committed
7185

7186 7187 7188
	kvm_vcpu_write_guest(vcpu,
			vmptr + offsetof(struct vmcs12, launch_state),
			&zero, sizeof(zero));
Nadav Har'El's avatar
Nadav Har'El committed
7189 7190 7191 7192 7193 7194

	skip_emulated_instruction(vcpu);
	nested_vmx_succeed(vcpu);
	return 1;
}

7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);

/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
	return nested_vmx_run(vcpu, true);
}

/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{

	return nested_vmx_run(vcpu, false);
}

7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
enum vmcs_field_type {
	VMCS_FIELD_TYPE_U16 = 0,
	VMCS_FIELD_TYPE_U64 = 1,
	VMCS_FIELD_TYPE_U32 = 2,
	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
};

static inline int vmcs_field_type(unsigned long field)
{
	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
		return VMCS_FIELD_TYPE_U32;
	return (field >> 13) & 0x3 ;
}

static inline int vmcs_field_readonly(unsigned long field)
{
	return (((field >> 10) & 0x3) == 1);
}

/*
 * Read a vmcs12 field. Since these can have varying lengths and we return
 * one type, we chose the biggest type (u64) and zero-extend the return value
 * to that size. Note that the caller, handle_vmread, might need to use only
 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
 * 64-bit fields are to be returned).
 */
7236 7237
static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
				  unsigned long field, u64 *ret)
7238 7239 7240 7241 7242
{
	short offset = vmcs_field_to_offset(field);
	char *p;

	if (offset < 0)
7243
		return offset;
7244 7245 7246 7247 7248 7249

	p = ((char *)(get_vmcs12(vcpu))) + offset;

	switch (vmcs_field_type(field)) {
	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
		*ret = *((natural_width *)p);
7250
		return 0;
7251 7252
	case VMCS_FIELD_TYPE_U16:
		*ret = *((u16 *)p);
7253
		return 0;
7254 7255
	case VMCS_FIELD_TYPE_U32:
		*ret = *((u32 *)p);
7256
		return 0;
7257 7258
	case VMCS_FIELD_TYPE_U64:
		*ret = *((u64 *)p);
7259
		return 0;
7260
	default:
7261 7262
		WARN_ON(1);
		return -ENOENT;
7263 7264 7265
	}
}

7266

7267 7268
static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
				   unsigned long field, u64 field_value){
7269 7270 7271
	short offset = vmcs_field_to_offset(field);
	char *p = ((char *) get_vmcs12(vcpu)) + offset;
	if (offset < 0)
7272
		return offset;
7273 7274 7275 7276

	switch (vmcs_field_type(field)) {
	case VMCS_FIELD_TYPE_U16:
		*(u16 *)p = field_value;
7277
		return 0;
7278 7279
	case VMCS_FIELD_TYPE_U32:
		*(u32 *)p = field_value;
7280
		return 0;
7281 7282
	case VMCS_FIELD_TYPE_U64:
		*(u64 *)p = field_value;
7283
		return 0;
7284 7285
	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
		*(natural_width *)p = field_value;
7286
		return 0;
7287
	default:
7288 7289
		WARN_ON(1);
		return -ENOENT;
7290 7291 7292 7293
	}

}

7294 7295 7296 7297 7298 7299
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
	int i;
	unsigned long field;
	u64 field_value;
	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7300 7301
	const unsigned long *fields = shadow_read_write_fields;
	const int num_fields = max_shadow_read_write_fields;
7302

7303 7304
	preempt_disable();

7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
	vmcs_load(shadow_vmcs);

	for (i = 0; i < num_fields; i++) {
		field = fields[i];
		switch (vmcs_field_type(field)) {
		case VMCS_FIELD_TYPE_U16:
			field_value = vmcs_read16(field);
			break;
		case VMCS_FIELD_TYPE_U32:
			field_value = vmcs_read32(field);
			break;
		case VMCS_FIELD_TYPE_U64:
			field_value = vmcs_read64(field);
			break;
		case VMCS_FIELD_TYPE_NATURAL_WIDTH:
			field_value = vmcs_readl(field);
			break;
7322 7323 7324
		default:
			WARN_ON(1);
			continue;
7325 7326 7327 7328 7329 7330
		}
		vmcs12_write_any(&vmx->vcpu, field, field_value);
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);
7331 7332

	preempt_enable();
7333 7334
}

7335 7336
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
7337 7338 7339
	const unsigned long *fields[] = {
		shadow_read_write_fields,
		shadow_read_only_fields
7340
	};
7341
	const int max_fields[] = {
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
		max_shadow_read_write_fields,
		max_shadow_read_only_fields
	};
	int i, q;
	unsigned long field;
	u64 field_value = 0;
	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;

	vmcs_load(shadow_vmcs);

7352
	for (q = 0; q < ARRAY_SIZE(fields); q++) {
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
		for (i = 0; i < max_fields[q]; i++) {
			field = fields[q][i];
			vmcs12_read_any(&vmx->vcpu, field, &field_value);

			switch (vmcs_field_type(field)) {
			case VMCS_FIELD_TYPE_U16:
				vmcs_write16(field, (u16)field_value);
				break;
			case VMCS_FIELD_TYPE_U32:
				vmcs_write32(field, (u32)field_value);
				break;
			case VMCS_FIELD_TYPE_U64:
				vmcs_write64(field, (u64)field_value);
				break;
			case VMCS_FIELD_TYPE_NATURAL_WIDTH:
				vmcs_writel(field, (long)field_value);
				break;
7370 7371 7372
			default:
				WARN_ON(1);
				break;
7373 7374 7375 7376 7377 7378 7379 7380
			}
		}
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);
}

7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
/*
 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
 * used before) all generate the same failure when it is missing.
 */
static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	if (vmx->nested.current_vmptr == -1ull) {
		nested_vmx_failInvalid(vcpu);
		skip_emulated_instruction(vcpu);
		return 0;
	}
	return 1;
}

static int handle_vmread(struct kvm_vcpu *vcpu)
{
	unsigned long field;
	u64 field_value;
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gva_t gva = 0;

	if (!nested_vmx_check_permission(vcpu) ||
	    !nested_vmx_check_vmcs12(vcpu))
		return 1;

	/* Decode instruction info and find the field to read */
7409
	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7410
	/* Read the field, zero-extended to a u64 field_value */
7411
	if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
		skip_emulated_instruction(vcpu);
		return 1;
	}
	/*
	 * Now copy part of this value to register or memory, as requested.
	 * Note that the number of bits actually copied is 32 or 64 depending
	 * on the guest's mode (32 or 64 bit), not on the given field's length.
	 */
	if (vmx_instruction_info & (1u << 10)) {
7422
		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7423 7424 7425
			field_value);
	} else {
		if (get_vmx_mem_address(vcpu, exit_qualification,
7426
				vmx_instruction_info, true, &gva))
7427 7428
			return 1;
		/* _system ok, as nested_vmx_check_permission verified cpl=0 */
7429 7430
		kvm_write_guest_virt_system(vcpu, gva, &field_value,
					    (is_long_mode(vcpu) ? 8 : 4), NULL);
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
	}

	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}


static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
	unsigned long field;
	gva_t gva;
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	/* The value to write might be 32 or 64 bits, depending on L1's long
	 * mode, and eventually we need to write that into a field of several
	 * possible lengths. The code below first zero-extends the value to 64
	 * bit (field_value), and then copies only the approriate number of
	 * bits into the vmcs12 field.
	 */
	u64 field_value = 0;
	struct x86_exception e;

	if (!nested_vmx_check_permission(vcpu) ||
	    !nested_vmx_check_vmcs12(vcpu))
		return 1;

	if (vmx_instruction_info & (1u << 10))
7459
		field_value = kvm_register_readl(vcpu,
7460 7461 7462
			(((vmx_instruction_info) >> 3) & 0xf));
	else {
		if (get_vmx_mem_address(vcpu, exit_qualification,
7463
				vmx_instruction_info, false, &gva))
7464
			return 1;
7465 7466
		if (kvm_read_guest_virt(vcpu, gva, &field_value,
					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7467 7468 7469 7470 7471 7472
			kvm_inject_page_fault(vcpu, &e);
			return 1;
		}
	}


7473
	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7474 7475 7476 7477 7478 7479 7480
	if (vmcs_field_readonly(field)) {
		nested_vmx_failValid(vcpu,
			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
		skip_emulated_instruction(vcpu);
		return 1;
	}

7481
	if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
		skip_emulated_instruction(vcpu);
		return 1;
	}

	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}

Nadav Har'El's avatar
Nadav Har'El committed
7492 7493 7494 7495 7496 7497 7498 7499 7500
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t vmptr;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

7501
	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
Nadav Har'El's avatar
Nadav Har'El committed
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522
		return 1;

	if (vmx->nested.current_vmptr != vmptr) {
		struct vmcs12 *new_vmcs12;
		struct page *page;
		page = nested_get_page(vcpu, vmptr);
		if (page == NULL) {
			nested_vmx_failInvalid(vcpu);
			skip_emulated_instruction(vcpu);
			return 1;
		}
		new_vmcs12 = kmap(page);
		if (new_vmcs12->revision_id != VMCS12_REVISION) {
			kunmap(page);
			nested_release_page_clean(page);
			nested_vmx_failValid(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
			skip_emulated_instruction(vcpu);
			return 1;
		}

7523
		nested_release_vmcs12(vmx);
Nadav Har'El's avatar
Nadav Har'El committed
7524 7525 7526
		vmx->nested.current_vmptr = vmptr;
		vmx->nested.current_vmcs12 = new_vmcs12;
		vmx->nested.current_vmcs12_page = page;
7527
		if (enable_shadow_vmcs) {
7528 7529
			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
				      SECONDARY_EXEC_SHADOW_VMCS);
7530 7531
			vmcs_write64(VMCS_LINK_POINTER,
				     __pa(vmx->nested.current_shadow_vmcs));
7532 7533
			vmx->nested.sync_shadow_vmcs = true;
		}
Nadav Har'El's avatar
Nadav Har'El committed
7534 7535 7536 7537 7538 7539 7540
	}

	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}

Nadav Har'El's avatar
Nadav Har'El committed
7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552
/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gva_t vmcs_gva;
	struct x86_exception e;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (get_vmx_mem_address(vcpu, exit_qualification,
7553
			vmx_instruction_info, true, &vmcs_gva))
Nadav Har'El's avatar
Nadav Har'El committed
7554 7555
		return 1;
	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7556 7557 7558
	if (kvm_write_guest_virt_system(vcpu, vmcs_gva,
					(void *)&to_vmx(vcpu)->nested.current_vmptr,
					sizeof(u64), &e)) {
Nadav Har'El's avatar
Nadav Har'El committed
7559 7560 7561 7562 7563 7564 7565 7566
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}
	nested_vmx_succeed(vcpu);
	skip_emulated_instruction(vcpu);
	return 1;
}

Nadav Har'El's avatar
Nadav Har'El committed
7567 7568 7569
/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
7570
	struct vcpu_vmx *vmx = to_vmx(vcpu);
Nadav Har'El's avatar
Nadav Har'El committed
7571 7572 7573 7574 7575 7576 7577 7578
	u32 vmx_instruction_info, types;
	unsigned long type;
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 eptp, gpa;
	} operand;

7579 7580 7581
	if (!(vmx->nested.nested_vmx_secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_EPT) ||
	    !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
Nadav Har'El's avatar
Nadav Har'El committed
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7595
	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
Nadav Har'El's avatar
Nadav Har'El committed
7596

7597
	types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
Nadav Har'El's avatar
Nadav Har'El committed
7598

7599
	if (type >= 32 || !(types & (1 << type))) {
Nadav Har'El's avatar
Nadav Har'El committed
7600 7601
		nested_vmx_failValid(vcpu,
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7602
		skip_emulated_instruction(vcpu);
Nadav Har'El's avatar
Nadav Har'El committed
7603 7604 7605 7606 7607 7608 7609
		return 1;
	}

	/* According to the Intel VMX instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7610
			vmx_instruction_info, false, &gva))
Nadav Har'El's avatar
Nadav Har'El committed
7611
		return 1;
7612
	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
Nadav Har'El's avatar
Nadav Har'El committed
7613 7614 7615 7616 7617 7618 7619
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}

	switch (type) {
	case VMX_EPT_EXTENT_GLOBAL:
		kvm_mmu_sync_roots(vcpu);
7620
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
Nadav Har'El's avatar
Nadav Har'El committed
7621 7622 7623
		nested_vmx_succeed(vcpu);
		break;
	default:
7624
		/* Trap single context invalidation invept calls */
Nadav Har'El's avatar
Nadav Har'El committed
7625 7626 7627 7628 7629 7630 7631 7632
		BUG_ON(1);
		break;
	}

	skip_emulated_instruction(vcpu);
	return 1;
}

7633 7634
static int handle_invvpid(struct kvm_vcpu *vcpu)
{
7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info;
	unsigned long type, types;
	gva_t gva;
	struct x86_exception e;
	int vpid;

	if (!(vmx->nested.nested_vmx_secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_VPID) ||
			!(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);

7655 7656
	types = (vmx->nested.nested_vmx_vpid_caps &
			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7657

7658
	if (type >= 32 || !(types & (1 << type))) {
7659 7660
		nested_vmx_failValid(vcpu,
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7661
		skip_emulated_instruction(vcpu);
7662 7663 7664 7665 7666 7667 7668 7669 7670
		return 1;
	}

	/* according to the intel vmx instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
			vmx_instruction_info, false, &gva))
		return 1;
7671
	if (kvm_read_guest_virt(vcpu, gva, &vpid, sizeof(u32), &e)) {
7672 7673 7674 7675 7676
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}

	switch (type) {
7677
	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7678
	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7679 7680 7681 7682 7683 7684 7685 7686
	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
		if (!vpid) {
			nested_vmx_failValid(vcpu,
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
			skip_emulated_instruction(vcpu);
			return 1;
		}
		break;
7687 7688 7689
	case VMX_VPID_EXTENT_ALL_CONTEXT:
		break;
	default:
7690 7691 7692
		WARN_ON_ONCE(1);
		skip_emulated_instruction(vcpu);
		return 1;
7693 7694
	}

7695 7696 7697
	__vmx_flush_tlb(vcpu, vmx->nested.vpid02);
	nested_vmx_succeed(vcpu);

7698
	skip_emulated_instruction(vcpu);
7699 7700 7701
	return 1;
}

Kai Huang's avatar
Kai Huang committed
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726
static int handle_pml_full(struct kvm_vcpu *vcpu)
{
	unsigned long exit_qualification;

	trace_kvm_pml_full(vcpu->vcpu_id);

	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);

	/*
	 * PML buffer FULL happened while executing iret from NMI,
	 * "blocked by NMI" bit has to be set before next VM entry.
	 */
	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
			cpu_has_virtual_nmis() &&
			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
				GUEST_INTR_STATE_NMI);

	/*
	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
	 * here.., and there's no userspace involvement needed for PML.
	 */
	return 1;
}

7727 7728 7729 7730 7731 7732 7733
static int handle_pcommit(struct kvm_vcpu *vcpu)
{
	/* we never catch pcommit instruct for L1 guest. */
	WARN_ON(1);
	return 1;
}

7734 7735 7736 7737 7738
/*
 * The exit handlers return 1 if the exit was handled fully and guest execution
 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
 * to be done to userspace and return 0.
 */
7739
static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7740 7741
	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7742
	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7743
	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
7744 7745 7746 7747 7748 7749 7750 7751
	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
	[EXIT_REASON_CR_ACCESS]               = handle_cr,
	[EXIT_REASON_DR_ACCESS]               = handle_dr,
	[EXIT_REASON_CPUID]                   = handle_cpuid,
	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
	[EXIT_REASON_HLT]                     = handle_halt,
7752
	[EXIT_REASON_INVD]		      = handle_invd,
Marcelo Tosatti's avatar
Marcelo Tosatti committed
7753
	[EXIT_REASON_INVLPG]		      = handle_invlpg,
Avi Kivity's avatar
Avi Kivity committed
7754
	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
7755
	[EXIT_REASON_VMCALL]                  = handle_vmcall,
Nadav Har'El's avatar
Nadav Har'El committed
7756
	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
7757
	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
Nadav Har'El's avatar
Nadav Har'El committed
7758
	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
Nadav Har'El's avatar
Nadav Har'El committed
7759
	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7760
	[EXIT_REASON_VMREAD]                  = handle_vmread,
7761
	[EXIT_REASON_VMRESUME]                = handle_vmresume,
7762
	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7763 7764
	[EXIT_REASON_VMOFF]                   = handle_vmoff,
	[EXIT_REASON_VMON]                    = handle_vmon,
7765 7766
	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7767
	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7768
	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
Eddie Dong's avatar
Eddie Dong committed
7769
	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
7770
	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
7771
	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7772
	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7773 7774
	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7775
	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7776
	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
7777
	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7778
	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
Nadav Har'El's avatar
Nadav Har'El committed
7779
	[EXIT_REASON_INVEPT]                  = handle_invept,
7780
	[EXIT_REASON_INVVPID]                 = handle_invvpid,
7781 7782
	[EXIT_REASON_XSAVES]                  = handle_xsaves,
	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
Kai Huang's avatar
Kai Huang committed
7783
	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
7784
	[EXIT_REASON_PCOMMIT]                 = handle_pcommit,
7785 7786 7787
};

static const int kvm_vmx_max_exit_handlers =
7788
	ARRAY_SIZE(kvm_vmx_exit_handlers);
7789

7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification;
	gpa_t bitmap, last_bitmap;
	unsigned int port;
	int size;
	u8 b;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7800
		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815

	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);

	port = exit_qualification >> 16;
	size = (exit_qualification & 7) + 1;

	last_bitmap = (gpa_t)-1;
	b = -1;

	while (size > 0) {
		if (port < 0x8000)
			bitmap = vmcs12->io_bitmap_a;
		else if (port < 0x10000)
			bitmap = vmcs12->io_bitmap_b;
		else
7816
			return true;
7817 7818 7819
		bitmap += (port & 0x7fff) / 8;

		if (last_bitmap != bitmap)
7820
			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7821
				return true;
7822
		if (b & (1 << (port & 7)))
7823
			return true;
7824 7825 7826 7827 7828 7829

		port++;
		size--;
		last_bitmap = bitmap;
	}

7830
	return false;
7831 7832
}

7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844
/*
 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 * disinterest in the current event (read or write a specific MSR) by using an
 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 */
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12, u32 exit_reason)
{
	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
	gpa_t bitmap;

7845
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7846
		return true;
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863

	/*
	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
	 * for the four combinations of read/write and low/high MSR numbers.
	 * First we need to figure out which of the four to use:
	 */
	bitmap = vmcs12->msr_bitmap;
	if (exit_reason == EXIT_REASON_MSR_WRITE)
		bitmap += 2048;
	if (msr_index >= 0xc0000000) {
		msr_index -= 0xc0000000;
		bitmap += 1024;
	}

	/* Then read the msr_index'th bit from this bitmap: */
	if (msr_index < 1024*8) {
		unsigned char b;
7864
		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7865
			return true;
7866 7867
		return 1 & (b >> (msr_index & 7));
	} else
7868
		return true; /* let L1 handle the wrong parameter */
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
}

/*
 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 * intercept (via guest_host_mask etc.) the current event.
 */
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	int cr = exit_qualification & 15;
7881 7882
	int reg;
	unsigned long val;
7883 7884 7885

	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
7886 7887
		reg = (exit_qualification >> 8) & 15;
		val = kvm_register_readl(vcpu, reg);
7888 7889 7890 7891
		switch (cr) {
		case 0:
			if (vmcs12->cr0_guest_host_mask &
			    (val ^ vmcs12->cr0_read_shadow))
7892
				return true;
7893 7894 7895 7896 7897 7898 7899 7900 7901 7902
			break;
		case 3:
			if ((vmcs12->cr3_target_count >= 1 &&
					vmcs12->cr3_target_value0 == val) ||
				(vmcs12->cr3_target_count >= 2 &&
					vmcs12->cr3_target_value1 == val) ||
				(vmcs12->cr3_target_count >= 3 &&
					vmcs12->cr3_target_value2 == val) ||
				(vmcs12->cr3_target_count >= 4 &&
					vmcs12->cr3_target_value3 == val))
7903
				return false;
7904
			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7905
				return true;
7906 7907 7908 7909
			break;
		case 4:
			if (vmcs12->cr4_guest_host_mask &
			    (vmcs12->cr4_read_shadow ^ val))
7910
				return true;
7911 7912 7913
			break;
		case 8:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7914
				return true;
7915 7916 7917 7918 7919 7920
			break;
		}
		break;
	case 2: /* clts */
		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
7921
			return true;
7922 7923 7924 7925 7926 7927
		break;
	case 1: /* mov from cr */
		switch (cr) {
		case 3:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR3_STORE_EXITING)
7928
				return true;
7929 7930 7931 7932
			break;
		case 8:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR8_STORE_EXITING)
7933
				return true;
7934 7935 7936 7937 7938 7939 7940 7941
			break;
		}
		break;
	case 3: /* lmsw */
		/*
		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
		 * cr0. Other attempted changes are ignored, with no exit.
		 */
7942
		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7943 7944
		if (vmcs12->cr0_guest_host_mask & 0xe &
		    (val ^ vmcs12->cr0_read_shadow))
7945
			return true;
7946 7947 7948
		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
		    !(vmcs12->cr0_read_shadow & 0x1) &&
		    (val & 0x1))
7949
			return true;
7950 7951
		break;
	}
7952
	return false;
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
}

/*
 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
 * should handle it ourselves in L0 (and then continue L2). Only call this
 * when in is_guest_mode (L2).
 */
static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
{
	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7965
	u32 exit_reason = vmx->exit_reason;
7966

7967 7968 7969 7970 7971 7972 7973
	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
				vmcs_readl(EXIT_QUALIFICATION),
				vmx->idt_vectoring_info,
				intr_info,
				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
				KVM_ISA_VMX);

7974 7975
	/*
	 * The host physical addresses of some pages of guest memory
7976 7977 7978 7979 7980
	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
	 * Page). The CPU may write to these pages via their host
	 * physical address while L2 is running, bypassing any
	 * address-translation-based dirty tracking (e.g. EPT write
	 * protection).
7981 7982 7983 7984 7985 7986
	 *
	 * Mark them dirty on every exit from L2 to prevent them from
	 * getting out of sync with dirty tracking.
	 */
	nested_mark_vmcs12_pages_dirty(vcpu);

7987
	if (vmx->nested.nested_run_pending)
7988
		return false;
7989 7990

	if (unlikely(vmx->fail)) {
7991 7992
		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
				    vmcs_read32(VM_INSTRUCTION_ERROR));
7993
		return true;
7994 7995 7996 7997
	}

	switch (exit_reason) {
	case EXIT_REASON_EXCEPTION_NMI:
7998
		if (is_nmi(intr_info))
7999
			return false;
8000 8001
		else if (is_page_fault(intr_info))
			return enable_ept;
8002
		else if (is_no_device(intr_info) &&
8003
			 !(vmcs12->guest_cr0 & X86_CR0_TS))
8004
			return false;
8005 8006 8007
		return vmcs12->exception_bitmap &
				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
	case EXIT_REASON_EXTERNAL_INTERRUPT:
8008
		return false;
8009
	case EXIT_REASON_TRIPLE_FAULT:
8010
		return true;
8011
	case EXIT_REASON_PENDING_INTERRUPT:
8012
		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8013
	case EXIT_REASON_NMI_WINDOW:
8014
		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8015
	case EXIT_REASON_TASK_SWITCH:
8016
		return true;
8017
	case EXIT_REASON_CPUID:
8018
		return true;
8019 8020 8021
	case EXIT_REASON_HLT:
		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
	case EXIT_REASON_INVD:
8022
		return true;
8023 8024 8025 8026
	case EXIT_REASON_INVLPG:
		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_RDPMC:
		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8027
	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8028 8029 8030 8031 8032 8033
		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8034
	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8035 8036 8037 8038
		/*
		 * VMX instructions trap unconditionally. This allows L1 to
		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
		 */
8039
		return true;
8040 8041 8042 8043 8044
	case EXIT_REASON_CR_ACCESS:
		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
	case EXIT_REASON_DR_ACCESS:
		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
	case EXIT_REASON_IO_INSTRUCTION:
8045
		return nested_vmx_exit_handled_io(vcpu, vmcs12);
8046 8047 8048 8049
	case EXIT_REASON_MSR_READ:
	case EXIT_REASON_MSR_WRITE:
		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
	case EXIT_REASON_INVALID_STATE:
8050
		return true;
8051 8052
	case EXIT_REASON_MWAIT_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8053 8054
	case EXIT_REASON_MONITOR_TRAP_FLAG:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8055 8056 8057 8058 8059 8060 8061
	case EXIT_REASON_MONITOR_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
	case EXIT_REASON_PAUSE_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
			nested_cpu_has2(vmcs12,
				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
	case EXIT_REASON_MCE_DURING_VMENTRY:
8062
		return false;
8063
	case EXIT_REASON_TPR_BELOW_THRESHOLD:
8064
		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8065 8066 8067
	case EXIT_REASON_APIC_ACCESS:
		return nested_cpu_has2(vmcs12,
			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8068
	case EXIT_REASON_APIC_WRITE:
8069 8070
	case EXIT_REASON_EOI_INDUCED:
		/* apic_write and eoi_induced should exit unconditionally. */
8071
		return true;
8072
	case EXIT_REASON_EPT_VIOLATION:
8073 8074 8075 8076 8077 8078
		/*
		 * L0 always deals with the EPT violation. If nested EPT is
		 * used, and the nested mmu code discovers that the address is
		 * missing in the guest EPT table (EPT12), the EPT violation
		 * will be injected with nested_ept_inject_page_fault()
		 */
8079
		return false;
8080
	case EXIT_REASON_EPT_MISCONFIG:
8081 8082 8083 8084 8085 8086
		/*
		 * L2 never uses directly L1's EPT, but rather L0's own EPT
		 * table (shadow on EPT) or a merged EPT table that L0 built
		 * (EPT on EPT). So any problems with the structure of the
		 * table is L0's fault.
		 */
8087
		return false;
8088 8089 8090
	case EXIT_REASON_WBINVD:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
	case EXIT_REASON_XSETBV:
8091
		return true;
8092 8093 8094 8095 8096 8097 8098 8099
	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
		/*
		 * This should never happen, since it is not possible to
		 * set XSS to a non-zero value---neither in L1 nor in L2.
		 * If if it were, XSS would have to be checked against
		 * the XSS exit bitmap in vmcs12.
		 */
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8100 8101
	case EXIT_REASON_PCOMMIT:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
8102 8103 8104
	case EXIT_REASON_PML_FULL:
		/* We don't expose PML support to L1. */
		return false;
8105
	default:
8106
		return true;
8107 8108 8109
	}
}

8110 8111 8112 8113 8114 8115
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
	*info1 = vmcs_readl(EXIT_QUALIFICATION);
	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
}

8116
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
Kai Huang's avatar
Kai Huang committed
8117
{
8118 8119 8120 8121
	if (vmx->pml_pg) {
		__free_page(vmx->pml_pg);
		vmx->pml_pg = NULL;
	}
Kai Huang's avatar
Kai Huang committed
8122 8123
}

8124
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
Kai Huang's avatar
Kai Huang committed
8125
{
8126
	struct vcpu_vmx *vmx = to_vmx(vcpu);
Kai Huang's avatar
Kai Huang committed
8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
	u64 *pml_buf;
	u16 pml_idx;

	pml_idx = vmcs_read16(GUEST_PML_INDEX);

	/* Do nothing if PML buffer is empty */
	if (pml_idx == (PML_ENTITY_NUM - 1))
		return;

	/* PML index always points to next available PML buffer entity */
	if (pml_idx >= PML_ENTITY_NUM)
		pml_idx = 0;
	else
		pml_idx++;

	pml_buf = page_address(vmx->pml_pg);
	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
		u64 gpa;

		gpa = pml_buf[pml_idx];
		WARN_ON(gpa & (PAGE_SIZE - 1));
8148
		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
Kai Huang's avatar
Kai Huang committed
8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
	}

	/* reset PML index */
	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}

/*
 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
 * Called before reporting dirty_bitmap to userspace.
 */
static void kvm_flush_pml_buffers(struct kvm *kvm)
{
	int i;
	struct kvm_vcpu *vcpu;
	/*
	 * We only need to kick vcpu out of guest mode here, as PML buffer
	 * is flushed at beginning of all VMEXITs, and it's obvious that only
	 * vcpus running in guest are possible to have unflushed GPAs in PML
	 * buffer.
	 */
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vcpu_kick(vcpu);
}

8173 8174 8175
static void vmx_dump_sel(char *name, uint32_t sel)
{
	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8176
	       name, vmcs_read16(sel),
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302
	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
}

static void vmx_dump_dtsel(char *name, uint32_t limit)
{
	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
	       name, vmcs_read32(limit),
	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
}

static void dump_vmcs(void)
{
	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
	u32 secondary_exec_control = 0;
	unsigned long cr4 = vmcs_readl(GUEST_CR4);
	u64 efer = vmcs_readl(GUEST_IA32_EFER);
	int i, n;

	if (cpu_has_secondary_exec_ctrls())
		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);

	pr_err("*** Guest State ***\n");
	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
	       vmcs_readl(CR0_GUEST_HOST_MASK));
	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
	{
		pr_err("PDPTR0 = 0x%016lx  PDPTR1 = 0x%016lx\n",
		       vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
		pr_err("PDPTR2 = 0x%016lx  PDPTR3 = 0x%016lx\n",
		       vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
	}
	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
	       vmcs_readl(GUEST_SYSENTER_ESP),
	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
		pr_err("EFER =     0x%016llx  PAT = 0x%016lx\n",
		       efer, vmcs_readl(GUEST_IA32_PAT));
	pr_err("DebugCtl = 0x%016lx  DebugExceptions = 0x%016lx\n",
	       vmcs_readl(GUEST_IA32_DEBUGCTL),
	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
		pr_err("PerfGlobCtl = 0x%016lx\n",
		       vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
		pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
	       vmcs_read32(GUEST_ACTIVITY_STATE));
	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
		pr_err("InterruptStatus = %04x\n",
		       vmcs_read16(GUEST_INTR_STATUS));

	pr_err("*** Host State ***\n");
	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
	       vmcs_read16(HOST_TR_SELECTOR));
	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
	       vmcs_readl(HOST_TR_BASE));
	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
	       vmcs_readl(HOST_CR4));
	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
	       vmcs_read32(HOST_IA32_SYSENTER_CS),
	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
		pr_err("EFER = 0x%016lx  PAT = 0x%016lx\n",
		       vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
		pr_err("PerfGlobCtl = 0x%016lx\n",
		       vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));

	pr_err("*** Control State ***\n");
	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
	       vmcs_read32(EXCEPTION_BITMAP),
	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
	       vmcs_read32(VM_EXIT_INTR_INFO),
	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
	pr_err("        reason=%08x qualification=%016lx\n",
	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
	pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8303 8304 8305
	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
		pr_err("TSC Multiplier = 0x%016lx\n",
		       vmcs_readl(TSC_MULTIPLIER));
8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327
	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
		pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
	n = vmcs_read32(CR3_TARGET_COUNT);
	for (i = 0; i + 1 < n; i += 4)
		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
	if (i < n)
		pr_err("CR3 target%u=%016lx\n",
		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
		pr_err("PLE Gap=%08x Window=%08x\n",
		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
		pr_err("Virtual processor ID = 0x%04x\n",
		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
}

8328 8329 8330 8331
/*
 * The guest has exited.  See if we can fix it or if we need userspace
 * assistance.
 */
8332
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8333
{
8334
	struct vcpu_vmx *vmx = to_vmx(vcpu);
8335
	u32 exit_reason = vmx->exit_reason;
8336
	u32 vectoring_info = vmx->idt_vectoring_info;
8337

8338 8339
	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);

Kai Huang's avatar
Kai Huang committed
8340 8341 8342 8343 8344 8345 8346 8347
	/*
	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
	 * mode as if vcpus is in root mode, the PML buffer must has been
	 * flushed already.
	 */
	if (enable_pml)
8348
		vmx_flush_pml_buffer(vcpu);
Kai Huang's avatar
Kai Huang committed
8349

8350
	/* If guest state is invalid, start emulating */
8351
	if (vmx->emulation_required)
8352
		return handle_invalid_guest_state(vcpu);
8353

8354
	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8355 8356 8357
		nested_vmx_vmexit(vcpu, exit_reason,
				  vmcs_read32(VM_EXIT_INTR_INFO),
				  vmcs_readl(EXIT_QUALIFICATION));
8358 8359 8360
		return 1;
	}

8361
	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8362
		dump_vmcs();
8363 8364 8365 8366 8367 8368
		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
		vcpu->run->fail_entry.hardware_entry_failure_reason
			= exit_reason;
		return 0;
	}

8369
	if (unlikely(vmx->fail)) {
8370 8371
		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
		vcpu->run->fail_entry.hardware_entry_failure_reason
8372 8373 8374
			= vmcs_read32(VM_INSTRUCTION_ERROR);
		return 0;
	}
8375

8376 8377 8378 8379 8380 8381 8382
	/*
	 * Note:
	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
	 * delivery event since it indicates guest is accessing MMIO.
	 * The vm-exit can be triggered again after return to guest that
	 * will cause infinite loop.
	 */
Mike Day's avatar
Mike Day committed
8383
	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8384
			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8385
			exit_reason != EXIT_REASON_EPT_VIOLATION &&
8386
			exit_reason != EXIT_REASON_PML_FULL &&
8387 8388 8389 8390 8391 8392 8393 8394
			exit_reason != EXIT_REASON_TASK_SWITCH)) {
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
		vcpu->run->internal.ndata = 2;
		vcpu->run->internal.data[0] = vectoring_info;
		vcpu->run->internal.data[1] = exit_reason;
		return 0;
	}
8395

8396 8397
	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
Nadav Har'El's avatar
Nadav Har'El committed
8398
					get_vmcs12(vcpu))))) {
8399
		if (vmx_interrupt_allowed(vcpu)) {
8400 8401
			vmx->soft_vnmi_blocked = 0;
		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
8402
			   vcpu->arch.nmi_pending) {
8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
			/*
			 * This CPU don't support us in finding the end of an
			 * NMI-blocked window if the guest runs with IRQs
			 * disabled. So we pull the trigger after 1 s of
			 * futile waiting, but inform the user about this.
			 */
			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
			       "state on VCPU %d after 1 s timeout\n",
			       __func__, vcpu->vcpu_id);
			vmx->soft_vnmi_blocked = 0;
		}
	}

8416 8417
	if (exit_reason < kvm_vmx_max_exit_handlers
	    && kvm_vmx_exit_handlers[exit_reason])
8418
		return kvm_vmx_exit_handlers[exit_reason](vcpu);
8419
	else {
8420 8421 8422
		WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
8423 8424 8425
	}
}

8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438
/*
 * Software based L1D cache flush which is used when microcode providing
 * the cache control MSR is not loaded.
 *
 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
 * flush it is required to read in 64 KiB because the replacement algorithm
 * is not exactly LRU. This could be sized at runtime via topology
 * information but as all relevant affected CPUs have 32KiB L1D cache size
 * there is no point in doing so.
 */
#define L1D_CACHE_ORDER 4
static void *vmx_l1d_flush_pages;

8439
static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
8440 8441
{
	int size = PAGE_SIZE << L1D_CACHE_ORDER;
8442 8443

	/*
8444 8445
	 * This code is only executed when the the flush mode is 'cond' or
	 * 'always'
8446
	 */
8447
	if (static_branch_likely(&vmx_l1d_flush_cond)) {
8448
		bool flush_l1d;
8449

8450
		/*
8451 8452 8453
		 * Clear the per-vcpu flush bit, it gets set again
		 * either from vcpu_run() or from one of the unsafe
		 * VMEXIT handlers.
8454
		 */
8455
		flush_l1d = vcpu->arch.l1tf_flush_l1d;
8456
		vcpu->arch.l1tf_flush_l1d = false;
8457 8458 8459 8460 8461 8462 8463 8464

		/*
		 * Clear the per-cpu flush bit, it gets set again from
		 * the interrupt handlers.
		 */
		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
		kvm_clear_cpu_l1tf_flush_l1d();

8465 8466
		if (!flush_l1d)
			return;
8467
	}
8468 8469

	vcpu->stat.l1d_flush++;
8470

8471 8472 8473 8474 8475
	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
		return;
	}

8476 8477 8478 8479
	asm volatile(
		/* First ensure the pages are in the TLB */
		"xorl	%%eax, %%eax\n"
		".Lpopulate_tlb:\n\t"
8480
		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
8481 8482 8483 8484 8485 8486 8487 8488
		"addl	$4096, %%eax\n\t"
		"cmpl	%%eax, %[size]\n\t"
		"jne	.Lpopulate_tlb\n\t"
		"xorl	%%eax, %%eax\n\t"
		"cpuid\n\t"
		/* Now fill the cache */
		"xorl	%%eax, %%eax\n"
		".Lfill_cache:\n"
8489
		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
8490 8491 8492 8493
		"addl	$64, %%eax\n\t"
		"cmpl	%%eax, %[size]\n\t"
		"jne	.Lfill_cache\n\t"
		"lfence\n"
8494
		:: [flush_pages] "r" (vmx_l1d_flush_pages),
8495 8496 8497 8498
		    [size] "r" (size)
		: "eax", "ebx", "ecx", "edx");
}

8499
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8500
{
8501 8502 8503 8504 8505 8506
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	if (is_guest_mode(vcpu) &&
		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
		return;

8507
	if (irr == -1 || tpr < irr) {
8508 8509 8510 8511
		vmcs_write32(TPR_THRESHOLD, 0);
		return;
	}

8512
	vmcs_write32(TPR_THRESHOLD, irr);
8513 8514
}

8515 8516 8517 8518
static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
{
	u32 sec_exec_control;

8519 8520 8521 8522 8523 8524
	/* Postpone execution until vmcs01 is the current VMCS. */
	if (is_guest_mode(vcpu)) {
		to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
		return;
	}

8525 8526 8527 8528
	/*
	 * There is not point to enable virtualize x2apic without enable
	 * apicv
	 */
8529
	if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8530
				!kvm_vcpu_apicv_active(vcpu))
8531 8532
		return;

8533
	if (!cpu_need_tpr_shadow(vcpu))
8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
		return;

	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);

	if (set) {
		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
	} else {
		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
	}
	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);

8547
	vmx_update_msr_bitmap(vcpu);
8548 8549
}

8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * Currently we do not handle the nested case where L2 has an
	 * APIC access page of its own; that page is still pinned.
	 * Hence, we skip the case where the VCPU is in guest mode _and_
	 * L1 prepared an APIC access page for L2.
	 *
	 * For the case where L1 and L2 share the same APIC access page
	 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
	 * in the vmcs12), this function will only update either the vmcs01
	 * or the vmcs02.  If the former, the vmcs02 will be updated by
	 * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
	 * the next L2->L1 exit.
	 */
	if (!is_guest_mode(vcpu) ||
	    !nested_cpu_has2(vmx->nested.current_vmcs12,
			     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
		vmcs_write64(APIC_ACCESS_ADDR, hpa);
}

8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594
static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
{
	u16 status;
	u8 old;

	if (isr == -1)
		isr = 0;

	status = vmcs_read16(GUEST_INTR_STATUS);
	old = status >> 8;
	if (isr != old) {
		status &= 0xff;
		status |= isr << 8;
		vmcs_write16(GUEST_INTR_STATUS, status);
	}
}

static void vmx_set_rvi(int vector)
{
	u16 status;
	u8 old;

8595 8596 8597
	if (vector == -1)
		vector = 0;

8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608
	status = vmcs_read16(GUEST_INTR_STATUS);
	old = (u8)status & 0xff;
	if ((u8)vector != old) {
		status &= ~0xff;
		status |= (u8)vector;
		vmcs_write16(GUEST_INTR_STATUS, status);
	}
}

static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
{
8609 8610 8611 8612 8613
	if (!is_guest_mode(vcpu)) {
		vmx_set_rvi(max_irr);
		return;
	}

8614 8615 8616
	if (max_irr == -1)
		return;

8617
	/*
8618 8619
	 * In guest mode.  If a vmexit is needed, vmx_check_nested_events
	 * handles it.
8620
	 */
8621
	if (nested_exit_on_intr(vcpu))
8622 8623 8624
		return;

	/*
8625
	 * Else, fall back to pre-APICv interrupt injection since L2
8626 8627 8628 8629 8630 8631 8632
	 * is run without virtual interrupt delivery.
	 */
	if (!kvm_event_needs_reinjection(vcpu) &&
	    vmx_interrupt_allowed(vcpu)) {
		kvm_queue_interrupt(vcpu, max_irr, false);
		vmx_inject_irq(vcpu);
	}
8633 8634
}

8635
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8636
{
8637
	if (!kvm_vcpu_apicv_active(vcpu))
8638 8639
		return;

8640 8641 8642 8643 8644 8645
	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
}

8646
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8647
{
8648 8649 8650 8651 8652 8653
	u32 exit_intr_info;

	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
		return;

8654
	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8655
	exit_intr_info = vmx->exit_intr_info;
8656 8657

	/* Handle machine checks before interrupts are enabled */
8658
	if (is_machine_check(exit_intr_info))
8659 8660
		kvm_machine_check();

8661
	/* We need to handle NMIs before interrupts are enabled */
8662
	if (is_nmi(exit_intr_info)) {
8663
		kvm_before_handle_nmi(&vmx->vcpu);
8664
		asm("int $2");
8665 8666
		kvm_after_handle_nmi(&vmx->vcpu);
	}
8667
}
8668

8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700
static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
{
	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);

	/*
	 * If external interrupt exists, IF bit is set in rflags/eflags on the
	 * interrupt stack frame, and interrupt will be enabled on a return
	 * from interrupt handler.
	 */
	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
		unsigned int vector;
		unsigned long entry;
		gate_desc *desc;
		struct vcpu_vmx *vmx = to_vmx(vcpu);
#ifdef CONFIG_X86_64
		unsigned long tmp;
#endif

		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
		desc = (gate_desc *)vmx->host_idt_base + vector;
		entry = gate_offset(*desc);
		asm volatile(
#ifdef CONFIG_X86_64
			"mov %%" _ASM_SP ", %[sp]\n\t"
			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
			"push $%c[ss]\n\t"
			"push %[sp]\n\t"
#endif
			"pushf\n\t"
			"orl $0x200, (%%" _ASM_SP ")\n\t"
			__ASM_SIZE(push) " $%c[cs]\n\t"
8701
			CALL_NOSPEC
8702 8703 8704 8705 8706
			:
#ifdef CONFIG_X86_64
			[sp]"=&r"(tmp)
#endif
			:
8707
			THUNK_TARGET(entry),
8708 8709 8710 8711 8712 8713 8714
			[ss]"i"(__KERNEL_DS),
			[cs]"i"(__KERNEL_CS)
			);
	} else
		local_irq_enable();
}

8715
static bool vmx_has_emulated_msr(int index)
8716
{
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729
	switch (index) {
	case MSR_IA32_SMBASE:
		/*
		 * We cannot do SMM unless we can run the guest in big
		 * real mode.
		 */
		return enable_unrestricted_guest || emulate_invalid_guest_state;
	case MSR_AMD64_VIRT_SPEC_CTRL:
		/* This is AMD only.  */
		return false;
	default:
		return true;
	}
8730 8731
}

8732 8733 8734 8735 8736 8737
static bool vmx_mpx_supported(void)
{
	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
}

8738 8739 8740 8741 8742 8743
static bool vmx_xsaves_supported(void)
{
	return vmcs_config.cpu_based_2nd_exec_ctrl &
		SECONDARY_EXEC_XSAVES;
}

8744 8745
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
{
8746
	u32 exit_intr_info;
8747 8748 8749 8750 8751
	bool unblock_nmi;
	u8 vector;
	bool idtv_info_valid;

	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8752

8753
	if (cpu_has_virtual_nmis()) {
8754 8755
		if (vmx->nmi_known_unmasked)
			return;
8756 8757 8758 8759 8760
		/*
		 * Can't use vmx->exit_intr_info since we're not sure what
		 * the exit reason is.
		 */
		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8761 8762 8763
		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
		/*
8764
		 * SDM 3: 27.7.1.2 (September 2008)
8765 8766
		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
		 * a guest IRET fault.
8767 8768 8769 8770 8771
		 * SDM 3: 23.2.2 (September 2008)
		 * Bit 12 is undefined in any of the following cases:
		 *  If the VM exit sets the valid bit in the IDT-vectoring
		 *   information field.
		 *  If the VM exit is due to a double fault.
8772
		 */
8773 8774
		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
		    vector != DF_VECTOR && !idtv_info_valid)
8775 8776
			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
				      GUEST_INTR_STATE_NMI);
8777 8778 8779 8780
		else
			vmx->nmi_known_unmasked =
				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
				  & GUEST_INTR_STATE_NMI);
8781 8782 8783
	} else if (unlikely(vmx->soft_vnmi_blocked))
		vmx->vnmi_blocked_time +=
			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8784 8785
}

8786
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8787 8788 8789
				      u32 idt_vectoring_info,
				      int instr_len_field,
				      int error_code_field)
8790 8791 8792 8793 8794 8795
{
	u8 vector;
	int type;
	bool idtv_info_valid;

	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8796

8797 8798 8799
	vcpu->arch.nmi_injected = false;
	kvm_clear_exception_queue(vcpu);
	kvm_clear_interrupt_queue(vcpu);
8800 8801 8802 8803

	if (!idtv_info_valid)
		return;

8804
	kvm_make_request(KVM_REQ_EVENT, vcpu);
8805

8806 8807
	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8808

8809
	switch (type) {
8810
	case INTR_TYPE_NMI_INTR:
8811
		vcpu->arch.nmi_injected = true;
8812
		/*
8813
		 * SDM 3: 27.7.1.2 (September 2008)
8814 8815
		 * Clear bit "block by NMI" before VM entry if a NMI
		 * delivery faulted.
8816
		 */
8817
		vmx_set_nmi_mask(vcpu, false);
8818 8819
		break;
	case INTR_TYPE_SOFT_EXCEPTION:
8820
		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8821 8822
		/* fall through */
	case INTR_TYPE_HARD_EXCEPTION:
8823
		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8824
			u32 err = vmcs_read32(error_code_field);
8825
			kvm_requeue_exception_e(vcpu, vector, err);
8826
		} else
8827
			kvm_requeue_exception(vcpu, vector);
8828
		break;
8829
	case INTR_TYPE_SOFT_INTR:
8830
		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8831
		/* fall through */
8832
	case INTR_TYPE_EXT_INTR:
8833
		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8834 8835 8836
		break;
	default:
		break;
8837
	}
8838 8839
}

8840 8841
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
8842
	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8843 8844 8845 8846
				  VM_EXIT_INSTRUCTION_LEN,
				  IDT_VECTORING_ERROR_CODE);
}

8847 8848
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
8849
	__vmx_complete_interrupts(vcpu,
8850 8851 8852 8853 8854 8855 8856
				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
				  VM_ENTRY_INSTRUCTION_LEN,
				  VM_ENTRY_EXCEPTION_ERROR_CODE);

	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}

8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
{
	int i, nr_msrs;
	struct perf_guest_switch_msr *msrs;

	msrs = perf_guest_get_msrs(&nr_msrs);

	if (!msrs)
		return;

	for (i = 0; i < nr_msrs; i++)
		if (msrs[i].host == msrs[i].guest)
			clear_atomic_switch_msr(vmx, msrs[i].msr);
		else
			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8872
					msrs[i].host, false);
8873 8874
}

8875
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8876
{
8877
	struct vcpu_vmx *vmx = to_vmx(vcpu);
8878
	unsigned long debugctlmsr, cr4;
8879 8880 8881 8882 8883 8884 8885

	/* Record the guest's net vcpu time for enforced NMI injections. */
	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
		vmx->entry_time = ktime_get();

	/* Don't enter VMX if guest state is invalid, let the exit handler
	   start emulation until we arrive back to a valid state */
8886
	if (vmx->emulation_required)
8887 8888
		return;

8889 8890 8891 8892 8893
	if (vmx->ple_window_dirty) {
		vmx->ple_window_dirty = false;
		vmcs_write32(PLE_WINDOW, vmx->ple_window);
	}

8894 8895 8896 8897 8898
	if (vmx->nested.sync_shadow_vmcs) {
		copy_vmcs12_to_shadow(vmx);
		vmx->nested.sync_shadow_vmcs = false;
	}

8899 8900 8901 8902 8903
	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);

8904
	cr4 = cr4_read_shadow();
8905 8906 8907 8908 8909
	if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
		vmcs_writel(HOST_CR4, cr4);
		vmx->host_state.vmcs_host_cr4 = cr4;
	}

8910 8911 8912 8913 8914 8915 8916 8917
	/* When single-stepping over STI and MOV SS, we must clear the
	 * corresponding interruptibility bits in the guest state. Otherwise
	 * vmentry fails as it then expects bit 14 (BS) in pending debug
	 * exceptions being set, but that's not correct for the guest debugging
	 * case. */
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
		vmx_set_interrupt_shadow(vcpu, 0);

8918
	atomic_switch_perf_msrs(vmx);
8919

8920
	debugctlmsr = get_debugctlmsr();
8921

8922 8923 8924 8925 8926 8927 8928
	/*
	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
	 * is no need to worry about the conditional branch over the wrmsr
	 * being speculatively taken.
	 */
	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
8929

8930 8931
	if (static_branch_unlikely(&vmx_l1d_should_flush))
		vmx_l1d_flush(vcpu);
8932

8933
	vmx->__launched = vmx->loaded_vmcs->launched;
8934
	asm(
8935
		/* Store host registers */
Avi Kivity's avatar
Avi Kivity committed
8936 8937 8938 8939
		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
		"push %%" _ASM_CX " \n\t"
		"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8940
		"je 1f \n\t"
Avi Kivity's avatar
Avi Kivity committed
8941
		"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8942
		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8943
		"1: \n\t"
8944
		/* Reload cr2 if changed */
Avi Kivity's avatar
Avi Kivity committed
8945 8946 8947
		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
		"mov %%cr2, %%" _ASM_DX " \n\t"
		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8948
		"je 2f \n\t"
Avi Kivity's avatar
Avi Kivity committed
8949
		"mov %%" _ASM_AX", %%cr2 \n\t"
8950
		"2: \n\t"
8951
		/* Check if vmlaunch of vmresume is needed */
8952
		"cmpl $0, %c[launched](%0) \n\t"
8953
		/* Load guest registers.  Don't clobber flags. */
Avi Kivity's avatar
Avi Kivity committed
8954 8955 8956 8957 8958 8959
		"mov %c[rax](%0), %%" _ASM_AX " \n\t"
		"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
		"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
		"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
		"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
		"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8960
#ifdef CONFIG_X86_64
8961 8962 8963 8964 8965 8966 8967 8968
		"mov %c[r8](%0),  %%r8  \n\t"
		"mov %c[r9](%0),  %%r9  \n\t"
		"mov %c[r10](%0), %%r10 \n\t"
		"mov %c[r11](%0), %%r11 \n\t"
		"mov %c[r12](%0), %%r12 \n\t"
		"mov %c[r13](%0), %%r13 \n\t"
		"mov %c[r14](%0), %%r14 \n\t"
		"mov %c[r15](%0), %%r15 \n\t"
8969
#endif
Avi Kivity's avatar
Avi Kivity committed
8970
		"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8971

8972
		/* Enter guest mode */
Avi Kivity's avatar
Avi Kivity committed
8973
		"jne 1f \n\t"
8974
		__ex(ASM_VMX_VMLAUNCH) "\n\t"
Avi Kivity's avatar
Avi Kivity committed
8975 8976 8977
		"jmp 2f \n\t"
		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
		"2: "
8978
		/* Save guest registers, load host registers, keep flags */
Avi Kivity's avatar
Avi Kivity committed
8979
		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8980
		"pop %0 \n\t"
Avi Kivity's avatar
Avi Kivity committed
8981 8982 8983 8984 8985 8986 8987
		"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
		"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
		__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
		"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
		"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
		"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
		"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8988
#ifdef CONFIG_X86_64
8989 8990 8991 8992 8993 8994 8995 8996
		"mov %%r8,  %c[r8](%0) \n\t"
		"mov %%r9,  %c[r9](%0) \n\t"
		"mov %%r10, %c[r10](%0) \n\t"
		"mov %%r11, %c[r11](%0) \n\t"
		"mov %%r12, %c[r12](%0) \n\t"
		"mov %%r13, %c[r13](%0) \n\t"
		"mov %%r14, %c[r14](%0) \n\t"
		"mov %%r15, %c[r15](%0) \n\t"
8997
#endif
Avi Kivity's avatar
Avi Kivity committed
8998 8999
		"mov %%cr2, %%" _ASM_AX "   \n\t"
		"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9000

Avi Kivity's avatar
Avi Kivity committed
9001
		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
9002
		"setbe %c[fail](%0) \n\t"
Avi Kivity's avatar
Avi Kivity committed
9003 9004 9005 9006
		".pushsection .rodata \n\t"
		".global vmx_return \n\t"
		"vmx_return: " _ASM_PTR " 2b \n\t"
		".popsection"
9007
	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9008
		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9009
		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
9010
		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9011 9012 9013 9014 9015 9016 9017
		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9018
#ifdef CONFIG_X86_64
9019 9020 9021 9022 9023 9024 9025 9026
		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9027
#endif
9028 9029
		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
		[wordsize]"i"(sizeof(ulong))
9030 9031
	      : "cc", "memory"
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
9032
		, "rax", "rbx", "rdi", "rsi"
9033
		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
Avi Kivity's avatar
Avi Kivity committed
9034 9035
#else
		, "eax", "ebx", "edi", "esi"
9036 9037
#endif
	      );
9038

9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054
	/*
	 * We do not use IBRS in the kernel. If this vCPU has used the
	 * SPEC_CTRL MSR it may have left it on; save the value and
	 * turn it off. This is much more efficient than blindly adding
	 * it to the atomic save/restore list. Especially as the former
	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
	 *
	 * For non-nested case:
	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
	 * save it.
	 *
	 * For nested case:
	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
	 * save it.
	 */
	if (!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))
9055
		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
9056 9057

	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
9058

9059 9060 9061
	/* Eliminate branch target predictions from guest mode */
	vmexit_fill_RSB();

9062 9063 9064 9065
	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
	if (debugctlmsr)
		update_debugctlmsr(debugctlmsr);

9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078
#ifndef CONFIG_X86_64
	/*
	 * The sysexit path does not restore ds/es, so we must set them to
	 * a reasonable value ourselves.
	 *
	 * We can't defer this to vmx_load_host_state() since that function
	 * may be executed in interrupt context, which saves and restore segments
	 * around it, nullifying its effect.
	 */
	loadsegment(ds, __USER_DS);
	loadsegment(es, __USER_DS);
#endif

Avi Kivity's avatar
Avi Kivity committed
9079
	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9080
				  | (1 << VCPU_EXREG_RFLAGS)
9081
				  | (1 << VCPU_EXREG_PDPTR)
9082
				  | (1 << VCPU_EXREG_SEGMENTS)
9083
				  | (1 << VCPU_EXREG_CR3));
9084 9085
	vcpu->arch.regs_dirty = 0;

9086 9087
	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);

9088
	vmx->loaded_vmcs->launched = 1;
9089

9090 9091
	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);

9092 9093 9094 9095 9096 9097 9098 9099 9100 9101
	/*
	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
	 * we did not inject a still-pending event to L1 now because of
	 * nested_run_pending, we need to re-enable this bit.
	 */
	if (vmx->nested.nested_run_pending)
		kvm_make_request(KVM_REQ_EVENT, vcpu);

	vmx->nested.nested_run_pending = 0;

9102 9103
	vmx_complete_atomic_exit(vmx);
	vmx_recover_nmi_blocking(vmx);
9104
	vmx_complete_interrupts(vmx);
9105 9106
}

9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122
static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;

	if (vmx->loaded_vmcs == &vmx->vmcs01)
		return;

	cpu = get_cpu();
	vmx->loaded_vmcs = &vmx->vmcs01;
	vmx_vcpu_put(vcpu);
	vmx_vcpu_load(vcpu, cpu);
	vcpu->cpu = cpu;
	put_cpu();
}

9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138
/*
 * Ensure that the current vmcs of the logical processor is the
 * vmcs01 of the vcpu before calling free_nested().
 */
static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
{
       struct vcpu_vmx *vmx = to_vmx(vcpu);
       int r;

       r = vcpu_load(vcpu);
       BUG_ON(r);
       vmx_load_vmcs01(vcpu);
       free_nested(vmx);
       vcpu_put(vcpu);
}

9139 9140
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
9141 9142
	struct vcpu_vmx *vmx = to_vmx(vcpu);

Kai Huang's avatar
Kai Huang committed
9143
	if (enable_pml)
9144
		vmx_destroy_pml_buffer(vmx);
9145
	free_vpid(vmx->vpid);
9146
	leave_guest_mode(vcpu);
9147
	vmx_free_vcpu_nested(vcpu);
9148
	free_loaded_vmcs(vmx->loaded_vmcs);
9149 9150
	kfree(vmx->guest_msrs);
	kvm_vcpu_uninit(vcpu);
9151
	kmem_cache_free(kvm_vcpu_cache, vmx);
9152 9153
}

9154
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9155
{
9156
	int err;
9157
	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9158
	unsigned long *msr_bitmap;
9159
	int cpu;
9160

9161
	if (!vmx)
9162 9163
		return ERR_PTR(-ENOMEM);

9164
	vmx->vpid = allocate_vpid();
9165

9166 9167 9168
	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
	if (err)
		goto free_vcpu;
9169

9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183
	err = -ENOMEM;

	/*
	 * If PML is turned on, failure on enabling PML just results in failure
	 * of creating the vcpu, therefore we can simplify PML logic (by
	 * avoiding dealing with cases, such as enabling PML partially on vcpus
	 * for the guest, etc.
	 */
	if (enable_pml) {
		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
		if (!vmx->pml_pg)
			goto uninit_vcpu;
	}

9184
	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9185 9186
	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
		     > PAGE_SIZE);
9187

9188 9189
	if (!vmx->guest_msrs)
		goto free_pml;
9190

9191 9192
	if (!vmm_exclusive)
		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9193
	err = alloc_loaded_vmcs(&vmx->vmcs01);
9194 9195
	if (!vmm_exclusive)
		kvm_cpu_vmxoff();
9196 9197
	if (err < 0)
		goto free_msrs;
9198

9199 9200 9201 9202 9203 9204 9205 9206 9207
	msr_bitmap = vmx->vmcs01.msr_bitmap;
	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
	vmx->msr_bitmap_mode = 0;

9208
	vmx->loaded_vmcs = &vmx->vmcs01;
9209 9210
	cpu = get_cpu();
	vmx_vcpu_load(&vmx->vcpu, cpu);
Zachary Amsden's avatar
Zachary Amsden committed
9211
	vmx->vcpu.cpu = cpu;
9212
	err = vmx_vcpu_setup(vmx);
9213
	vmx_vcpu_put(&vmx->vcpu);
9214
	put_cpu();
9215 9216
	if (err)
		goto free_vmcs;
9217
	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9218 9219
		err = alloc_apic_access_page(kvm);
		if (err)
9220
			goto free_vmcs;
9221
	}
9222

9223 9224 9225 9226
	if (enable_ept) {
		if (!kvm->arch.ept_identity_map_addr)
			kvm->arch.ept_identity_map_addr =
				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9227 9228
		err = init_rmode_identity_map(kvm);
		if (err)
9229
			goto free_vmcs;
9230
	}
9231

Roman Kagan's avatar
Roman Kagan committed
9232
	if (nested)
9233 9234
		nested_vmx_setup_ctls_msrs(vmx);

9235
	vmx->nested.posted_intr_nv = -1;
9236 9237 9238
	vmx->nested.current_vmptr = -1ull;
	vmx->nested.current_vmcs12 = NULL;

9239 9240 9241
	return &vmx->vcpu;

free_vmcs:
9242
	free_loaded_vmcs(vmx->loaded_vmcs);
9243 9244
free_msrs:
	kfree(vmx->guest_msrs);
9245 9246
free_pml:
	vmx_destroy_pml_buffer(vmx);
9247 9248 9249
uninit_vcpu:
	kvm_vcpu_uninit(&vmx->vcpu);
free_vcpu:
9250
	free_vpid(vmx->vpid);
9251
	kmem_cache_free(kvm_vcpu_cache, vmx);
9252
	return ERR_PTR(err);
9253 9254
}

9255 9256 9257
#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"

9258 9259 9260

static int vmx_vm_init(struct kvm *kvm)
{
9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281
	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
		switch (l1tf_mitigation) {
		case L1TF_MITIGATION_OFF:
		case L1TF_MITIGATION_FLUSH_NOWARN:
			/* 'I explicitly don't care' is set */
			break;
		case L1TF_MITIGATION_FLUSH:
		case L1TF_MITIGATION_FLUSH_NOSMT:
		case L1TF_MITIGATION_FULL:
			/*
			 * Warn upon starting the first VM in a potentially
			 * insecure environment.
			 */
			if (cpu_smt_control == CPU_SMT_ENABLED)
				pr_warn_once(L1TF_MSG_SMT);
			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
				pr_warn_once(L1TF_MSG_L1D);
			break;
		case L1TF_MITIGATION_FULL_FORCE:
			/* Flush is enforced */
			break;
9282 9283 9284 9285 9286
		}
	}
	return 0;
}

9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300
static void __init vmx_check_processor_compat(void *rtn)
{
	struct vmcs_config vmcs_conf;

	*(int *)rtn = 0;
	if (setup_vmcs_config(&vmcs_conf) < 0)
		*(int *)rtn = -EIO;
	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
				smp_processor_id());
		*(int *)rtn = -EIO;
	}
}

9301 9302 9303 9304 9305
static int get_ept_level(void)
{
	return VMX_EPT_DEFAULT_GAW + 1;
}

9306
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
Sheng Yang's avatar
Sheng Yang committed
9307
{
9308 9309
	u8 cache;
	u64 ipat = 0;
9310

9311
	/* For VT-d and EPT combination
9312
	 * 1. MMIO: always map as UC
9313 9314
	 * 2. EPT with VT-d:
	 *   a. VT-d without snooping control feature: can't guarantee the
9315
	 *	result, try to trust guest.
9316 9317 9318
	 *   b. VT-d with snooping control feature: snooping control feature of
	 *	VT-d engine can guarantee the cache correctness. Just set it
	 *	to WB to keep consistent with host. So the same as item 3.
9319
	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9320 9321
	 *    consistent with host MTRR
	 */
9322 9323 9324 9325 9326 9327
	if (is_mmio) {
		cache = MTRR_TYPE_UNCACHABLE;
		goto exit;
	}

	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9328 9329 9330 9331 9332 9333 9334
		ipat = VMX_EPT_IPAT_BIT;
		cache = MTRR_TYPE_WRBACK;
		goto exit;
	}

	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
		ipat = VMX_EPT_IPAT_BIT;
9335
		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9336 9337 9338
			cache = MTRR_TYPE_WRBACK;
		else
			cache = MTRR_TYPE_UNCACHABLE;
9339 9340 9341
		goto exit;
	}

9342
	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9343 9344 9345

exit:
	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
Sheng Yang's avatar
Sheng Yang committed
9346 9347
}

9348
static int vmx_get_lpage_level(void)
9349
{
9350 9351 9352 9353 9354
	if (enable_ept && !cpu_has_vmx_ept_1g_page())
		return PT_DIRECTORY_LEVEL;
	else
		/* For shadow and EPT supported 1GB page */
		return PT_PDPE_LEVEL;
9355 9356
}

9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375
static void vmcs_set_secondary_exec_control(u32 new_ctl)
{
	/*
	 * These bits in the secondary execution controls field
	 * are dynamic, the others are mostly based on the hypervisor
	 * architecture and the guest's CPUID.  Do not touch the
	 * dynamic bits.
	 */
	u32 mask =
		SECONDARY_EXEC_SHADOW_VMCS |
		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;

	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);

	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
		     (new_ctl & ~mask) | (cur_ctl & mask));
}

9376 9377
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
{
9378 9379
	struct kvm_cpuid_entry2 *best;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
9380
	u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9381 9382

	if (vmx_rdtscp_supported()) {
9383 9384
		bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
		if (!rdtscp_enabled)
9385
			secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9386

9387
		if (nested) {
9388
			if (rdtscp_enabled)
9389 9390 9391 9392 9393 9394
				vmx->nested.nested_vmx_secondary_ctls_high |=
					SECONDARY_EXEC_RDTSCP;
			else
				vmx->nested.nested_vmx_secondary_ctls_high &=
					~SECONDARY_EXEC_RDTSCP;
		}
9395
	}
9396 9397 9398 9399

	/* Exposing INVPCID only when PCID is exposed */
	best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
	if (vmx_invpcid_supported() &&
9400 9401
	    (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
	    !guest_cpuid_has_pcid(vcpu))) {
9402
		secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9403

9404
		if (best)
9405
			best->ebx &= ~bit(X86_FEATURE_INVPCID);
9406
	}
9407

9408 9409
	if (cpu_has_secondary_exec_ctrls())
		vmcs_set_secondary_exec_control(secondary_exec_ctl);
9410

9411 9412 9413 9414 9415 9416 9417 9418
	if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
		if (guest_cpuid_has_pcommit(vcpu))
			vmx->nested.nested_vmx_secondary_ctls_high |=
				SECONDARY_EXEC_PCOMMIT;
		else
			vmx->nested.nested_vmx_secondary_ctls_high &=
				~SECONDARY_EXEC_PCOMMIT;
	}
9419 9420
}

9421 9422
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
9423 9424
	if (func == 1 && nested)
		entry->ecx |= bit(X86_FEATURE_VMX);
9425 9426
}

9427 9428 9429
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
9430 9431
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	u32 exit_reason;
9432 9433

	if (fault->error_code & PFERR_RSVD_MASK)
9434
		exit_reason = EXIT_REASON_EPT_MISCONFIG;
9435
	else
9436 9437
		exit_reason = EXIT_REASON_EPT_VIOLATION;
	nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9438 9439 9440
	vmcs12->guest_physical_address = fault->address;
}

9441 9442 9443 9444 9445 9446 9447 9448
/* Callbacks for nested_ept_init_mmu_context: */

static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
{
	/* return the page table to be shadowed - in our case, EPT12 */
	return get_vmcs12(vcpu)->ept_pointer;
}

9449
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9450
{
9451 9452
	WARN_ON(mmu_is_nested(vcpu));
	kvm_init_shadow_ept_mmu(vcpu,
9453 9454
			to_vmx(vcpu)->nested.nested_vmx_ept_caps &
			VMX_EPT_EXECUTE_ONLY_BIT);
9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;

	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
}

static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
}

9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478
static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
					    u16 error_code)
{
	bool inequality, bit;

	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
	inequality =
		(error_code & vmcs12->page_fault_error_code_mask) !=
		 vmcs12->page_fault_error_code_match;
	return inequality ^ bit;
}

9479 9480 9481 9482 9483 9484 9485
static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	WARN_ON(!is_guest_mode(vcpu));

9486
	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9487 9488 9489
		nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
				  vmcs_read32(VM_EXIT_INTR_INFO),
				  vmcs_readl(EXIT_QUALIFICATION));
9490 9491 9492 9493
	else
		kvm_inject_page_fault(vcpu, fault);
}

9494 9495 9496 9497
static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
					struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
9498
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
9499 9500

	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9501 9502
		if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
		    vmcs12->apic_access_addr >> maxphyaddr)
9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515
			return false;

		/*
		 * Translate L1 physical address to host physical
		 * address for vmcs02. Keep the page pinned, so this
		 * physical address remains valid. We keep a reference
		 * to it so we can release it later.
		 */
		if (vmx->nested.apic_access_page) /* shouldn't happen */
			nested_release_page(vmx->nested.apic_access_page);
		vmx->nested.apic_access_page =
			nested_get_page(vcpu, vmcs12->apic_access_addr);
	}
9516 9517

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9518 9519
		if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
		    vmcs12->virtual_apic_page_addr >> maxphyaddr)
9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540
			return false;

		if (vmx->nested.virtual_apic_page) /* shouldn't happen */
			nested_release_page(vmx->nested.virtual_apic_page);
		vmx->nested.virtual_apic_page =
			nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);

		/*
		 * Failing the vm entry is _not_ what the processor does
		 * but it's basically the only possibility we have.
		 * We could still enter the guest if CR8 load exits are
		 * enabled, CR8 store exits are enabled, and virtualize APIC
		 * access is disabled; in this case the processor would never
		 * use the TPR shadow and we could simply clear the bit from
		 * the execution control.  But such a configuration is useless,
		 * so let's keep the code simple.
		 */
		if (!vmx->nested.virtual_apic_page)
			return false;
	}

9541
	if (nested_cpu_has_posted_intr(vmcs12)) {
9542 9543
		if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
		    vmcs12->posted_intr_desc_addr >> maxphyaddr)
9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566
			return false;

		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
			kunmap(vmx->nested.pi_desc_page);
			nested_release_page(vmx->nested.pi_desc_page);
		}
		vmx->nested.pi_desc_page =
			nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
		if (!vmx->nested.pi_desc_page)
			return false;

		vmx->nested.pi_desc =
			(struct pi_desc *)kmap(vmx->nested.pi_desc_page);
		if (!vmx->nested.pi_desc) {
			nested_release_page_clean(vmx->nested.pi_desc_page);
			return false;
		}
		vmx->nested.pi_desc =
			(struct pi_desc *)((void *)vmx->nested.pi_desc +
			(unsigned long)(vmcs12->posted_intr_desc_addr &
			(PAGE_SIZE - 1)));
	}

9567 9568 9569
	return true;
}

9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591
static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
{
	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (vcpu->arch.virtual_tsc_khz == 0)
		return;

	/* Make sure short timeouts reliably trigger an immediate vmexit.
	 * hrtimer_start does not guarantee this. */
	if (preemption_timeout <= 1) {
		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
		return;
	}

	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
	preemption_timeout *= 1000000;
	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
	hrtimer_start(&vmx->nested.preemption_timer,
		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
}

9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620
static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	int maxphyaddr;
	u64 addr;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return 0;

	if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
		WARN_ON(1);
		return -EINVAL;
	}
	maxphyaddr = cpuid_maxphyaddr(vcpu);

	if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
	   ((addr + PAGE_SIZE) >> maxphyaddr))
		return -EINVAL;

	return 0;
}

/*
 * Merge L0's and L1's MSR bitmap, return false to indicate that
 * we do not use the hardware.
 */
static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
					       struct vmcs12 *vmcs12)
{
9621
	int msr;
9622
	struct page *page;
9623
	unsigned long *msr_bitmap_l1;
9624
	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
Ashok Raj's avatar
Ashok Raj committed
9625
	/*
9626
	 * pred_cmd & spec_ctrl are trying to verify two things:
Ashok Raj's avatar
Ashok Raj committed
9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638
	 *
	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
	 *    ensures that we do not accidentally generate an L02 MSR bitmap
	 *    from the L12 MSR bitmap that is too permissive.
	 * 2. That L1 or L2s have actually used the MSR. This avoids
	 *    unnecessarily merging of the bitmap if the MSR is unused. This
	 *    works properly because we only update the L01 MSR bitmap lazily.
	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
	 *    updated to reflect this when L1 (or its L2s) actually write to
	 *    the MSR.
	 */
	bool pred_cmd = msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
9639
	bool spec_ctrl = msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
9640

Ashok Raj's avatar
Ashok Raj committed
9641
	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9642
	    !pred_cmd && !spec_ctrl)
9643 9644 9645 9646 9647 9648 9649
		return false;

	page = nested_get_page(vcpu, vmcs12->msr_bitmap);
	if (!page) {
		WARN_ON(1);
		return false;
	}
9650 9651 9652
	msr_bitmap_l1 = (unsigned long *)kmap(page);

	memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9653 9654

	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9655 9656 9657
		if (nested_cpu_has_apic_reg_virt(vmcs12))
			for (msr = 0x800; msr <= 0x8ff; msr++)
				nested_vmx_disable_intercept_for_msr(
9658
					msr_bitmap_l1, msr_bitmap_l0,
9659
					msr, MSR_TYPE_R);
9660 9661 9662

		nested_vmx_disable_intercept_for_msr(
				msr_bitmap_l1, msr_bitmap_l0,
9663 9664
				APIC_BASE_MSR + (APIC_TASKPRI >> 4),
				MSR_TYPE_R | MSR_TYPE_W);
9665

9666 9667
		if (nested_cpu_has_vid(vmcs12)) {
			nested_vmx_disable_intercept_for_msr(
9668
				msr_bitmap_l1, msr_bitmap_l0,
9669 9670 9671
				APIC_BASE_MSR + (APIC_EOI >> 4),
				MSR_TYPE_W);
			nested_vmx_disable_intercept_for_msr(
9672
				msr_bitmap_l1, msr_bitmap_l0,
9673 9674 9675
				APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
				MSR_TYPE_W);
		}
9676
	}
Ashok Raj's avatar
Ashok Raj committed
9677

9678 9679 9680 9681 9682 9683
	if (spec_ctrl)
		nested_vmx_disable_intercept_for_msr(
					msr_bitmap_l1, msr_bitmap_l0,
					MSR_IA32_SPEC_CTRL,
					MSR_TYPE_R | MSR_TYPE_W);

Ashok Raj's avatar
Ashok Raj committed
9684 9685 9686 9687 9688 9689
	if (pred_cmd)
		nested_vmx_disable_intercept_for_msr(
					msr_bitmap_l1, msr_bitmap_l0,
					MSR_IA32_PRED_CMD,
					MSR_TYPE_W);

9690 9691 9692 9693 9694 9695 9696 9697 9698
	kunmap(page);
	nested_release_page_clean(page);

	return true;
}

static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
					   struct vmcs12 *vmcs12)
{
9699
	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9700
	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
9701 9702
	    !nested_cpu_has_vid(vmcs12) &&
	    !nested_cpu_has_posted_intr(vmcs12))
9703 9704 9705 9706 9707 9708
		return 0;

	/*
	 * If virtualize x2apic mode is enabled,
	 * virtualize apic access must be disabled.
	 */
9709 9710
	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9711 9712
		return -EINVAL;

9713 9714 9715 9716 9717 9718 9719 9720
	/*
	 * If virtual interrupt delivery is enabled,
	 * we must exit on external interrupts.
	 */
	if (nested_cpu_has_vid(vmcs12) &&
	   !nested_exit_on_intr(vcpu))
		return -EINVAL;

9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731
	/*
	 * bits 15:8 should be zero in posted_intr_nv,
	 * the descriptor address has been already checked
	 * in nested_get_vmcs12_pages.
	 */
	if (nested_cpu_has_posted_intr(vmcs12) &&
	   (!nested_cpu_has_vid(vmcs12) ||
	    !nested_exit_intr_ack_set(vcpu) ||
	    vmcs12->posted_intr_nv & 0xff00))
		return -EINVAL;

9732 9733 9734 9735 9736
	/* tpr shadow is needed by all apicv features. */
	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
		return -EINVAL;

	return 0;
9737 9738
}

9739 9740
static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
				       unsigned long count_field,
9741
				       unsigned long addr_field)
9742
{
9743
	int maxphyaddr;
9744 9745 9746 9747 9748 9749 9750 9751 9752
	u64 count, addr;

	if (vmcs12_read_any(vcpu, count_field, &count) ||
	    vmcs12_read_any(vcpu, addr_field, &addr)) {
		WARN_ON(1);
		return -EINVAL;
	}
	if (count == 0)
		return 0;
9753
	maxphyaddr = cpuid_maxphyaddr(vcpu);
9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771
	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
		pr_warn_ratelimited(
			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
			addr_field, maxphyaddr, count, addr);
		return -EINVAL;
	}
	return 0;
}

static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (vmcs12->vm_exit_msr_load_count == 0 &&
	    vmcs12->vm_exit_msr_store_count == 0 &&
	    vmcs12->vm_entry_msr_load_count == 0)
		return 0; /* Fast path */
	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9772
					VM_EXIT_MSR_LOAD_ADDR) ||
9773
	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9774
					VM_EXIT_MSR_STORE_ADDR) ||
9775
	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9776
					VM_ENTRY_MSR_LOAD_ADDR))
9777 9778 9779 9780 9781 9782 9783 9784
		return -EINVAL;
	return 0;
}

static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
				       struct vmx_msr_entry *e)
{
	/* x2APIC MSR accesses are not allowed */
9785
	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9786 9787 9788 9789 9790
		return -EINVAL;
	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
	    e->index == MSR_IA32_UCODE_REV)
		return -EINVAL;
	if (e->reserved != 0)
9791 9792 9793 9794
		return -EINVAL;
	return 0;
}

9795 9796
static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
				     struct vmx_msr_entry *e)
9797 9798 9799
{
	if (e->index == MSR_FS_BASE ||
	    e->index == MSR_GS_BASE ||
9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810
	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
				      struct vmx_msr_entry *e)
{
	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
	    nested_vmx_msr_check_common(vcpu, e))
9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826
		return -EINVAL;
	return 0;
}

/*
 * Load guest's/host's msr at nested entry/exit.
 * return 0 for success, entry index for failure.
 */
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
	u32 i;
	struct vmx_msr_entry e;
	struct msr_data msr;

	msr.host_initiated = false;
	for (i = 0; i < count; i++) {
9827 9828
		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
					&e, sizeof(e))) {
9829 9830 9831
			pr_warn_ratelimited(
				"%s cannot read MSR entry (%u, 0x%08llx)\n",
				__func__, i, gpa + i * sizeof(e));
9832
			goto fail;
9833 9834 9835 9836 9837 9838 9839
		}
		if (nested_vmx_load_msr_check(vcpu, &e)) {
			pr_warn_ratelimited(
				"%s check failed (%u, 0x%x, 0x%x)\n",
				__func__, i, e.index, e.reserved);
			goto fail;
		}
9840 9841
		msr.index = e.index;
		msr.data = e.value;
9842 9843 9844 9845
		if (kvm_set_msr(vcpu, &msr)) {
			pr_warn_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
				__func__, i, e.index, e.value);
9846
			goto fail;
9847
		}
9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859
	}
	return 0;
fail:
	return i + 1;
}

static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
	u32 i;
	struct vmx_msr_entry e;

	for (i = 0; i < count; i++) {
9860
		struct msr_data msr_info;
9861 9862 9863
		if (kvm_vcpu_read_guest(vcpu,
					gpa + i * sizeof(e),
					&e, 2 * sizeof(u32))) {
9864 9865 9866
			pr_warn_ratelimited(
				"%s cannot read MSR entry (%u, 0x%08llx)\n",
				__func__, i, gpa + i * sizeof(e));
9867
			return -EINVAL;
9868 9869 9870 9871 9872
		}
		if (nested_vmx_store_msr_check(vcpu, &e)) {
			pr_warn_ratelimited(
				"%s check failed (%u, 0x%x, 0x%x)\n",
				__func__, i, e.index, e.reserved);
9873
			return -EINVAL;
9874
		}
9875 9876 9877
		msr_info.host_initiated = false;
		msr_info.index = e.index;
		if (kvm_get_msr(vcpu, &msr_info)) {
9878 9879 9880 9881 9882
			pr_warn_ratelimited(
				"%s cannot read MSR (%u, 0x%x)\n",
				__func__, i, e.index);
			return -EINVAL;
		}
9883 9884 9885 9886
		if (kvm_vcpu_write_guest(vcpu,
					 gpa + i * sizeof(e) +
					     offsetof(struct vmx_msr_entry, value),
					 &msr_info.data, sizeof(msr_info.data))) {
9887 9888
			pr_warn_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9889
				__func__, i, e.index, msr_info.data);
9890 9891
			return -EINVAL;
		}
9892 9893 9894 9895
	}
	return 0;
}

9896 9897 9898
/*
 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9899
 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946
 * guest in a way that will both be appropriate to L1's requests, and our
 * needs. In addition to modifying the active vmcs (which is vmcs02), this
 * function also has additional necessary side-effects, like setting various
 * vcpu->arch fields.
 */
static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 exec_control;

	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);

9947 9948 9949 9950 9951 9952 9953
	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
	} else {
		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
	}
9954 9955 9956 9957 9958 9959 9960 9961 9962
	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
		vmcs12->vm_entry_intr_info_field);
	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
		vmcs12->vm_entry_exception_error_code);
	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
		vmcs12->vm_entry_instruction_len);
	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
		vmcs12->guest_interruptibility_info);
	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9963
	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9964 9965 9966 9967 9968
	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
		vmcs12->guest_pending_dbg_exceptions);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);

9969 9970
	if (nested_cpu_has_xsaves(vmcs12))
		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9971 9972
	vmcs_write64(VMCS_LINK_POINTER, -1ull);

9973 9974
	exec_control = vmcs12->pin_based_vm_exec_control;
	exec_control |= vmcs_config.pin_based_exec_ctrl;
9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991
	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;

	if (nested_cpu_has_posted_intr(vmcs12)) {
		/*
		 * Note that we use L0's vector here and in
		 * vmx_deliver_nested_posted_interrupt.
		 */
		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
		vmx->nested.pi_pending = false;
		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
		vmcs_write64(POSTED_INTR_DESC_ADDR,
			page_to_phys(vmx->nested.pi_desc_page) +
			(unsigned long)(vmcs12->posted_intr_desc_addr &
			(PAGE_SIZE - 1)));
	} else
		exec_control &= ~PIN_BASED_POSTED_INTR;

9992
	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9993

9994 9995 9996
	vmx->nested.preemption_timer_expired = false;
	if (nested_cpu_has_preemption_timer(vmcs12))
		vmx_start_preemption_timer(vcpu);
9997

9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023
	/*
	 * Whether page-faults are trapped is determined by a combination of
	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
	 * If enable_ept, L0 doesn't care about page faults and we should
	 * set all of these to L1's desires. However, if !enable_ept, L0 does
	 * care about (at least some) page faults, and because it is not easy
	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
	 * to exit on each and every L2 page fault. This is done by setting
	 * MASK=MATCH=0 and (see below) EB.PF=1.
	 * Note that below we don't need special code to set EB.PF beyond the
	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
	 *
	 * A problem with this approach (when !enable_ept) is that L1 may be
	 * injected with more page faults than it asked for. This could have
	 * caused problems, but in practice existing hypervisors don't care.
	 * To fix this, we will need to emulate the PFEC checking (on the L1
	 * page tables), using walk_addr(), when injecting PFs to L1.
	 */
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
		enable_ept ? vmcs12->page_fault_error_code_match : 0);

	if (cpu_has_secondary_exec_ctrls()) {
10024
		exec_control = vmx_secondary_exec_control(vmx);
10025

10026
		/* Take the following fields only from vmcs12 */
10027
		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10028
				  SECONDARY_EXEC_RDTSCP |
10029
				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10030 10031
				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
				  SECONDARY_EXEC_PCOMMIT);
10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048
		if (nested_cpu_has(vmcs12,
				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
			exec_control |= vmcs12->secondary_vm_exec_control;

		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
			/*
			 * If translation failed, no matter: This feature asks
			 * to exit when accessing the given address, and if it
			 * can never be accessed, this feature won't do
			 * anything anyway.
			 */
			if (!vmx->nested.apic_access_page)
				exec_control &=
				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
			else
				vmcs_write64(APIC_ACCESS_ADDR,
				  page_to_phys(vmx->nested.apic_access_page));
10049
		} else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
10050
			    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10051 10052
			exec_control |=
				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
10053
			kvm_vcpu_reload_apic_access_page(vcpu);
10054 10055
		}

10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068
		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
			vmcs_write64(EOI_EXIT_BITMAP0,
				vmcs12->eoi_exit_bitmap0);
			vmcs_write64(EOI_EXIT_BITMAP1,
				vmcs12->eoi_exit_bitmap1);
			vmcs_write64(EOI_EXIT_BITMAP2,
				vmcs12->eoi_exit_bitmap2);
			vmcs_write64(EOI_EXIT_BITMAP3,
				vmcs12->eoi_exit_bitmap3);
			vmcs_write16(GUEST_INTR_STATUS,
				vmcs12->guest_intr_status);
		}

10069 10070 10071 10072 10073 10074 10075 10076 10077 10078
		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
	}


	/*
	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
	 * Some constant fields are set here by vmx_set_constant_host_state().
	 * Other fields are different per CPU, and will be set later when
	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
	 */
10079
	vmx_set_constant_host_state(vmx);
10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094

	/*
	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
	 * entry, but only if the current (host) sp changed from the value
	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
	 * here we just force the write to happen on entry.
	 */
	vmx->host_rsp = 0;

	exec_control = vmx_exec_control(vmx); /* L0's desires */
	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
	exec_control &= ~CPU_BASED_TPR_SHADOW;
	exec_control |= vmcs12->cpu_based_vm_exec_control;
10095 10096 10097 10098 10099

	if (exec_control & CPU_BASED_TPR_SHADOW) {
		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
				page_to_phys(vmx->nested.virtual_apic_page));
		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10100 10101 10102 10103 10104
	} else {
#ifdef CONFIG_X86_64
		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
				CPU_BASED_CR8_STORE_EXITING;
#endif
10105 10106
	}

10107
	if (cpu_has_vmx_msr_bitmap() &&
10108 10109 10110 10111
	    exec_control & CPU_BASED_USE_MSR_BITMAPS &&
	    nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
		; /* MSR_BITMAP will be set by following vmx_set_efer. */
	else
10112 10113
		exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;

10114
	/*
10115
	 * Merging of IO bitmap not currently supported.
10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130
	 * Rather, exit every time.
	 */
	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
	exec_control |= CPU_BASED_UNCOND_IO_EXITING;

	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);

	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
	 * bitwise-or of what L1 wants to trap for L2, and what we want to
	 * trap. Note that CR0.TS also needs updating - we do this later.
	 */
	update_exception_bitmap(vcpu);
	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

10131 10132 10133 10134
	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
	 * bits are further modified by vmx_set_efer() below.
	 */
10135
	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10136 10137 10138 10139

	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
	 * emulated by vmx_set_efer(), below.
	 */
10140
	vm_entry_controls_init(vmx, 
10141 10142
		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
			~VM_ENTRY_IA32E_MODE) |
10143 10144
		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));

10145
	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
10146
		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10147 10148
		vcpu->arch.pat = vmcs12->guest_ia32_pat;
	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
10149 10150 10151 10152 10153
		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);


	set_cr4_guest_host_mask(vmx);

10154 10155 10156
	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
		vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);

10157 10158 10159 10160 10161
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
		vmcs_write64(TSC_OFFSET,
			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
	else
		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10162

10163 10164 10165
	if (cpu_has_vmx_msr_bitmap())
		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));

10166 10167
	if (enable_vpid) {
		/*
10168 10169 10170 10171 10172 10173
		 * There is no direct mapping between vpid02 and vpid12, the
		 * vpid02 is per-vCPU for L0 and reused while the value of
		 * vpid12 is changed w/ one invvpid during nested vmentry.
		 * The vpid12 is allocated by L1 for L2, so it will not
		 * influence global bitmap(for vpid01 and vpid02 allocation)
		 * even if spawn a lot of nested vCPUs.
10174
		 */
10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185
		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
				__vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
			}
		} else {
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
			vmx_flush_tlb(vcpu);
		}

10186 10187
	}

10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199
	if (enable_pml) {
		/*
		 * Conceptually we want to copy the PML address and index from
		 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
		 * since we always flush the log on each vmexit, this happens
		 * to be equivalent to simply resetting the fields in vmcs02.
		 */
		ASSERT(vmx->pml_pg);
		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
	}

10200 10201 10202 10203 10204
	if (nested_cpu_has_ept(vmcs12)) {
		kvm_mmu_unload(vcpu);
		nested_ept_init_mmu_context(vcpu);
	}

10205 10206
	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->guest_ia32_efer;
10207
	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
	vmx_set_efer(vcpu, vcpu->arch.efer);

	/*
	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
	 * The CR0_READ_SHADOW is what L2 should have expected to read given
	 * the specifications by L1; It's not enough to take
	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
	 * have more bits than L1 expected.
	 */
	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));

	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));

	/* shadow page tables on either EPT or shadow page tables */
	kvm_set_cr3(vcpu, vmcs12->guest_cr3);
	kvm_mmu_reset_context(vcpu);

10232 10233 10234
	if (!enable_ept)
		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;

10235 10236 10237 10238 10239 10240 10241 10242 10243 10244
	/*
	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
	 */
	if (enable_ept) {
		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
	}

10245 10246 10247 10248
	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
}

10249 10250 10251 10252 10253 10254 10255 10256 10257
/*
 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 * for running an L2 nested guest.
 */
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
	struct vmcs12 *vmcs12;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;
10258
	bool ia32e;
10259
	u32 msr_entry_idx;
10260 10261 10262 10263 10264 10265 10266 10267

	if (!nested_vmx_check_permission(vcpu) ||
	    !nested_vmx_check_vmcs12(vcpu))
		return 1;

	skip_emulated_instruction(vcpu);
	vmcs12 = get_vmcs12(vcpu);

10268 10269 10270
	if (enable_shadow_vmcs)
		copy_shadow_to_vmcs12(vmx);

10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287
	/*
	 * The nested entry process starts with enforcing various prerequisites
	 * on vmcs12 as required by the Intel SDM, and act appropriately when
	 * they fail: As the SDM explains, some conditions should cause the
	 * instruction to fail, while others will cause the instruction to seem
	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
	 * To speed up the normal (success) code path, we should avoid checking
	 * for misconfigurations which will anyway be caught by the processor
	 * when using the merged vmcs02.
	 */
	if (vmcs12->launch_state == launch) {
		nested_vmx_failValid(vcpu,
			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
		return 1;
	}

10288 10289
	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10290 10291 10292 10293
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

10294
	if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10295 10296 10297 10298
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

10299
	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10300 10301 10302 10303
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

10304 10305 10306 10307 10308
	if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

10309 10310 10311 10312 10313
	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

10314
	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10315 10316
				vmx->nested.nested_vmx_true_procbased_ctls_low,
				vmx->nested.nested_vmx_procbased_ctls_high) ||
10317
	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10318 10319
				vmx->nested.nested_vmx_secondary_ctls_low,
				vmx->nested.nested_vmx_secondary_ctls_high) ||
10320
	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10321 10322
				vmx->nested.nested_vmx_pinbased_ctls_low,
				vmx->nested.nested_vmx_pinbased_ctls_high) ||
10323
	    !vmx_control_verify(vmcs12->vm_exit_controls,
10324 10325
				vmx->nested.nested_vmx_true_exit_ctls_low,
				vmx->nested.nested_vmx_exit_ctls_high) ||
10326
	    !vmx_control_verify(vmcs12->vm_entry_controls,
10327 10328
				vmx->nested.nested_vmx_true_entry_ctls_low,
				vmx->nested.nested_vmx_entry_ctls_high))
10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340
	{
		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
		nested_vmx_failValid(vcpu,
			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
		return 1;
	}

10341
	if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352
	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
		nested_vmx_entry_failure(vcpu, vmcs12,
			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
		return 1;
	}
	if (vmcs12->vmcs_link_pointer != -1ull) {
		nested_vmx_entry_failure(vcpu, vmcs12,
			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
		return 1;
	}

10353
	/*
10354
	 * If the load IA32_EFER VM-entry control is 1, the following checks
10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391
	 * are performed on the field for the IA32_EFER MSR:
	 * - Bits reserved in the IA32_EFER MSR must be 0.
	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
	 *   the IA-32e mode guest VM-exit control. It must also be identical
	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
	 *   CR0.PG) is 1.
	 */
	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
			nested_vmx_entry_failure(vcpu, vmcs12,
				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
			return 1;
		}
	}

	/*
	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
	 * the values of the LMA and LME bits in the field must each be that of
	 * the host address-space size VM-exit control.
	 */
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
		ia32e = (vmcs12->vm_exit_controls &
			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
			nested_vmx_entry_failure(vcpu, vmcs12,
				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
			return 1;
		}
	}

10392 10393 10394 10395 10396
	/*
	 * We're finally done with prerequisite checking, and can start with
	 * the nested entry.
	 */

10397 10398 10399 10400
	enter_guest_mode(vcpu);

	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);

10401 10402 10403
	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);

10404
	cpu = get_cpu();
10405
	vmx->loaded_vmcs = &vmx->nested.vmcs02;
10406 10407 10408 10409 10410
	vmx_vcpu_put(vcpu);
	vmx_vcpu_load(vcpu, cpu);
	vcpu->cpu = cpu;
	put_cpu();

10411 10412
	vmx_segment_cache_clear(vmx);

10413 10414
	prepare_vmcs02(vcpu, vmcs12);

10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427
	msr_entry_idx = nested_vmx_load_msr(vcpu,
					    vmcs12->vm_entry_msr_load_addr,
					    vmcs12->vm_entry_msr_load_count);
	if (msr_entry_idx) {
		leave_guest_mode(vcpu);
		vmx_load_vmcs01(vcpu);
		nested_vmx_entry_failure(vcpu, vmcs12,
				EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
		return 1;
	}

	vmcs12->launch_state = 1;

10428 10429 10430
	/* Hide L1D cache contents from the nested guest.  */
	vmx->vcpu.arch.l1tf_flush_l1d = true;

10431
	if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10432
		return kvm_vcpu_halt(vcpu);
10433

10434 10435
	vmx->nested.nested_run_pending = 1;

10436 10437 10438 10439 10440 10441 10442 10443 10444
	/*
	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
	 * returned as far as L1 is concerned. It will only return (and set
	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
	 */
	return 1;
}

10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481
/*
 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
 * This function returns the new value we should put in vmcs12.guest_cr0.
 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 *     didn't trap the bit, because if L1 did, so would L0).
 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 *     been modified by L2, and L1 knows it. So just leave the old value of
 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 *     isn't relevant, because if L0 traps this bit it can set it to anything.
 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 *     changed these bits, and therefore they need to be updated, but L0
 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 */
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
			vcpu->arch.cr0_guest_owned_bits));
}

static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
			vcpu->arch.cr4_guest_owned_bits));
}

10482 10483 10484 10485 10486 10487
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	u32 idt_vectoring;
	unsigned int nr;

10488
	if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505
		nr = vcpu->arch.exception.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (kvm_exception_is_soft(nr)) {
			vmcs12->vm_exit_instruction_len =
				vcpu->arch.event_exit_inst_len;
			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
		} else
			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;

		if (vcpu->arch.exception.has_error_code) {
			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
			vmcs12->idt_vectoring_error_code =
				vcpu->arch.exception.error_code;
		}

		vmcs12->idt_vectoring_info_field = idt_vectoring;
10506
	} else if (vcpu->arch.nmi_injected) {
10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523
		vmcs12->idt_vectoring_info_field =
			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
	} else if (vcpu->arch.interrupt.pending) {
		nr = vcpu->arch.interrupt.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (vcpu->arch.interrupt.soft) {
			idt_vectoring |= INTR_TYPE_SOFT_INTR;
			vmcs12->vm_entry_instruction_len =
				vcpu->arch.event_exit_inst_len;
		} else
			idt_vectoring |= INTR_TYPE_EXT_INTR;

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	}
}

10524 10525 10526 10527
static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

10528 10529 10530 10531 10532 10533 10534 10535
	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
	    vmx->nested.preemption_timer_expired) {
		if (vmx->nested.nested_run_pending)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
		return 0;
	}

10536
	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10537 10538
		if (vmx->nested.nested_run_pending ||
		    vcpu->arch.interrupt.pending)
10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
				  INTR_INFO_VALID_MASK, 0);
		/*
		 * The NMI-triggered VM exit counts as injection:
		 * clear this one and block further NMIs.
		 */
		vcpu->arch.nmi_pending = 0;
		vmx_set_nmi_mask(vcpu, true);
		return 0;
	}

	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
	    nested_exit_on_intr(vcpu)) {
		if (vmx->nested.nested_run_pending)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10557
		return 0;
10558 10559
	}

10560 10561
	vmx_complete_nested_posted_interrupt(vcpu);
	return 0;
10562 10563
}

10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577
static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	ktime_t remaining =
		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
	u64 value;

	if (ktime_to_ns(remaining) <= 0)
		return 0;

	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
	do_div(value, 1000000);
	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}

10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588
/*
 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 * and this function updates it to reflect the changes to the guest state while
 * L2 was running (and perhaps made some exits which were handled directly by L0
 * without going back to L1), and to reflect the exit reason.
 * Note that we do not have to copy here all VMCS fields, just those that
 * could have changed by the L2 guest or the exit - i.e., the guest-state and
 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 * which already writes to vmcs12 directly.
 */
10589 10590 10591
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
			   u32 exit_reason, u32 exit_intr_info,
			   unsigned long exit_qualification)
10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641
{
	/* update guest state fields: */
	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);

	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);

	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);

	vmcs12->guest_interruptibility_info =
		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
	vmcs12->guest_pending_dbg_exceptions =
		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10642 10643 10644 10645
	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
	else
		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10646

10647 10648 10649 10650 10651 10652 10653
	if (nested_cpu_has_preemption_timer(vmcs12)) {
		if (vmcs12->vm_exit_controls &
		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
			vmcs12->vmx_preemption_timer_value =
				vmx_get_preemption_timer_value(vcpu);
		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
	}
10654

10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670
	/*
	 * In some cases (usually, nested EPT), L2 is allowed to change its
	 * own CR3 without exiting. If it has changed it, we must keep it.
	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
	 *
	 * Additionally, restore L2's PDPTR to vmcs12.
	 */
	if (enable_ept) {
		vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
	}

10671 10672 10673
	if (nested_cpu_has_vid(vmcs12))
		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);

10674 10675
	vmcs12->vm_entry_controls =
		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10676
		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10677

10678 10679 10680 10681 10682
	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
	}

10683 10684
	/* TODO: These cannot have changed unless we have MSR bitmaps and
	 * the relevant bit asks not to trap the change */
10685
	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10686
		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10687 10688
	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
		vmcs12->guest_ia32_efer = vcpu->arch.efer;
10689 10690 10691
	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10692
	if (kvm_mpx_supported())
10693
		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10694 10695
	if (nested_cpu_has_xsaves(vmcs12))
		vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10696 10697 10698

	/* update exit information fields: */

10699 10700
	vmcs12->vm_exit_reason = exit_reason;
	vmcs12->exit_qualification = exit_qualification;
10701

10702
	vmcs12->vm_exit_intr_info = exit_intr_info;
10703 10704 10705 10706 10707
	if ((vmcs12->vm_exit_intr_info &
	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
		vmcs12->vm_exit_intr_error_code =
			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10708
	vmcs12->idt_vectoring_info_field = 0;
10709 10710 10711
	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);

10712 10713 10714
	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
		/* vm_entry_intr_info_field is cleared on exit. Emulate this
		 * instead of reading the real value. */
10715
		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730

		/*
		 * Transfer the event that L0 or L1 may wanted to inject into
		 * L2 to IDT_VECTORING_INFO_FIELD.
		 */
		vmcs12_save_pending_event(vcpu, vmcs12);
	}

	/*
	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
	 * preserved above and would only end up incorrectly in L1.
	 */
	vcpu->arch.nmi_injected = false;
	kvm_clear_exception_queue(vcpu);
	kvm_clear_interrupt_queue(vcpu);
10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741
}

/*
 * A part of what we need to when the nested L2 guest exits and we want to
 * run its L1 parent, is to reset L1's guest state to the host state specified
 * in vmcs12.
 * This function is to be called not only on normal nested exit, but also on
 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 * Failures During or After Loading Guest State").
 * This function should be called when the active VMCS is L1's (vmcs01).
 */
10742 10743
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12)
10744
{
10745 10746
	struct kvm_segment seg;

10747 10748
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->host_ia32_efer;
10749
	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10750 10751 10752 10753 10754 10755 10756
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	vmx_set_efer(vcpu, vcpu->arch.efer);

	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10757
	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10758 10759 10760 10761 10762 10763
	/*
	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
	 * actually changed, because it depends on the current state of
	 * fpu_active (which may have changed).
	 * Note that vmx_set_cr0 refers to efer set above.
	 */
10764
	vmx_set_cr0(vcpu, vmcs12->host_cr0);
10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778
	/*
	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
	 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
	 * but we also need to update cr0_guest_host_mask and exception_bitmap.
	 */
	update_exception_bitmap(vcpu);
	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

	/*
	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
	 */
	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10779
	vmx_set_cr4(vcpu, vmcs12->host_cr4);
10780

10781
	nested_ept_uninit_mmu_context(vcpu);
10782

10783 10784 10785
	kvm_set_cr3(vcpu, vmcs12->host_cr3);
	kvm_mmu_reset_context(vcpu);

10786 10787 10788
	if (!enable_ept)
		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;

10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803
	if (enable_vpid) {
		/*
		 * Trivially support vpid by letting L2s share their parent
		 * L1's vpid. TODO: move to a more elaborate solution, giving
		 * each L2 its own vpid and exposing the vpid feature to L1.
		 */
		vmx_flush_tlb(vcpu);
	}


	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10804 10805
	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
10806

10807 10808 10809 10810
	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
		vmcs_write64(GUEST_BNDCFGS, 0);

10811
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10812
		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10813 10814
		vcpu->arch.pat = vmcs12->host_ia32_pat;
	}
10815 10816 10817
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
			vmcs12->host_ia32_perf_global_ctrl);
10818

10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856
	/* Set L1 segment info according to Intel SDM
	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.selector = vmcs12->host_cs_selector,
		.type = 11,
		.present = 1,
		.s = 1,
		.g = 1
	};
	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		seg.l = 1;
	else
		seg.db = 1;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.type = 3,
		.present = 1,
		.s = 1,
		.db = 1,
		.g = 1
	};
	seg.selector = vmcs12->host_ds_selector;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
	seg.selector = vmcs12->host_es_selector;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
	seg.selector = vmcs12->host_ss_selector;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
	seg.selector = vmcs12->host_fs_selector;
	seg.base = vmcs12->host_fs_base;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
	seg.selector = vmcs12->host_gs_selector;
	seg.base = vmcs12->host_gs_base;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
	seg = (struct kvm_segment) {
10857
		.base = vmcs12->host_tr_base,
10858 10859 10860 10861 10862 10863 10864
		.limit = 0x67,
		.selector = vmcs12->host_tr_selector,
		.type = 11,
		.present = 1
	};
	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);

10865 10866
	kvm_set_dr(vcpu, 7, 0x400);
	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10867

10868
	if (cpu_has_vmx_msr_bitmap())
10869
		vmx_update_msr_bitmap(vcpu);
10870

10871 10872 10873
	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
				vmcs12->vm_exit_msr_load_count))
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10874 10875 10876 10877 10878 10879 10880
}

/*
 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 * and modify vmcs12 to make it see what it would expect to see there if
 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 */
10881 10882 10883
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
			      u32 exit_intr_info,
			      unsigned long exit_qualification)
10884 10885 10886 10887
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

10888 10889 10890
	/* trying to cancel vmlaunch/vmresume is a bug */
	WARN_ON_ONCE(vmx->nested.nested_run_pending);

10891
	leave_guest_mode(vcpu);
10892 10893
	prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
		       exit_qualification);
10894

10895 10896 10897 10898
	if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
				 vmcs12->vm_exit_msr_store_count))
		nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);

10899 10900
	vmx_load_vmcs01(vcpu);

10901 10902 10903 10904 10905 10906 10907 10908
	if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
	    && nested_exit_intr_ack_set(vcpu)) {
		int irq = kvm_cpu_get_interrupt(vcpu);
		WARN_ON(irq < 0);
		vmcs12->vm_exit_intr_info = irq |
			INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
	}

10909 10910 10911 10912 10913 10914
	trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
				       vmcs12->exit_qualification,
				       vmcs12->idt_vectoring_info_field,
				       vmcs12->vm_exit_intr_info,
				       vmcs12->vm_exit_intr_error_code,
				       KVM_ISA_VMX);
10915

10916 10917
	vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
	vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10918 10919
	vmx_segment_cache_clear(vmx);

10920 10921
	load_vmcs12_host_state(vcpu, vmcs12);

10922
	/* Update TSC_OFFSET if TSC was changed while L2 ran */
10923 10924
	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);

10925 10926 10927 10928 10929 10930
	if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
		vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
		vmx_set_virtual_x2apic_mode(vcpu,
				vcpu->arch.apic_base & X2APIC_ENABLE);
	}

10931 10932 10933 10934 10935 10936
	/* This is needed for same reason as it was needed in prepare_vmcs02 */
	vmx->host_rsp = 0;

	/* Unpin physical memory we referred to in vmcs02 */
	if (vmx->nested.apic_access_page) {
		nested_release_page(vmx->nested.apic_access_page);
10937
		vmx->nested.apic_access_page = NULL;
10938
	}
10939 10940
	if (vmx->nested.virtual_apic_page) {
		nested_release_page(vmx->nested.virtual_apic_page);
10941
		vmx->nested.virtual_apic_page = NULL;
10942
	}
10943 10944 10945 10946 10947 10948
	if (vmx->nested.pi_desc_page) {
		kunmap(vmx->nested.pi_desc_page);
		nested_release_page(vmx->nested.pi_desc_page);
		vmx->nested.pi_desc_page = NULL;
		vmx->nested.pi_desc = NULL;
	}
10949

10950 10951 10952 10953 10954 10955
	/*
	 * We are now running in L2, mmu_notifier will force to reload the
	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
	 */
	kvm_vcpu_reload_apic_access_page(vcpu);

10956 10957 10958 10959 10960 10961 10962 10963 10964 10965
	/*
	 * Exiting from L2 to L1, we're now back to L1 which thinks it just
	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
	 * success or failure flag accordingly.
	 */
	if (unlikely(vmx->fail)) {
		vmx->fail = 0;
		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
	} else
		nested_vmx_succeed(vcpu);
10966 10967
	if (enable_shadow_vmcs)
		vmx->nested.sync_shadow_vmcs = true;
10968 10969 10970

	/* in case we halted in L2 */
	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10971 10972
}

10973 10974 10975 10976 10977
/*
 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
 */
static void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
10978 10979
	if (is_guest_mode(vcpu)) {
		to_vmx(vcpu)->nested.nested_run_pending = 0;
10980
		nested_vmx_vmexit(vcpu, -1, 0, 0);
10981
	}
10982 10983 10984
	free_nested(to_vmx(vcpu));
}

10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999
/*
 * L1's failure to enter L2 is a subset of a normal exit, as explained in
 * 23.7 "VM-entry failures during or after loading guest state" (this also
 * lists the acceptable exit-reason and exit-qualification parameters).
 * It should only be called before L2 actually succeeded to run, and when
 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
 */
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
			struct vmcs12 *vmcs12,
			u32 reason, unsigned long qualification)
{
	load_vmcs12_host_state(vcpu, vmcs12);
	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
	vmcs12->exit_qualification = qualification;
	nested_vmx_succeed(vcpu);
11000 11001
	if (enable_shadow_vmcs)
		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11002 11003
}

11004 11005 11006 11007 11008 11009 11010
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
			       struct x86_instruction_info *info,
			       enum x86_intercept_stage stage)
{
	return X86EMUL_CONTINUE;
}

11011
static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11012
{
11013 11014
	if (ple_gap)
		shrink_ple_window(vcpu);
11015 11016
}

Kai Huang's avatar
Kai Huang committed
11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041
static void vmx_slot_enable_log_dirty(struct kvm *kvm,
				     struct kvm_memory_slot *slot)
{
	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
}

static void vmx_slot_disable_log_dirty(struct kvm *kvm,
				       struct kvm_memory_slot *slot)
{
	kvm_mmu_slot_set_dirty(kvm, slot);
}

static void vmx_flush_log_dirty(struct kvm *kvm)
{
	kvm_flush_pml_buffers(kvm);
}

static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
					   struct kvm_memory_slot *memslot,
					   gfn_t offset, unsigned long mask)
{
	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
}

11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114
/*
 * This routine does the following things for vCPU which is going
 * to be blocked if VT-d PI is enabled.
 * - Store the vCPU to the wakeup list, so when interrupts happen
 *   we can find the right vCPU to wake up.
 * - Change the Posted-interrupt descriptor as below:
 *      'NDST' <-- vcpu->pre_pcpu
 *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
 * - If 'ON' is set during this process, which means at least one
 *   interrupt is posted for this vCPU, we cannot block it, in
 *   this case, return 1, otherwise, return 0.
 *
 */
static int vmx_pre_block(struct kvm_vcpu *vcpu)
{
	unsigned long flags;
	unsigned int dest;
	struct pi_desc old, new;
	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);

	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
		!irq_remapping_cap(IRQ_POSTING_CAP))
		return 0;

	vcpu->pre_pcpu = vcpu->cpu;
	spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
			  vcpu->pre_pcpu), flags);
	list_add_tail(&vcpu->blocked_vcpu_list,
		      &per_cpu(blocked_vcpu_on_cpu,
		      vcpu->pre_pcpu));
	spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
			       vcpu->pre_pcpu), flags);

	do {
		old.control = new.control = pi_desc->control;

		/*
		 * We should not block the vCPU if
		 * an interrupt is posted for it.
		 */
		if (pi_test_on(pi_desc) == 1) {
			spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
					  vcpu->pre_pcpu), flags);
			list_del(&vcpu->blocked_vcpu_list);
			spin_unlock_irqrestore(
					&per_cpu(blocked_vcpu_on_cpu_lock,
					vcpu->pre_pcpu), flags);
			vcpu->pre_pcpu = -1;

			return 1;
		}

		WARN((pi_desc->sn == 1),
		     "Warning: SN field of posted-interrupts "
		     "is set before blocking\n");

		/*
		 * Since vCPU can be preempted during this process,
		 * vcpu->cpu could be different with pre_pcpu, we
		 * need to set pre_pcpu as the destination of wakeup
		 * notification event, then we can find the right vCPU
		 * to wakeup in wakeup handler if interrupts happen
		 * when the vCPU is in blocked state.
		 */
		dest = cpu_physical_id(vcpu->pre_pcpu);

		if (x2apic_enabled())
			new.ndst = dest;
		else
			new.ndst = (dest << 8) & 0xFF00;

		/* set 'NV' to 'wakeup vector' */
		new.nv = POSTED_INTR_WAKEUP_VECTOR;
Paolo Bonzini's avatar
Paolo Bonzini committed
11115 11116
	} while (cmpxchg64(&pi_desc->control, old.control,
			   new.control) != old.control);
11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146

	return 0;
}

static void vmx_post_block(struct kvm_vcpu *vcpu)
{
	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
	struct pi_desc old, new;
	unsigned int dest;
	unsigned long flags;

	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
		!irq_remapping_cap(IRQ_POSTING_CAP))
		return;

	do {
		old.control = new.control = pi_desc->control;

		dest = cpu_physical_id(vcpu->cpu);

		if (x2apic_enabled())
			new.ndst = dest;
		else
			new.ndst = (dest << 8) & 0xFF00;

		/* Allow posting non-urgent interrupts */
		new.sn = 0;

		/* set 'NV' to 'notification vector' */
		new.nv = POSTED_INTR_VECTOR;
Paolo Bonzini's avatar
Paolo Bonzini committed
11147 11148
	} while (cmpxchg64(&pi_desc->control, old.control,
			   new.control) != old.control);
11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161

	if(vcpu->pre_pcpu != -1) {
		spin_lock_irqsave(
			&per_cpu(blocked_vcpu_on_cpu_lock,
			vcpu->pre_pcpu), flags);
		list_del(&vcpu->blocked_vcpu_list);
		spin_unlock_irqrestore(
			&per_cpu(blocked_vcpu_on_cpu_lock,
			vcpu->pre_pcpu), flags);
		vcpu->pre_pcpu = -1;
	}
}

11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178
/*
 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
 *
 * @kvm: kvm
 * @host_irq: host irq of the interrupt
 * @guest_irq: gsi of the interrupt
 * @set: set or unset PI
 * returns 0 on success, < 0 on failure
 */
static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
			      uint32_t guest_irq, bool set)
{
	struct kvm_kernel_irq_routing_entry *e;
	struct kvm_irq_routing_table *irq_rt;
	struct kvm_lapic_irq irq;
	struct kvm_vcpu *vcpu;
	struct vcpu_data vcpu_info;
11179
	int idx, ret = 0;
11180 11181 11182 11183 11184 11185 11186

	if (!kvm_arch_has_assigned_device(kvm) ||
		!irq_remapping_cap(IRQ_POSTING_CAP))
		return 0;

	idx = srcu_read_lock(&kvm->irq_srcu);
	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11187 11188 11189 11190 11191 11192
	if (guest_irq >= irq_rt->nr_rt_entries ||
	    hlist_empty(&irq_rt->map[guest_irq])) {
		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
			     guest_irq, irq_rt->nr_rt_entries);
		goto out;
	}
11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221

	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
		if (e->type != KVM_IRQ_ROUTING_MSI)
			continue;
		/*
		 * VT-d PI cannot support posting multicast/broadcast
		 * interrupts to a vCPU, we still use interrupt remapping
		 * for these kind of interrupts.
		 *
		 * For lowest-priority interrupts, we only support
		 * those with single CPU as the destination, e.g. user
		 * configures the interrupts via /proc/irq or uses
		 * irqbalance to make the interrupts single-CPU.
		 *
		 * We will support full lowest-priority interrupt later.
		 */

		kvm_set_msi_irq(e, &irq);
		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
			continue;

		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
		vcpu_info.vector = irq.vector;

		trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
				vcpu_info.vector, vcpu_info.pi_desc_addr, set);

		if (set)
			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11222
		else
11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237
			ret = irq_set_vcpu_affinity(host_irq, NULL);

		if (ret < 0) {
			printk(KERN_INFO "%s: failed to update PI IRTE\n",
					__func__);
			goto out;
		}
	}

	ret = 0;
out:
	srcu_read_unlock(&kvm->irq_srcu, idx);
	return ret;
}

11238
static struct kvm_x86_ops vmx_x86_ops = {
11239 11240 11241 11242
	.cpu_has_kvm_support = cpu_has_kvm_support,
	.disabled_by_bios = vmx_disabled_by_bios,
	.hardware_setup = hardware_setup,
	.hardware_unsetup = hardware_unsetup,
11243
	.check_processor_compatibility = vmx_check_processor_compat,
11244 11245
	.hardware_enable = hardware_enable,
	.hardware_disable = hardware_disable,
11246
	.cpu_has_accelerated_tpr = report_flexpriority,
11247
	.has_emulated_msr = vmx_has_emulated_msr,
11248

11249 11250
	.vm_init = vmx_vm_init,

11251 11252
	.vcpu_create = vmx_create_vcpu,
	.vcpu_free = vmx_free_vcpu,
11253
	.vcpu_reset = vmx_vcpu_reset,
11254

11255
	.prepare_guest_switch = vmx_save_host_state,
11256 11257 11258
	.vcpu_load = vmx_vcpu_load,
	.vcpu_put = vmx_vcpu_put,

11259
	.update_bp_intercept = update_exception_bitmap,
11260
	.get_msr_feature = vmx_get_msr_feature,
11261 11262 11263 11264 11265
	.get_msr = vmx_get_msr,
	.set_msr = vmx_set_msr,
	.get_segment_base = vmx_get_segment_base,
	.get_segment = vmx_get_segment,
	.set_segment = vmx_set_segment,
11266
	.get_cpl = vmx_get_cpl,
11267
	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11268
	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11269
	.decache_cr3 = vmx_decache_cr3,
11270
	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11271 11272 11273 11274 11275 11276 11277 11278
	.set_cr0 = vmx_set_cr0,
	.set_cr3 = vmx_set_cr3,
	.set_cr4 = vmx_set_cr4,
	.set_efer = vmx_set_efer,
	.get_idt = vmx_get_idt,
	.set_idt = vmx_set_idt,
	.get_gdt = vmx_get_gdt,
	.set_gdt = vmx_set_gdt,
Jan Kiszka's avatar
Jan Kiszka committed
11279 11280
	.get_dr6 = vmx_get_dr6,
	.set_dr6 = vmx_set_dr6,
11281
	.set_dr7 = vmx_set_dr7,
11282
	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11283
	.cache_reg = vmx_cache_reg,
11284 11285
	.get_rflags = vmx_get_rflags,
	.set_rflags = vmx_set_rflags,
11286
	.fpu_activate = vmx_fpu_activate,
11287
	.fpu_deactivate = vmx_fpu_deactivate,
11288 11289 11290 11291

	.tlb_flush = vmx_flush_tlb,

	.run = vmx_vcpu_run,
11292
	.handle_exit = vmx_handle_exit,
11293
	.skip_emulated_instruction = skip_emulated_instruction,
11294 11295
	.set_interrupt_shadow = vmx_set_interrupt_shadow,
	.get_interrupt_shadow = vmx_get_interrupt_shadow,
11296
	.patch_hypercall = vmx_patch_hypercall,
Eddie Dong's avatar
Eddie Dong committed
11297
	.set_irq = vmx_inject_irq,
11298
	.set_nmi = vmx_inject_nmi,
11299
	.queue_exception = vmx_queue_exception,
11300
	.cancel_injection = vmx_cancel_injection,
11301
	.interrupt_allowed = vmx_interrupt_allowed,
11302
	.nmi_allowed = vmx_nmi_allowed,
11303 11304
	.get_nmi_mask = vmx_get_nmi_mask,
	.set_nmi_mask = vmx_set_nmi_mask,
11305 11306 11307
	.enable_nmi_window = enable_nmi_window,
	.enable_irq_window = enable_irq_window,
	.update_cr8_intercept = update_cr8_intercept,
11308
	.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11309
	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11310 11311
	.get_enable_apicv = vmx_get_enable_apicv,
	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11312 11313 11314
	.load_eoi_exitmap = vmx_load_eoi_exitmap,
	.hwapic_irr_update = vmx_hwapic_irr_update,
	.hwapic_isr_update = vmx_hwapic_isr_update,
11315 11316
	.sync_pir_to_irr = vmx_sync_pir_to_irr,
	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11317

11318
	.set_tss_addr = vmx_set_tss_addr,
11319
	.get_tdp_level = get_ept_level,
11320
	.get_mt_mask = vmx_get_mt_mask,
11321

11322 11323
	.get_exit_info = vmx_get_exit_info,

11324
	.get_lpage_level = vmx_get_lpage_level,
11325 11326

	.cpuid_update = vmx_cpuid_update,
11327 11328

	.rdtscp_supported = vmx_rdtscp_supported,
11329
	.invpcid_supported = vmx_invpcid_supported,
11330 11331

	.set_supported_cpuid = vmx_set_supported_cpuid,
11332 11333

	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11334

11335
	.read_tsc_offset = vmx_read_tsc_offset,
11336
	.write_tsc_offset = vmx_write_tsc_offset,
11337
	.adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
Nadav Har'El's avatar
Nadav Har'El committed
11338
	.read_l1_tsc = vmx_read_l1_tsc,
11339 11340

	.set_tdp_cr3 = vmx_set_cr3,
11341 11342

	.check_intercept = vmx_check_intercept,
11343
	.handle_external_intr = vmx_handle_external_intr,
11344
	.mpx_supported = vmx_mpx_supported,
11345
	.xsaves_supported = vmx_xsaves_supported,
11346 11347

	.check_nested_events = vmx_check_nested_events,
11348 11349

	.sched_in = vmx_sched_in,
Kai Huang's avatar
Kai Huang committed
11350 11351 11352 11353 11354

	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
	.flush_log_dirty = vmx_flush_log_dirty,
	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11355

11356 11357 11358
	.pre_block = vmx_pre_block,
	.post_block = vmx_post_block,

11359
	.pmu_ops = &intel_pmu_ops,
11360 11361

	.update_pi_irte = vmx_update_pi_irte,
11362 11363
};

11364
static void vmx_cleanup_l1d_flush(void)
11365 11366 11367 11368 11369
{
	if (vmx_l1d_flush_pages) {
		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
		vmx_l1d_flush_pages = NULL;
	}
11370 11371
	/* Restore state so sysfs ignores VMX */
	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
11372 11373
}

11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386
static void vmx_exit(void)
{
#ifdef CONFIG_KEXEC_CORE
	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
	synchronize_rcu();
#endif

	kvm_exit();

	vmx_cleanup_l1d_flush();
}
module_exit(vmx_exit);

11387 11388
static int __init vmx_init(void)
{
11389
	int r;
11390

11391 11392
	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
		     __alignof__(struct vcpu_vmx), THIS_MODULE);
11393
	if (r)
11394
		return r;
11395

11396
	/*
11397 11398 11399 11400 11401
	 * Must be called after kvm_init() so enable_ept is properly set
	 * up. Hand the parameter mitigation value in which was stored in
	 * the pre module init parser. If no parameter was given, it will
	 * contain 'auto' which will be turned into the default 'cond'
	 * mitigation mode.
11402
	 */
11403 11404 11405 11406 11407 11408
	if (boot_cpu_has(X86_BUG_L1TF)) {
		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
		if (r) {
			vmx_exit();
			return r;
		}
11409 11410
	}

11411
#ifdef CONFIG_KEXEC_CORE
11412 11413 11414 11415
	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
			   crash_vmclear_local_loaded_vmcss);
#endif

11416
	return 0;
11417 11418 11419
}

module_init(vmx_init)