vmscan.c 112 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

Linus Torvalds's avatar
Linus Torvalds committed
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
Linus Torvalds's avatar
Linus Torvalds committed
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
Linus Torvalds's avatar
Linus Torvalds committed
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
Linus Torvalds's avatar
Linus Torvalds committed
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
49
#include <linux/dax.h>
Linus Torvalds's avatar
Linus Torvalds committed
50 51 52 53 54

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
55
#include <linux/balloon_compaction.h>
Linus Torvalds's avatar
Linus Torvalds committed
56

57 58
#include "internal.h"

59 60 61
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

Linus Torvalds's avatar
Linus Torvalds committed
62
struct scan_control {
63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

Linus Torvalds's avatar
Linus Torvalds committed
66
	/* This context's GFP mask */
Al Viro's avatar
Al Viro committed
67
	gfp_t gfp_mask;
Linus Torvalds's avatar
Linus Torvalds committed
68

69
	/* Allocation order */
Andy Whitcroft's avatar
Andy Whitcroft committed
70
	int order;
71

72 73 74 75 76
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
77

78 79 80 81 82
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
83

84 85 86 87 88 89 90 91 92 93 94
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

95 96 97
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

98 99 100 101 102 103 104 105 106 107
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
Linus Torvalds's avatar
Linus Torvalds committed
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
142 143 144 145 146
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
Linus Torvalds's avatar
Linus Torvalds committed
147 148 149 150

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

151
#ifdef CONFIG_MEMCG
152 153
static bool global_reclaim(struct scan_control *sc)
{
154
	return !sc->target_mem_cgroup;
155
}
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
177
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 179 180 181
		return true;
#endif
	return false;
}
182
#else
183 184 185 186
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
187 188 189 190 191

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
192 193
#endif

194
static unsigned long zone_reclaimable_pages(struct zone *zone)
195
{
196
	unsigned long nr;
197 198

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
199 200
	     zone_page_state(zone, NR_INACTIVE_FILE) +
	     zone_page_state(zone, NR_ISOLATED_FILE);
201 202 203

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 205
		      zone_page_state(zone, NR_INACTIVE_ANON) +
		      zone_page_state(zone, NR_ISOLATED_ANON);
206 207 208 209 210 211

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
212 213
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
214 215
}

216
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
217
{
218
	if (!mem_cgroup_disabled())
219
		return mem_cgroup_get_lru_size(lruvec, lru);
220

221
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 223
}

Linus Torvalds's avatar
Linus Torvalds committed
224
/*
225
 * Add a shrinker callback to be called from the vm.
Linus Torvalds's avatar
Linus Torvalds committed
226
 */
227
int register_shrinker(struct shrinker *shrinker)
Linus Torvalds's avatar
Linus Torvalds committed
228
{
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

246 247 248
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
249
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
250
}
251
EXPORT_SYMBOL(register_shrinker);
Linus Torvalds's avatar
Linus Torvalds committed
252 253 254 255

/*
 * Remove one
 */
256
void unregister_shrinker(struct shrinker *shrinker)
Linus Torvalds's avatar
Linus Torvalds committed
257 258 259 260
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
261
	kfree(shrinker->nr_deferred);
Linus Torvalds's avatar
Linus Torvalds committed
262
}
263
EXPORT_SYMBOL(unregister_shrinker);
Linus Torvalds's avatar
Linus Torvalds committed
264 265

#define SHRINK_BATCH 128
266

267 268 269 270
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
271 272 273 274
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
275
	long freeable;
276 277 278 279 280 281
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

282 283
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
284 285 286 287 288 289 290 291 292 293
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
294
	delta = (4 * nr_scanned) / shrinker->seeks;
295
	delta *= freeable;
296
	do_div(delta, nr_eligible + 1);
297 298
	total_scan += delta;
	if (total_scan < 0) {
299
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
300
		       shrinker->scan_objects, total_scan);
301
		total_scan = freeable;
302 303 304 305 306 307 308 309
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
310
	 * freeable. This is bad for sustaining a working set in
311 312 313 314 315
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
316 317
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
318 319 320 321 322 323

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
324 325
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
326 327

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
328 329
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
330

331 332 333 334 335 336 337 338 339 340 341
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
342
	 * than the total number of objects on slab (freeable), we must be
343 344 345 346
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
347
	       total_scan >= freeable) {
348
		unsigned long ret;
349
		unsigned long nr_to_scan = min(batch_size, total_scan);
350

351
		shrinkctl->nr_to_scan = nr_to_scan;
352 353 354 355
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
356

357 358
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

374
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
375
	return freed;
376 377
}

378
/**
379
 * shrink_slab - shrink slab caches
380 381
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
382
 * @memcg: memory cgroup whose slab caches to target
383 384
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
Linus Torvalds's avatar
Linus Torvalds committed
385
 *
386
 * Call the shrink functions to age shrinkable caches.
Linus Torvalds's avatar
Linus Torvalds committed
387
 *
388 389
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
Linus Torvalds's avatar
Linus Torvalds committed
390
 *
391 392 393 394 395 396
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 * objects from the memory cgroup specified. Otherwise all shrinkers
 * are called, and memcg aware shrinkers are supposed to scan the
 * global list then.
 *
397 398 399 400 401 402 403
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
404
 *
405
 * Returns the number of reclaimed slab objects.
Linus Torvalds's avatar
Linus Torvalds committed
406
 */
407 408 409 410
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
Linus Torvalds's avatar
Linus Torvalds committed
411 412
{
	struct shrinker *shrinker;
Dave Chinner's avatar
Dave Chinner committed
413
	unsigned long freed = 0;
Linus Torvalds's avatar
Linus Torvalds committed
414

415
	if (memcg && !memcg_kmem_online(memcg))
416 417
		return 0;

418 419
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
Linus Torvalds's avatar
Linus Torvalds committed
420

421
	if (!down_read_trylock(&shrinker_rwsem)) {
Dave Chinner's avatar
Dave Chinner committed
422 423 424 425 426 427 428
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
429 430
		goto out;
	}
Linus Torvalds's avatar
Linus Torvalds committed
431 432

	list_for_each_entry(shrinker, &shrinker_list, list) {
433 434 435
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
436
			.memcg = memcg,
437
		};
438

439 440 441
		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
			continue;

442 443
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
Linus Torvalds's avatar
Linus Torvalds committed
444

445
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
Linus Torvalds's avatar
Linus Torvalds committed
446
	}
447

Linus Torvalds's avatar
Linus Torvalds committed
448
	up_read(&shrinker_rwsem);
449 450
out:
	cond_resched();
Dave Chinner's avatar
Dave Chinner committed
451
	return freed;
Linus Torvalds's avatar
Linus Torvalds committed
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

Linus Torvalds's avatar
Linus Torvalds committed
477 478
static inline int is_page_cache_freeable(struct page *page)
{
479 480 481 482 483
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
484
	return page_count(page) - page_has_private(page) == 2;
Linus Torvalds's avatar
Linus Torvalds committed
485 486
}

487
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
Linus Torvalds's avatar
Linus Torvalds committed
488
{
489
	if (current->flags & PF_SWAPWRITE)
Linus Torvalds's avatar
Linus Torvalds committed
490
		return 1;
491
	if (!inode_write_congested(inode))
Linus Torvalds's avatar
Linus Torvalds committed
492
		return 1;
493
	if (inode_to_bdi(inode) == current->backing_dev_info)
Linus Torvalds's avatar
Linus Torvalds committed
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
513
	lock_page(page);
514 515
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
Linus Torvalds's avatar
Linus Torvalds committed
516 517 518
	unlock_page(page);
}

519 520 521 522 523 524 525 526 527 528 529 530
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

Linus Torvalds's avatar
Linus Torvalds committed
531
/*
532 533
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
Linus Torvalds's avatar
Linus Torvalds committed
534
 */
535
static pageout_t pageout(struct page *page, struct address_space *mapping,
536
			 struct scan_control *sc)
Linus Torvalds's avatar
Linus Torvalds committed
537 538 539 540 541 542 543 544
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
545
	 * If this process is currently in __generic_file_write_iter() against
Linus Torvalds's avatar
Linus Torvalds committed
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
561
		if (page_has_private(page)) {
Linus Torvalds's avatar
Linus Torvalds committed
562 563
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
564
				pr_info("%s: orphaned page\n", __func__);
Linus Torvalds's avatar
Linus Torvalds committed
565 566 567 568 569 570 571
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
572
	if (!may_write_to_inode(mapping->host, sc))
Linus Torvalds's avatar
Linus Torvalds committed
573 574 575 576 577 578 579
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
580 581
			.range_start = 0,
			.range_end = LLONG_MAX,
Linus Torvalds's avatar
Linus Torvalds committed
582 583 584 585 586 587 588
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
589
		if (res == AOP_WRITEPAGE_ACTIVATE) {
Linus Torvalds's avatar
Linus Torvalds committed
590 591 592
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
593

Linus Torvalds's avatar
Linus Torvalds committed
594 595 596 597
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
598
		trace_mm_vmscan_writepage(page);
599
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
Linus Torvalds's avatar
Linus Torvalds committed
600 601 602 603 604 605
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

606
/*
607 608
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
609
 */
610 611
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
612
{
613 614 615
	unsigned long flags;
	struct mem_cgroup *memcg;

616 617
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
618

619 620
	memcg = mem_cgroup_begin_page_stat(page);
	spin_lock_irqsave(&mapping->tree_lock, flags);
621
	/*
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
645
	 */
646
	if (!page_freeze_refs(page, 2))
647
		goto cannot_free;
648 649 650
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
651
		goto cannot_free;
652
	}
653 654 655

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
656
		mem_cgroup_swapout(page, swap);
657
		__delete_from_swap_cache(page);
658 659
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
660
		swapcache_free(swap);
661
	} else {
662
		void (*freepage)(struct page *);
663
		void *shadow = NULL;
664 665

		freepage = mapping->a_ops->freepage;
666 667 668 669 670 671 672 673 674
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
675 676 677 678 679 680
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
		 * same page_tree.
681 682
		 */
		if (reclaimed && page_is_file_cache(page) &&
683
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
684
			shadow = workingset_eviction(mapping, page);
685 686 687
		__delete_from_page_cache(page, shadow, memcg);
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
688 689 690

		if (freepage != NULL)
			freepage(page);
691 692 693 694 695
	}

	return 1;

cannot_free:
696 697
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
	mem_cgroup_end_page_stat(memcg);
698 699 700
	return 0;
}

701 702 703 704 705 706 707 708
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
709
	if (__remove_mapping(mapping, page, false)) {
710 711 712 713 714 715 716 717 718 719 720
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

721 722 723 724 725 726 727 728 729 730 731
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
732
	bool is_unevictable;
733
	int was_unevictable = PageUnevictable(page);
734

735
	VM_BUG_ON_PAGE(PageLRU(page), page);
736 737 738 739

redo:
	ClearPageUnevictable(page);

740
	if (page_evictable(page)) {
741 742 743 744 745 746
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
747
		is_unevictable = false;
748
		lru_cache_add(page);
749 750 751 752 753
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
754
		is_unevictable = true;
755
		add_page_to_unevictable_list(page);
756
		/*
757 758 759
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
760
		 * isolation/check_move_unevictable_pages,
761
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
762 763
		 * the page back to the evictable list.
		 *
764
		 * The other side is TestClearPageMlocked() or shmem_lock().
765 766
		 */
		smp_mb();
767 768 769 770 771 772 773
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
774
	if (is_unevictable && page_evictable(page)) {
775 776 777 778 779 780 781 782 783 784
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

785
	if (was_unevictable && !is_unevictable)
786
		count_vm_event(UNEVICTABLE_PGRESCUED);
787
	else if (!was_unevictable && is_unevictable)
788 789
		count_vm_event(UNEVICTABLE_PGCULLED);

790 791 792
	put_page(page);		/* drop ref from isolate */
}

793 794 795
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
796
	PAGEREF_KEEP,
797 798 799 800 801 802
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
803
	int referenced_ptes, referenced_page;
804 805
	unsigned long vm_flags;

806 807
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
808
	referenced_page = TestClearPageReferenced(page);
809 810 811 812 813 814 815 816

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

817
	if (referenced_ptes) {
818
		if (PageSwapBacked(page))
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

836
		if (referenced_page || referenced_ptes > 1)
837 838
			return PAGEREF_ACTIVATE;

839 840 841 842 843 844
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

845 846
		return PAGEREF_KEEP;
	}
847 848

	/* Reclaim if clean, defer dirty pages to writeback */
849
	if (referenced_page && !PageSwapBacked(page))
850 851 852
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
853 854
}

855 856 857 858
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
859 860
	struct address_space *mapping;

861 862 863 864 865 866 867 868 869 870 871 872 873
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
874 875 876 877 878 879 880 881

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
882 883
}

Linus Torvalds's avatar
Linus Torvalds committed
884
/*
885
 * shrink_page_list() returns the number of reclaimed pages
Linus Torvalds's avatar
Linus Torvalds committed
886
 */
887
static unsigned long shrink_page_list(struct list_head *page_list,
888
				      struct zone *zone,
889
				      struct scan_control *sc,
890
				      enum ttu_flags ttu_flags,
891
				      unsigned long *ret_nr_dirty,
892
				      unsigned long *ret_nr_unqueued_dirty,
893
				      unsigned long *ret_nr_congested,
894
				      unsigned long *ret_nr_writeback,
895
				      unsigned long *ret_nr_immediate,
896
				      bool force_reclaim)
Linus Torvalds's avatar
Linus Torvalds committed
897 898
{
	LIST_HEAD(ret_pages);
899
	LIST_HEAD(free_pages);
Linus Torvalds's avatar
Linus Torvalds committed
900
	int pgactivate = 0;
901
	unsigned long nr_unqueued_dirty = 0;
902 903
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
904
	unsigned long nr_reclaimed = 0;
905
	unsigned long nr_writeback = 0;
906
	unsigned long nr_immediate = 0;
Linus Torvalds's avatar
Linus Torvalds committed
907 908 909 910 911 912 913

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
914
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
915
		bool dirty, writeback;
916 917
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
Linus Torvalds's avatar
Linus Torvalds committed
918 919 920 921 922 923

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

Nick Piggin's avatar
Nick Piggin committed
924
		if (!trylock_page(page))
Linus Torvalds's avatar
Linus Torvalds committed
925 926
			goto keep;

927 928
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
Linus Torvalds's avatar
Linus Torvalds committed
929 930

		sc->nr_scanned++;
931

932
		if (unlikely(!page_evictable(page)))
933
			goto cull_mlocked;
934

935
		if (!sc->may_unmap && page_mapped(page))
936 937
			goto keep_locked;

Linus Torvalds's avatar
Linus Torvalds committed
938 939 940 941
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

942 943 944
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

945 946 947 948 949 950 951 952 953 954 955 956 957
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

958 959 960 961 962 963
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
964
		mapping = page_mapping(page);
965
		if (((dirty || writeback) && mapping &&
966
		     inode_write_congested(mapping->host)) ||
967
		    (writeback && PageReclaim(page)))
968 969
			nr_congested++;

970 971 972 973 974 975 976 977 978 979 980
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
981 982
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
983
		 *
984
		 * 2) Global or new memcg reclaim encounters a page that is
985 986 987
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
988
		 *    reclaim and continue scanning.
989
		 *
990 991
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
992 993 994 995 996
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
997
		 * 3) Legacy memcg encounters a page that is already marked
998 999 1000 1001 1002
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
1003
		if (PageWriteback(page)) {
1004 1005 1006
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
Johannes Weiner's avatar
Johannes Weiner committed
1007
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1008 1009
				nr_immediate++;
				goto keep_locked;
1010 1011

			/* Case 2 above */
1012
			} else if (sane_reclaim(sc) ||
1013
			    !PageReclaim(page) || !may_enter_fs) {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1026
				nr_writeback++;
1027
				goto keep_locked;
1028 1029 1030

			/* Case 3 above */
			} else {
1031
				unlock_page(page);
1032
				wait_on_page_writeback(page);
1033 1034 1035
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1036
			}
1037
		}
Linus Torvalds's avatar
Linus Torvalds committed
1038

1039 1040 1041
		if (!force_reclaim)
			references = page_check_references(page, sc);

1042 1043
		switch (references) {
		case PAGEREF_ACTIVATE:
Linus Torvalds's avatar
Linus Torvalds committed
1044
			goto activate_locked;
1045 1046
		case PAGEREF_KEEP:
			goto keep_locked;
1047 1048 1049 1050
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
Linus Torvalds's avatar
Linus Torvalds committed
1051 1052 1053 1054 1055

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
1056
		if (PageAnon(page) && !PageSwapCache(page)) {
1057 1058
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1059
			if (!add_to_swap(page, page_list))
Linus Torvalds's avatar
Linus Torvalds committed
1060
				goto activate_locked;
1061
			lazyfree = true;
1062
			may_enter_fs = 1;
Linus Torvalds's avatar
Linus Torvalds committed
1063

1064 1065 1066
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
Linus Torvalds's avatar
Linus Torvalds committed
1067 1068 1069 1070 1071 1072

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
1073 1074 1075
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
Linus Torvalds's avatar
Linus Torvalds committed
1076 1077 1078 1079
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
1080 1081
			case SWAP_MLOCK:
				goto cull_mlocked;
1082 1083
			case SWAP_LZFREE:
				goto lazyfree;
Linus Torvalds's avatar
Linus Torvalds committed
1084 1085 1086 1087 1088 1089
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1090 1091
			/*
			 * Only kswapd can writeback filesystem pages to
1092 1093
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1094
			 */
1095
			if (page_is_file_cache(page) &&
1096
					(!current_is_kswapd() ||
Johannes Weiner's avatar
Johannes Weiner committed
1097
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1098 1099 1100 1101 1102 1103 1104 1105 1106
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1107 1108 1109
				goto keep_locked;
			}

1110
			if (references == PAGEREF_RECLAIM_CLEAN)
Linus Torvalds's avatar
Linus Torvalds committed
1111
				goto keep_locked;
1112
			if (!may_enter_fs)
Linus Torvalds's avatar
Linus Torvalds committed
1113
				goto keep_locked;
1114
			if (!sc->may_writepage)
Linus Torvalds's avatar
Linus Torvalds committed
1115 1116
				goto keep_locked;

1117 1118 1119 1120 1121 1122
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1123
			switch (pageout(page, mapping, sc)) {
Linus Torvalds's avatar
Linus Torvalds committed
1124 1125 1126 1127 1128
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1129
				if (PageWriteback(page))
1130
					goto keep;
1131
				if (PageDirty(page))
Linus Torvalds's avatar
Linus Torvalds committed
1132
					goto keep;
1133

Linus Torvalds's avatar
Linus Torvalds committed
1134 1135 1136 1137
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
Nick Piggin's avatar
Nick Piggin committed
1138
				if (!trylock_page(page))
Linus Torvalds's avatar
Linus Torvalds committed
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
1158
		 * will do this, as well as the blockdev mapping.
Linus Torvalds's avatar
Linus Torvalds committed
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1169
		if (page_has_private(page)) {
Linus Torvalds's avatar
Linus Torvalds committed
1170 1171
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
Linus Torvalds's avatar
Linus Torvalds committed
1188 1189
		}

1190
lazyfree:
1191
		if (!mapping || !__remove_mapping(mapping, page, true))
1192
			goto keep_locked;
Linus Torvalds's avatar
Linus Torvalds committed
1193

Nick Piggin's avatar
Nick Piggin committed
1194 1195 1196 1197 1198 1199 1200
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1201
		__ClearPageLocked(page);
1202
free_it:
1203 1204 1205
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1206
		nr_reclaimed++;
1207 1208 1209 1210 1211 1212

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
Linus Torvalds's avatar
Linus Torvalds committed
1213 1214
		continue;

1215
cull_mlocked:
1216 1217
		if (PageSwapCache(page))
			try_to_free_swap(page);
1218
		unlock_page(page);
1219
		list_add(&page->lru, &ret_pages);
1220 1221
		continue;

Linus Torvalds's avatar
Linus Torvalds committed
1222
activate_locked:
1223
		/* Not a candidate for swapping, so reclaim swap space. */
1224
		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1225
			try_to_free_swap(page);
1226
		VM_BUG_ON_PAGE(PageActive(page), page);
Linus Torvalds's avatar
Linus Torvalds committed
1227 1228 1229 1230 1231 1232
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1233
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
Linus Torvalds's avatar
Linus Torvalds committed
1234
	}
1235

1236
	mem_cgroup_uncharge_list(&free_pages);
1237
	try_to_unmap_flush();
1238
	free_hot_cold_page_list(&free_pages, true);
1239

Linus Torvalds's avatar
Linus Torvalds committed
1240
	list_splice(&ret_pages, page_list);
1241
	count_vm_events(PGACTIVATE, pgactivate);
1242

1243 1244
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1245
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1246
	*ret_nr_writeback += nr_writeback;
1247
	*ret_nr_immediate += nr_immediate;
1248
	return nr_reclaimed;
Linus Torvalds's avatar
Linus Torvalds committed
1249 1250
}

1251 1252 1253 1254 1255 1256 1257 1258
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1259
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1260 1261 1262 1263
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1264 1265
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1266 1267 1268 1269 1270 1271
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1272 1273
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1274
	list_splice(&clean_pages, page_list);
1275
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1276 1277 1278
	return ret;
}

Andy Whitcroft's avatar
Andy Whitcroft committed
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1289
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
Andy Whitcroft's avatar
Andy Whitcroft committed
1290 1291 1292 1293 1294 1295 1296
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

Minchan Kim's avatar
Minchan Kim committed
1297 1298
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1299 1300
		return ret;

Andy Whitcroft's avatar
Andy Whitcroft committed
1301
	ret = -EBUSY;
KAMEZAWA Hiroyuki's avatar
KAMEZAWA Hiroyuki committed
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1336

1337 1338 1339
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

Andy Whitcroft's avatar
Andy Whitcroft committed
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

Linus Torvalds's avatar
Linus Torvalds committed
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1364
 * @lruvec:	The LRU vector to pull pages from.
Linus Torvalds's avatar
Linus Torvalds committed
1365
 * @dst:	The temp list to put pages on to.
Hugh Dickins's avatar
Hugh Dickins committed
1366
 * @nr_scanned:	The number of pages that were scanned.
1367
 * @sc:		The scan_control struct for this reclaim session
Andy Whitcroft's avatar
Andy Whitcroft committed
1368
 * @mode:	One of the LRU isolation modes
1369
 * @lru:	LRU list id for isolating
Linus Torvalds's avatar
Linus Torvalds committed
1370 1371 1372
 *
 * returns how many pages were moved onto *@dst.
 */
1373
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1374
		struct lruvec *lruvec, struct list_head *dst,
1375
		unsigned long *nr_scanned, struct scan_control *sc,
1376
		isolate_mode_t mode, enum lru_list lru)
Linus Torvalds's avatar
Linus Torvalds committed
1377
{
1378
	struct list_head *src = &lruvec->lists[lru];
1379
	unsigned long nr_taken = 0;
1380
	unsigned long scan;
Linus Torvalds's avatar
Linus Torvalds committed
1381

1382 1383
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
					!list_empty(src); scan++) {
Andy Whitcroft's avatar
Andy Whitcroft committed
1384
		struct page *page;
1385
		int nr_pages;
Andy Whitcroft's avatar
Andy Whitcroft committed
1386

Linus Torvalds's avatar
Linus Torvalds committed
1387 1388 1389
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1390
		VM_BUG_ON_PAGE(!PageLRU(page), page);
Nick Piggin's avatar
Nick Piggin committed
1391

1392
		switch (__isolate_lru_page(page, mode)) {
Andy Whitcroft's avatar
Andy Whitcroft committed
1393
		case 0:
1394 1395
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
Andy Whitcroft's avatar
Andy Whitcroft committed
1396
			list_move(&page->lru, dst);
1397
			nr_taken += nr_pages;
Andy Whitcroft's avatar
Andy Whitcroft committed
1398 1399 1400 1401 1402 1403
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1404

Andy Whitcroft's avatar
Andy Whitcroft committed
1405 1406 1407
		default:
			BUG();
		}
Linus Torvalds's avatar
Linus Torvalds committed
1408 1409
	}

Hugh Dickins's avatar
Hugh Dickins committed
1410
	*nr_scanned = scan;
1411 1412
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
Linus Torvalds's avatar
Linus Torvalds committed
1413 1414 1415
	return nr_taken;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
1427 1428 1429
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1445
	VM_BUG_ON_PAGE(!page_count(page), page);
1446
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1447

1448 1449
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1450
		struct lruvec *lruvec;
1451 1452

		spin_lock_irq(&zone->lru_lock);
1453
		lruvec = mem_cgroup_page_lruvec(page, zone);
1454
		if (PageLRU(page)) {
1455
			int lru = page_lru(page);
1456
			get_page(page);
1457
			ClearPageLRU(page);
1458 1459
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1460 1461 1462 1463 1464 1465
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1466
/*
1467 1468 1469 1470 1471
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1472 1473 1474 1475 1476 1477 1478 1479 1480
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1481
	if (!sane_reclaim(sc))
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1492 1493 1494 1495 1496
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1497
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1498 1499
		inactive >>= 3;

1500 1501 1502
	return isolated > inactive;
}

1503
static noinline_for_stack void
1504
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1505
{
1506 1507
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1508
	LIST_HEAD(pages_to_free);
1509 1510 1511 1512 1513

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1514
		struct page *page = lru_to_page(page_list);
1515
		int lru;
1516

1517
		VM_BUG_ON_PAGE(PageLRU(page), page);
1518
		list_del(&page->lru);
1519
		if (unlikely(!page_evictable(page))) {
1520 1521 1522 1523 1524
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1525 1526 1527

		lruvec = mem_cgroup_page_lruvec(page, zone);

1528
		SetPageLRU(page);
1529
		lru = page_lru(page);
1530 1531
		add_page_to_lru_list(page, lruvec, lru);

1532 1533
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1534 1535
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1536
		}
1537 1538 1539
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1540
			del_page_from_lru_list(page, lruvec, lru);
1541 1542 1543

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1544
				mem_cgroup_uncharge(page);
1545 1546 1547 1548
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1549 1550 1551
		}
	}

1552 1553 1554 1555
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

Linus Torvalds's avatar
Linus Torvalds committed
1571
/*
1572 1573
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
Linus Torvalds's avatar
Linus Torvalds committed
1574
 */
1575
static noinline_for_stack unsigned long
1576
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1577
		     struct scan_control *sc, enum lru_list lru)
Linus Torvalds's avatar
Linus Torvalds committed
1578 1579
{
	LIST_HEAD(page_list);
1580
	unsigned long nr_scanned;
1581
	unsigned long nr_reclaimed = 0;
1582
	unsigned long nr_taken;
1583 1584
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1585
	unsigned long nr_unqueued_dirty = 0;
1586
	unsigned long nr_writeback = 0;
1587
	unsigned long nr_immediate = 0;
1588
	isolate_mode_t isolate_mode = 0;
1589
	int file = is_file_lru(lru);
1590 1591
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1592

1593
	while (unlikely(too_many_isolated(zone, file, sc))) {
1594
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1595 1596 1597 1598 1599 1600

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

Linus Torvalds's avatar
Linus Torvalds committed
1601
	lru_add_drain();
1602 1603

	if (!sc->may_unmap)
1604
		isolate_mode |= ISOLATE_UNMAPPED;
1605
	if (!sc->may_writepage)
1606
		isolate_mode |= ISOLATE_CLEAN;
1607

Linus Torvalds's avatar
Linus Torvalds committed
1608
	spin_lock_irq(&zone->lru_lock);
1609

1610 1611
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1612 1613 1614 1615

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1616
	if (global_reclaim(sc)) {
1617
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1618
		if (current_is_kswapd())
1619
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1620
		else
1621
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1622
	}
1623
	spin_unlock_irq(&zone->lru_lock);
1624

1625
	if (nr_taken == 0)
1626
		return 0;
Andy Whitcroft's avatar
Andy Whitcroft committed
1627

1628
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1629 1630 1631
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1632

1633 1634
	spin_lock_irq(&zone->lru_lock);

1635
	reclaim_stat->recent_scanned[file] += nr_taken;
1636

1637 1638 1639 1640 1641 1642 1643 1644
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
Nick Piggin's avatar
Nick Piggin committed
1645

1646
	putback_inactive_pages(lruvec, &page_list);
1647

1648
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1649 1650 1651

	spin_unlock_irq(&zone->lru_lock);

1652
	mem_cgroup_uncharge_list(&page_list);
1653
	free_hot_cold_page_list(&page_list, true);
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1665 1666 1667
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1668
	 */
1669
	if (nr_writeback && nr_writeback == nr_taken)
Johannes Weiner's avatar
Johannes Weiner committed
1670
		set_bit(ZONE_WRITEBACK, &zone->flags);
1671

1672
	/*
1673 1674
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1675
	 */
1676
	if (sane_reclaim(sc)) {
1677 1678 1679 1680 1681
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
Johannes Weiner's avatar
Johannes Weiner committed
1682
			set_bit(ZONE_CONGESTED, &zone->flags);
1683

1684 1685 1686
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
Johannes Weiner's avatar
Johannes Weiner committed
1687 1688
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1689 1690
		 */
		if (nr_unqueued_dirty == nr_taken)
Johannes Weiner's avatar
Johannes Weiner committed
1691
			set_bit(ZONE_DIRTY, &zone->flags);
1692 1693

		/*
1694 1695 1696
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1697 1698
		 * they are written so also forcibly stall.
		 */
1699
		if (nr_immediate && current_may_throttle())
1700
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1701
	}
1702

1703 1704 1705 1706 1707
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1708 1709
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1710 1711
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1712 1713
	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
			sc->priority, file);
1714
	return nr_reclaimed;
Linus Torvalds's avatar
Linus Torvalds committed
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1734

1735
static void move_active_pages_to_lru(struct lruvec *lruvec,
1736
				     struct list_head *list,
1737
				     struct list_head *pages_to_free,
1738 1739
				     enum lru_list lru)
{
1740
	struct zone *zone = lruvec_zone(lruvec);
1741 1742
	unsigned long pgmoved = 0;
	struct page *page;
1743
	int nr_pages;
1744 1745 1746

	while (!list_empty(list)) {
		page = lru_to_page(list);
1747
		lruvec = mem_cgroup_page_lruvec(page, zone);
1748

1749
		VM_BUG_ON_PAGE(PageLRU(page), page);
1750 1751
		SetPageLRU(page);

1752 1753
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1754
		list_move(&page->lru, &lruvec->lists[lru]);
1755
		pgmoved += nr_pages;
1756

1757 1758 1759
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1760
			del_page_from_lru_list(page, lruvec, lru);
1761 1762 1763

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1764
				mem_cgroup_uncharge(page);
1765 1766 1767 1768
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1769 1770 1771 1772 1773 1774
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1775

Hugh Dickins's avatar
Hugh Dickins committed
1776
static void shrink_active_list(unsigned long nr_to_scan,
1777
			       struct lruvec *lruvec,
1778
			       struct scan_control *sc,
1779
			       enum lru_list lru)
Linus Torvalds's avatar
Linus Torvalds committed
1780
{
1781
	unsigned long nr_taken;
Hugh Dickins's avatar
Hugh Dickins committed
1782
	unsigned long nr_scanned;
1783
	unsigned long vm_flags;
Linus Torvalds's avatar
Linus Torvalds committed
1784
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1785
	LIST_HEAD(l_active);
1786
	LIST_HEAD(l_inactive);
Linus Torvalds's avatar
Linus Torvalds committed
1787
	struct page *page;
1788
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1789
	unsigned long nr_rotated = 0;
1790
	isolate_mode_t isolate_mode = 0;
1791
	int file = is_file_lru(lru);
1792
	struct zone *zone = lruvec_zone(lruvec);
Linus Torvalds's avatar
Linus Torvalds committed
1793 1794

	lru_add_drain();
1795 1796

	if (!sc->may_unmap)
1797
		isolate_mode |= ISOLATE_UNMAPPED;
1798
	if (!sc->may_writepage)
1799
		isolate_mode |= ISOLATE_CLEAN;
1800

Linus Torvalds's avatar
Linus Torvalds committed
1801
	spin_lock_irq(&zone->lru_lock);
1802

1803 1804
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1805
	if (global_reclaim(sc))
1806
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1807

1808
	reclaim_stat->recent_scanned[file] += nr_taken;
1809

Hugh Dickins's avatar
Hugh Dickins committed
1810
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1811
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1812
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
Linus Torvalds's avatar
Linus Torvalds committed
1813 1814 1815 1816 1817 1818
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1819

1820
		if (unlikely(!page_evictable(page))) {
1821 1822 1823 1824
			putback_lru_page(page);
			continue;
		}

1825 1826 1827 1828 1829 1830 1831 1832
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1833 1834
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1835
			nr_rotated += hpage_nr_pages(page);
1836 1837 1838 1839 1840 1841 1842 1843 1844
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1845
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1846 1847 1848 1849
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1850

1851
		ClearPageActive(page);	/* we are de-activating */
Linus Torvalds's avatar
Linus Torvalds committed
1852 1853 1854
		list_add(&page->lru, &l_inactive);
	}

1855
	/*
1856
	 * Move pages back to the lru list.
1857
	 */
1858
	spin_lock_irq(&zone->lru_lock);
1859
	/*
1860 1861 1862
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1863
	 * get_scan_count.
1864
	 */
1865
	reclaim_stat->recent_rotated[file] += nr_rotated;
1866

1867 1868
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1869
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1870
	spin_unlock_irq(&zone->lru_lock);
1871

1872
	mem_cgroup_uncharge_list(&l_hold);
1873
	free_hot_cold_page_list(&l_hold, true);
Linus Torvalds's avatar
Linus Torvalds committed
1874 1875
}

1876
#ifdef CONFIG_SWAP
1877
static bool inactive_anon_is_low_global(struct zone *zone)
1878 1879 1880 1881 1882 1883
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

1884
	return inactive * zone->inactive_ratio < active;
1885 1886
}

1887 1888
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1889
 * @lruvec: LRU vector to check
1890 1891 1892 1893
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1894
static bool inactive_anon_is_low(struct lruvec *lruvec)
1895
{
1896 1897 1898 1899 1900
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
1901
		return false;
1902

1903
	if (!mem_cgroup_disabled())
1904
		return mem_cgroup_inactive_anon_is_low(lruvec);
1905

1906
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1907
}
1908
#else
1909
static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1910
{
1911
	return false;
1912 1913
}
#endif
1914

1915 1916
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1917
 * @lruvec: LRU vector to check
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1929
static bool inactive_file_is_low(struct lruvec *lruvec)
1930
{
1931 1932 1933 1934 1935
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1936

1937
	return active > inactive;
1938 1939
}

1940
static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1941
{
1942
	if (is_file_lru(lru))
1943
		return inactive_file_is_low(lruvec);
1944
	else
1945
		return inactive_anon_is_low(lruvec);
1946 1947
}

1948
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1949
				 struct lruvec *lruvec, struct scan_control *sc)
1950
{
1951
	if (is_active_lru(lru)) {
1952
		if (inactive_list_is_low(lruvec, lru))
1953
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1954 1955 1956
		return 0;
	}

1957
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1958 1959
}

1960 1961 1962 1963 1964 1965 1966
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1967 1968 1969 1970 1971 1972
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1973 1974
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1975
 */
1976
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1977 1978
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1979
{
1980
	int swappiness = mem_cgroup_swappiness(memcg);
1981 1982 1983 1984
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1985
	unsigned long anon_prio, file_prio;
1986
	enum scan_balance scan_balance;
1987
	unsigned long anon, file;
1988
	bool force_scan = false;
1989
	unsigned long ap, fp;
Hugh Dickins's avatar
Hugh Dickins committed
1990
	enum lru_list lru;
1991 1992
	bool some_scanned;
	int pass;
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
2004 2005 2006
	if (current_is_kswapd()) {
		if (!zone_reclaimable(zone))
			force_scan = true;
2007
		if (!mem_cgroup_online(memcg))
2008 2009
			force_scan = true;
	}
2010
	if (!global_reclaim(sc))
2011
		force_scan = true;
2012 2013

	/* If we have no swap space, do not bother scanning anon pages. */
2014
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2015
		scan_balance = SCAN_FILE;
2016 2017
		goto out;
	}
2018

2019 2020 2021 2022 2023 2024 2025
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2026
	if (!global_reclaim(sc) && !swappiness) {
2027
		scan_balance = SCAN_FILE;
2028 2029 2030 2031 2032 2033 2034 2035
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2036
	if (!sc->priority && swappiness) {
2037
		scan_balance = SCAN_EQUAL;
2038 2039 2040
		goto out;
	}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
2051 2052 2053 2054 2055 2056
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
2057

2058
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2059 2060 2061 2062 2063
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2064
	/*
2065 2066 2067 2068 2069 2070 2071
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2072
	 */
2073 2074
	if (!inactive_file_is_low(lruvec) &&
	    get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2075
		scan_balance = SCAN_FILE;
2076 2077 2078
		goto out;
	}

2079 2080
	scan_balance = SCAN_FRACT;

2081 2082 2083 2084
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2085
	anon_prio = swappiness;
2086
	file_prio = 200 - anon_prio;
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2099 2100 2101 2102 2103 2104

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

2105
	spin_lock_irq(&zone->lru_lock);
2106 2107 2108
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2109 2110
	}

2111 2112 2113
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2114 2115 2116
	}

	/*
2117 2118 2119
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2120
	 */
2121
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2122
	ap /= reclaim_stat->recent_rotated[0] + 1;
2123

2124
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2125
	fp /= reclaim_stat->recent_rotated[1] + 1;
2126
	spin_unlock_irq(&zone->lru_lock);
2127

2128 2129 2130 2131
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2132 2133 2134
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2135
		*lru_pages = 0;
2136 2137 2138 2139
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2140

2141 2142
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2143

2144 2145
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2162 2163
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2164
					scan = 0;
2165
				}
2166 2167 2168 2169 2170
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2171 2172

			*lru_pages += size;
2173
			nr[lru] = scan;
2174

2175
			/*
2176 2177
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2178
			 */
2179
			some_scanned |= !!scan;
2180
		}
2181
	}
2182
}
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
static void init_tlb_ubc(void)
{
	/*
	 * This deliberately does not clear the cpumask as it's expensive
	 * and unnecessary. If there happens to be data in there then the
	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
	 * then will be cleared.
	 */
	current->tlb_ubc.flush_required = false;
}
#else
static inline void init_tlb_ubc(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

2201 2202 2203
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2204 2205
static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
			      struct scan_control *sc, unsigned long *lru_pages)
2206
{
2207
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2208
	unsigned long nr[NR_LRU_LISTS];
2209
	unsigned long targets[NR_LRU_LISTS];
2210 2211 2212 2213 2214
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2215
	bool scan_adjusted;
2216

2217
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2218

2219 2220 2221
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2236 2237
	init_tlb_ubc();

2238 2239 2240
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2241 2242 2243
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2244 2245 2246 2247 2248 2249 2250 2251 2252
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2253 2254 2255 2256 2257 2258

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2259
		 * requested. Ensure that the anon and file LRUs are scanned
2260 2261 2262 2263 2264 2265 2266
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2267 2268 2269 2270 2271 2272 2273 2274 2275
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

2322
/* Use reclaim/compaction for costly allocs or under memory pressure */
2323
static bool in_reclaim_compaction(struct scan_control *sc)
2324
{
2325
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2326
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2327
			 sc->priority < DEF_PRIORITY - 2))
2328 2329 2330 2331 2332
		return true;

	return false;
}

2333
/*
2334 2335 2336 2337 2338
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2339
 */
2340
static inline bool should_continue_reclaim(struct zone *zone,
2341 2342 2343 2344 2345 2346 2347 2348
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2349
	if (!in_reclaim_compaction(sc))
2350 2351
		return false;

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2374 2375 2376 2377 2378 2379

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2380
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2381
	if (get_nr_swap_pages() > 0)
2382
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2383 2384 2385 2386 2387
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2388
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2389 2390 2391 2392 2393 2394 2395 2396
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2397 2398
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
Linus Torvalds's avatar
Linus Torvalds committed
2399
{
2400
	struct reclaim_state *reclaim_state = current->reclaim_state;
2401
	unsigned long nr_reclaimed, nr_scanned;
2402
	bool reclaimable = false;
Linus Torvalds's avatar
Linus Torvalds committed
2403

2404 2405 2406 2407 2408 2409
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2410
		unsigned long zone_lru_pages = 0;
2411
		struct mem_cgroup *memcg;
2412

2413 2414
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
Linus Torvalds's avatar
Linus Torvalds committed
2415

2416 2417
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2418
			unsigned long lru_pages;
2419
			unsigned long reclaimed;
2420
			unsigned long scanned;
2421

2422 2423 2424 2425 2426 2427
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2428
			reclaimed = sc->nr_reclaimed;
2429
			scanned = sc->nr_scanned;
2430

2431
			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2432
			zone_lru_pages += lru_pages;
2433

2434 2435 2436 2437 2438
			if (memcg && is_classzone)
				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2439 2440 2441 2442 2443
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2444
			/*
2445 2446
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2447
			 * zone.
2448 2449 2450 2451 2452
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2453
			 */
2454 2455
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2456 2457 2458
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2459
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2460

2461 2462 2463 2464
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2465 2466 2467 2468 2469 2470 2471 2472
		if (global_reclaim(sc) && is_classzone)
			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
				    sc->nr_scanned - nr_scanned,
				    zone_lru_pages);

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2473 2474
		}

2475 2476
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2477 2478 2479
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2480 2481 2482
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2483 2484
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2485 2486

	return reclaimable;
2487 2488
}

2489 2490 2491 2492
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2493
static inline bool compaction_ready(struct zone *zone, int order)
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2504 2505
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2506
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2507
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2508 2509 2510 2511 2512

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2513
	if (compaction_deferred(zone, order))
2514 2515
		return watermark_ok;

2516 2517 2518 2519
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2520
	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2521 2522 2523 2524 2525
		return false;

	return watermark_ok;
}

Linus Torvalds's avatar
Linus Torvalds committed
2526 2527 2528 2529 2530
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2531 2532
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
Linus Torvalds's avatar
Linus Torvalds committed
2533 2534
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2535 2536 2537
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
Linus Torvalds's avatar
Linus Torvalds committed
2538 2539 2540
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2541 2542
 *
 * Returns true if a zone was reclaimable.
Linus Torvalds's avatar
Linus Torvalds committed
2543
 */
2544
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
Linus Torvalds's avatar
Linus Torvalds committed
2545
{
2546
	struct zoneref *z;
2547
	struct zone *zone;
2548 2549
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2550
	gfp_t orig_mask;
2551
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2552
	bool reclaimable = false;
2553

2554 2555 2556 2557 2558
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2559
	orig_mask = sc->gfp_mask;
2560 2561 2562
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2563
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2564
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2565 2566
		enum zone_type classzone_idx;

2567
		if (!populated_zone(zone))
Linus Torvalds's avatar
Linus Torvalds committed
2568
			continue;
2569 2570 2571 2572 2573 2574

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2575 2576 2577 2578
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2579
		if (global_reclaim(sc)) {
2580 2581
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2582
				continue;
2583

2584 2585
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2586
				continue;	/* Let kswapd poll it */
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2603
			}
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2617 2618
			if (nr_soft_reclaimed)
				reclaimable = true;
2619
			/* need some check for avoid more shrink_zone() */
2620
		}
2621

2622
		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2623 2624 2625 2626 2627
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
Linus Torvalds's avatar
Linus Torvalds committed
2628
	}
2629

2630 2631 2632 2633 2634
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2635

2636
	return reclaimable;
Linus Torvalds's avatar
Linus Torvalds committed
2637
}
2638

Linus Torvalds's avatar
Linus Torvalds committed
2639 2640 2641 2642 2643 2644 2645 2646
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2647 2648 2649 2650
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2651 2652 2653
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
Linus Torvalds's avatar
Linus Torvalds committed
2654
 */
2655
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2656
					  struct scan_control *sc)
Linus Torvalds's avatar
Linus Torvalds committed
2657
{
2658
	int initial_priority = sc->priority;
2659
	unsigned long total_scanned = 0;
2660
	unsigned long writeback_threshold;
2661
	bool zones_reclaimable;
2662
retry:
2663 2664
	delayacct_freepages_start();

2665
	if (global_reclaim(sc))
2666
		count_vm_event(ALLOCSTALL);
Linus Torvalds's avatar
Linus Torvalds committed
2667

2668
	do {
2669 2670
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2671
		sc->nr_scanned = 0;
2672
		zones_reclaimable = shrink_zones(zonelist, sc);
2673

2674
		total_scanned += sc->nr_scanned;
2675
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2676 2677 2678 2679
			break;

		if (sc->compaction_ready)
			break;
Linus Torvalds's avatar
Linus Torvalds committed
2680

2681 2682 2683 2684 2685 2686 2687
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

Linus Torvalds's avatar
Linus Torvalds committed
2688 2689 2690 2691 2692 2693 2694
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2695 2696
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2697 2698
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2699
			sc->may_writepage = 1;
Linus Torvalds's avatar
Linus Torvalds committed
2700
		}
2701
	} while (--sc->priority >= 0);
2702

2703 2704
	delayacct_freepages_end();

2705 2706 2707
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2708
	/* Aborted reclaim to try compaction? don't OOM, then */
2709
	if (sc->compaction_ready)
2710 2711
		return 1;

2712 2713 2714 2715 2716 2717 2718
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2719 2720
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2721 2722 2723
		return 1;

	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
2724 2725
}

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2736 2737
		if (!populated_zone(zone) ||
		    zone_reclaimable_pages(zone) == 0)
2738 2739
			continue;

2740 2741 2742 2743
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2744 2745 2746 2747
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2764 2765 2766 2767
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2768
 */
2769
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2770 2771
					nodemask_t *nodemask)
{
2772
	struct zoneref *z;
2773
	struct zone *zone;
2774
	pg_data_t *pgdat = NULL;
2775 2776 2777 2778 2779 2780 2781 2782 2783

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2784 2785 2786 2787 2788 2789 2790 2791
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2808
					gfp_zone(gfp_mask), nodemask) {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2821
		goto out;
2822

2823 2824 2825
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2837 2838

		goto check_pending;
2839 2840 2841 2842 2843
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2844 2845 2846 2847 2848 2849 2850

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2851 2852
}

2853
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2854
				gfp_t gfp_mask, nodemask_t *nodemask)
2855
{
2856
	unsigned long nr_reclaimed;
2857
	struct scan_control sc = {
2858
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2859
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2860 2861 2862
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2863
		.may_writepage = !laptop_mode,
2864
		.may_unmap = 1,
2865
		.may_swap = 1,
2866 2867
	};

2868
	/*
2869 2870 2871
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2872
	 */
2873
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2874 2875
		return 1;

2876 2877 2878 2879
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2880
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2881 2882 2883 2884

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2885 2886
}

2887
#ifdef CONFIG_MEMCG
2888

2889
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2890
						gfp_t gfp_mask, bool noswap,
2891 2892
						struct zone *zone,
						unsigned long *nr_scanned)
2893 2894
{
	struct scan_control sc = {
2895
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2896
		.target_mem_cgroup = memcg,
2897 2898 2899 2900
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2901
	unsigned long lru_pages;
2902

2903 2904
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2905

2906
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2907 2908 2909
						      sc.may_writepage,
						      sc.gfp_mask);

2910 2911 2912 2913 2914 2915 2916
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2917
	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2918 2919 2920

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2921
	*nr_scanned = sc.nr_scanned;
2922 2923 2924
	return sc.nr_reclaimed;
}

2925
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2926
					   unsigned long nr_pages,
KOSAKI Motohiro's avatar
KOSAKI Motohiro committed
2927
					   gfp_t gfp_mask,
2928
					   bool may_swap)
2929
{
2930
	struct zonelist *zonelist;
2931
	unsigned long nr_reclaimed;
2932
	int nid;
2933
	struct scan_control sc = {
2934
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2935 2936
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2937 2938 2939 2940
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2941
		.may_swap = may_swap,
2942
	};
2943

2944 2945 2946 2947 2948
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2949
	nid = mem_cgroup_select_victim_node(memcg);
2950 2951

	zonelist = NODE_DATA(nid)->node_zonelists;
2952 2953 2954 2955 2956

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2957
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2958 2959 2960 2961

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2962 2963 2964
}
#endif

2965
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2966
{
2967
	struct mem_cgroup *memcg;
2968

2969 2970 2971 2972 2973
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2974
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2975

2976
		if (inactive_anon_is_low(lruvec))
2977
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2978
					   sc, LRU_ACTIVE_ANON);
2979 2980 2981

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2982 2983
}

2984 2985 2986 2987
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2988
				    balance_gap, classzone_idx))
2989 2990
		return false;

2991 2992
	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
				order, 0, classzone_idx) == COMPACT_SKIPPED)
2993 2994 2995 2996 2997
		return false;

	return true;
}

2998
/*
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
3009 3010 3011 3012
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
Lucas De Marchi's avatar
Lucas De Marchi committed
3013
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
3014 3015 3016 3017
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
3018
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3019
{
3020
	unsigned long managed_pages = 0;
3021
	unsigned long balanced_pages = 0;
3022 3023
	int i;

3024 3025 3026
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
3027

3028 3029 3030
		if (!populated_zone(zone))
			continue;

3031
		managed_pages += zone->managed_pages;
3032 3033 3034 3035 3036 3037 3038 3039

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
3040
		if (!zone_reclaimable(zone)) {
3041
			balanced_pages += zone->managed_pages;
3042 3043 3044 3045
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
3046
			balanced_pages += zone->managed_pages;
3047 3048 3049 3050 3051
		else if (!order)
			return false;
	}

	if (order)
3052
		return balanced_pages >= (managed_pages >> 2);
3053 3054
	else
		return true;
3055 3056
}

3057 3058 3059 3060 3061 3062 3063
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3064
					int classzone_idx)
3065 3066 3067
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
3068 3069 3070
		return false;

	/*
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3082
	 */
3083 3084
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3085

3086
	return pgdat_balanced(pgdat, order, classzone_idx);
3087 3088
}

3089 3090 3091
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
3092 3093
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3094 3095
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3096
 */
3097
static bool kswapd_shrink_zone(struct zone *zone,
3098
			       int classzone_idx,
3099
			       struct scan_control *sc,
3100
			       unsigned long *nr_attempted)
3101
{
3102 3103 3104
	int testorder = sc->order;
	unsigned long balance_gap;
	bool lowmem_pressure;
3105 3106 3107

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3108 3109 3110 3111 3112 3113 3114 3115

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3116 3117
			compaction_suitable(zone, sc->order, 0, classzone_idx)
							!= COMPACT_SKIPPED)
3118 3119 3120 3121 3122 3123 3124 3125
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
3126 3127
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

3138
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3139

3140 3141 3142
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

Johannes Weiner's avatar
Johannes Weiner committed
3143
	clear_bit(ZONE_WRITEBACK, &zone->flags);
3144

3145 3146 3147 3148 3149 3150
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
3151
	if (zone_reclaimable(zone) &&
3152
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
Johannes Weiner's avatar
Johannes Weiner committed
3153 3154
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3155 3156
	}

3157
	return sc->nr_scanned >= sc->nr_to_reclaim;
3158 3159
}

Linus Torvalds's avatar
Linus Torvalds committed
3160 3161
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3162
 * they are all at high_wmark_pages(zone).
Linus Torvalds's avatar
Linus Torvalds committed
3163
 *
3164
 * Returns the final order kswapd was reclaiming at
Linus Torvalds's avatar
Linus Torvalds committed
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3175 3176 3177 3178 3179
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
Linus Torvalds's avatar
Linus Torvalds committed
3180
 */
3181
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3182
							int *classzone_idx)
Linus Torvalds's avatar
Linus Torvalds committed
3183 3184
{
	int i;
3185
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3186 3187
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3188 3189
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3190
		.order = order,
3191
		.priority = DEF_PRIORITY,
3192
		.may_writepage = !laptop_mode,
3193
		.may_unmap = 1,
3194
		.may_swap = 1,
3195
	};
3196
	count_vm_event(PAGEOUTRUN);
Linus Torvalds's avatar
Linus Torvalds committed
3197

3198
	do {
3199
		unsigned long nr_attempted = 0;
3200
		bool raise_priority = true;
3201
		bool pgdat_needs_compaction = (order > 0);
3202 3203

		sc.nr_reclaimed = 0;
Linus Torvalds's avatar
Linus Torvalds committed
3204

3205 3206 3207 3208 3209 3210
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
Linus Torvalds's avatar
Linus Torvalds committed
3211

3212 3213
			if (!populated_zone(zone))
				continue;
Linus Torvalds's avatar
Linus Torvalds committed
3214

3215 3216
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3217
				continue;
Linus Torvalds's avatar
Linus Torvalds committed
3218

3219 3220 3221 3222
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3223
			age_active_anon(zone, &sc);
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3236
			if (!zone_balanced(zone, order, 0, 0)) {
3237
				end_zone = i;
3238
				break;
3239
			} else {
3240 3241 3242 3243
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
Johannes Weiner's avatar
Johannes Weiner committed
3244 3245
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
Linus Torvalds's avatar
Linus Torvalds committed
3246 3247
			}
		}
3248

3249
		if (i < 0)
3250 3251
			goto out;

Linus Torvalds's avatar
Linus Torvalds committed
3252 3253 3254
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
			if (!populated_zone(zone))
				continue;

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
Linus Torvalds's avatar
Linus Torvalds committed
3268 3269
		}

3270 3271 3272 3273 3274 3275 3276
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

Linus Torvalds's avatar
Linus Torvalds committed
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3289
			if (!populated_zone(zone))
Linus Torvalds's avatar
Linus Torvalds committed
3290 3291
				continue;

3292 3293
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
Linus Torvalds's avatar
Linus Torvalds committed
3294 3295 3296
				continue;

			sc.nr_scanned = 0;
3297

3298 3299 3300 3301 3302 3303 3304 3305 3306
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3307
			/*
3308 3309 3310 3311
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3312
			 */
3313 3314
			if (kswapd_shrink_zone(zone, end_zone,
					       &sc, &nr_attempted))
3315
				raise_priority = false;
Linus Torvalds's avatar
Linus Torvalds committed
3316
		}
3317 3318 3319 3320 3321 3322 3323 3324

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3325
			wake_up_all(&pgdat->pfmemalloc_wait);
3326

Linus Torvalds's avatar
Linus Torvalds committed
3327
		/*
3328 3329 3330 3331 3332 3333
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
Linus Torvalds's avatar
Linus Torvalds committed
3334
		 */
3335 3336
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3337

3338 3339 3340
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3341

3342 3343 3344 3345 3346 3347 3348
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3349
		/*
3350 3351
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3352
		 */
3353 3354
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3355
	} while (sc.priority >= 1 &&
3356
		 !pgdat_balanced(pgdat, order, *classzone_idx));
Linus Torvalds's avatar
Linus Torvalds committed
3357

3358
out:
3359
	/*
3360
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3361 3362 3363 3364
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3365
	*classzone_idx = end_zone;
3366
	return order;
Linus Torvalds's avatar
Linus Torvalds committed
3367 3368
}

3369
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3380
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3381 3382 3383 3384 3385 3386 3387 3388 3389
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3390
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3402

3403 3404 3405 3406 3407 3408 3409 3410
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3411 3412 3413
		if (!kthread_should_stop())
			schedule();

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

Linus Torvalds's avatar
Linus Torvalds committed
3424 3425
/*
 * The background pageout daemon, started as a kernel thread
3426
 * from the init process.
Linus Torvalds's avatar
Linus Torvalds committed
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3439
	unsigned long order, new_order;
3440
	unsigned balanced_order;
3441
	int classzone_idx, new_classzone_idx;
3442
	int balanced_classzone_idx;
Linus Torvalds's avatar
Linus Torvalds committed
3443 3444
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3445

Linus Torvalds's avatar
Linus Torvalds committed
3446 3447 3448
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3449
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
Linus Torvalds's avatar
Linus Torvalds committed
3450

3451 3452
	lockdep_set_current_reclaim_state(GFP_KERNEL);

Rusty Russell's avatar
Rusty Russell committed
3453
	if (!cpumask_empty(cpumask))
3454
		set_cpus_allowed_ptr(tsk, cpumask);
Linus Torvalds's avatar
Linus Torvalds committed
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3469
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3470
	set_freezable();
Linus Torvalds's avatar
Linus Torvalds committed
3471

3472
	order = new_order = 0;
3473
	balanced_order = 0;
3474
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3475
	balanced_classzone_idx = classzone_idx;
Linus Torvalds's avatar
Linus Torvalds committed
3476
	for ( ; ; ) {
3477
		bool ret;
3478

3479 3480 3481 3482 3483
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3484 3485
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3486 3487 3488 3489 3490 3491
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3492
		if (order < new_order || classzone_idx > new_classzone_idx) {
Linus Torvalds's avatar
Linus Torvalds committed
3493 3494
			/*
			 * Don't sleep if someone wants a larger 'order'
3495
			 * allocation or has tigher zone constraints
Linus Torvalds's avatar
Linus Torvalds committed
3496 3497
			 */
			order = new_order;
3498
			classzone_idx = new_classzone_idx;
Linus Torvalds's avatar
Linus Torvalds committed
3499
		} else {
3500 3501
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
Linus Torvalds's avatar
Linus Torvalds committed
3502
			order = pgdat->kswapd_max_order;
3503
			classzone_idx = pgdat->classzone_idx;
3504 3505
			new_order = order;
			new_classzone_idx = classzone_idx;
3506
			pgdat->kswapd_max_order = 0;
3507
			pgdat->classzone_idx = pgdat->nr_zones - 1;
Linus Torvalds's avatar
Linus Torvalds committed
3508 3509
		}

3510 3511 3512 3513 3514 3515 3516 3517
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3518 3519
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3520 3521 3522
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3523
		}
Linus Torvalds's avatar
Linus Torvalds committed
3524
	}
3525

3526
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3527
	current->reclaim_state = NULL;
3528 3529
	lockdep_clear_current_reclaim_state();

Linus Torvalds's avatar
Linus Torvalds committed
3530 3531 3532 3533 3534 3535
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3536
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
Linus Torvalds's avatar
Linus Torvalds committed
3537 3538 3539
{
	pg_data_t *pgdat;

3540
	if (!populated_zone(zone))
Linus Torvalds's avatar
Linus Torvalds committed
3541 3542
		return;

3543
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
Linus Torvalds's avatar
Linus Torvalds committed
3544
		return;
3545
	pgdat = zone->zone_pgdat;
3546
	if (pgdat->kswapd_max_order < order) {
Linus Torvalds's avatar
Linus Torvalds committed
3547
		pgdat->kswapd_max_order = order;
3548 3549
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3550
	if (!waitqueue_active(&pgdat->kswapd_wait))
Linus Torvalds's avatar
Linus Torvalds committed
3551
		return;
3552
	if (zone_balanced(zone, order, 0, 0))
3553 3554 3555
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3556
	wake_up_interruptible(&pgdat->kswapd_wait);
Linus Torvalds's avatar
Linus Torvalds committed
3557 3558
}

3559
#ifdef CONFIG_HIBERNATION
Linus Torvalds's avatar
Linus Torvalds committed
3560
/*
3561
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3562 3563 3564 3565 3566
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
Linus Torvalds's avatar
Linus Torvalds committed
3567
 */
3568
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
Linus Torvalds's avatar
Linus Torvalds committed
3569
{
3570 3571
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3572
		.nr_to_reclaim = nr_to_reclaim,
3573
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3574
		.priority = DEF_PRIORITY,
3575
		.may_writepage = 1,
3576 3577
		.may_unmap = 1,
		.may_swap = 1,
3578
		.hibernation_mode = 1,
Linus Torvalds's avatar
Linus Torvalds committed
3579
	};
3580
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3581 3582
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
Linus Torvalds's avatar
Linus Torvalds committed
3583

3584 3585 3586 3587
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3588

3589
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3590

3591 3592 3593
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3594

3595
	return nr_reclaimed;
Linus Torvalds's avatar
Linus Torvalds committed
3596
}
3597
#endif /* CONFIG_HIBERNATION */
Linus Torvalds's avatar
Linus Torvalds committed
3598 3599 3600 3601 3602

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3603 3604
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
Linus Torvalds's avatar
Linus Torvalds committed
3605
{
3606
	int nid;
Linus Torvalds's avatar
Linus Torvalds committed
3607

3608
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3609
		for_each_node_state(nid, N_MEMORY) {
3610
			pg_data_t *pgdat = NODE_DATA(nid);
3611 3612 3613
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3614

3615
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
Linus Torvalds's avatar
Linus Torvalds committed
3616
				/* One of our CPUs online: restore mask */
3617
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
Linus Torvalds's avatar
Linus Torvalds committed
3618 3619 3620 3621 3622
		}
	}
	return NOTIFY_OK;
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3639 3640
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3641
		pgdat->kswapd = NULL;
3642 3643 3644 3645
	}
	return ret;
}

3646
/*
3647
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3648
 * hold mem_hotplug_begin/end().
3649 3650 3651 3652 3653
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3654
	if (kswapd) {
3655
		kthread_stop(kswapd);
3656 3657
		NODE_DATA(nid)->kswapd = NULL;
	}
3658 3659
}

Linus Torvalds's avatar
Linus Torvalds committed
3660 3661
static int __init kswapd_init(void)
{
3662
	int nid;
3663

Linus Torvalds's avatar
Linus Torvalds committed
3664
	swap_setup();
3665
	for_each_node_state(nid, N_MEMORY)
3666
 		kswapd_run(nid);
Linus Torvalds's avatar
Linus Torvalds committed
3667 3668 3669 3670 3671
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3682
#define RECLAIM_OFF 0
3683
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3684
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3685
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3686

3687 3688 3689 3690 3691 3692 3693
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3694 3695 3696 3697 3698 3699
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3700 3701 3702 3703 3704 3705
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3721
static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3722
{
3723 3724
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3725 3726

	/*
3727
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3728 3729 3730 3731
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
3732
	if (zone_reclaim_mode & RECLAIM_UNMAP)
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3748 3749 3750
/*
 * Try to free up some pages from this zone through reclaim.
 */
3751
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3752
{
3753
	/* Minimum pages needed in order to stay on node */
3754
	const unsigned long nr_pages = 1 << order;
3755 3756
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3757
	struct scan_control sc = {
3758
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3759
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3760
		.order = order,
3761
		.priority = ZONE_RECLAIM_PRIORITY,
3762
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3763
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3764
		.may_swap = 1,
3765
	};
3766 3767

	cond_resched();
3768
	/*
3769
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3770
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3771
	 * and RECLAIM_UNMAP.
3772 3773
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3774
	lockdep_set_current_reclaim_state(gfp_mask);
3775 3776
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3777

3778
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3779 3780 3781 3782 3783
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3784
			shrink_zone(zone, &sc, true);
3785
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3786
	}
3787

3788
	p->reclaim_state = NULL;
3789
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3790
	lockdep_clear_current_reclaim_state();
3791
	return sc.nr_reclaimed >= nr_pages;
3792
}
3793 3794 3795 3796

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3797
	int ret;
3798 3799

	/*
3800 3801
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3802
	 *
3803 3804 3805 3806 3807
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3808
	 */
3809 3810
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3811
		return ZONE_RECLAIM_FULL;
3812

3813
	if (!zone_reclaimable(zone))
3814
		return ZONE_RECLAIM_FULL;
3815

3816
	/*
3817
	 * Do not scan if the allocation should not be delayed.
3818
	 */
3819
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3820
		return ZONE_RECLAIM_NOSCAN;
3821 3822 3823 3824 3825 3826 3827

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3828
	node_id = zone_to_nid(zone);
3829
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3830
		return ZONE_RECLAIM_NOSCAN;
3831

Johannes Weiner's avatar
Johannes Weiner committed
3832
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3833 3834
		return ZONE_RECLAIM_NOSCAN;

3835
	ret = __zone_reclaim(zone, gfp_mask, order);
Johannes Weiner's avatar
Johannes Weiner committed
3836
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3837

3838 3839 3840
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3841
	return ret;
3842
}
3843
#endif
3844 3845 3846 3847 3848 3849

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3850
 * lists vs unevictable list.
3851 3852
 *
 * Reasons page might not be evictable:
3853
 * (1) page's mapping marked unevictable
3854
 * (2) page is part of an mlocked VMA
3855
 *
3856
 */
3857
int page_evictable(struct page *page)
3858
{
3859
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3860
}
3861

3862
#ifdef CONFIG_SHMEM
3863
/**
3864 3865 3866
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3867
 *
3868
 * Checks pages for evictability and moves them to the appropriate lru list.
3869 3870
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3871
 */
3872
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3873
{
3874
	struct lruvec *lruvec;
3875 3876 3877 3878
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3879

3880 3881 3882
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3883

3884 3885 3886 3887 3888 3889 3890 3891
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3892
		lruvec = mem_cgroup_page_lruvec(page, zone);
3893

3894 3895
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3896

3897
		if (page_evictable(page)) {
3898 3899
			enum lru_list lru = page_lru_base_type(page);

3900
			VM_BUG_ON_PAGE(PageActive(page), page);
3901
			ClearPageUnevictable(page);
3902 3903
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3904
			pgrescued++;
3905
		}
3906
	}
3907

3908 3909 3910 3911
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3912 3913
	}
}
3914
#endif /* CONFIG_SHMEM */