futex.c 75.2 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
Eric Dumazet's avatar
Eric Dumazet committed
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
Linus Torvalds's avatar
Linus Torvalds committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/export.h>
59
#include <linux/magic.h>
60 61
#include <linux/pid.h>
#include <linux/nsproxy.h>
62
#include <linux/ptrace.h>
63
#include <linux/hugetlb.h>
64

65
#include <asm/futex.h>
Linus Torvalds's avatar
Linus Torvalds committed
66

67 68
#include "rtmutex_common.h"

69 70
int __read_mostly futex_cmpxchg_enabled;

Linus Torvalds's avatar
Linus Torvalds committed
71 72
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

73 74 75 76 77 78 79 80
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

102 103
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
104
 * @list:		priority-sorted list of tasks waiting on this futex
105 106 107 108 109 110 111 112 113
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
Linus Torvalds's avatar
Linus Torvalds committed
114 115 116
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
Pierre Peiffer's avatar
Pierre Peiffer committed
117
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118
 * The order of wakeup is always to make the first condition true, then
119 120 121 122
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
Linus Torvalds's avatar
Linus Torvalds committed
123 124
 */
struct futex_q {
Pierre Peiffer's avatar
Pierre Peiffer committed
125
	struct plist_node list;
Linus Torvalds's avatar
Linus Torvalds committed
126

127
	struct task_struct *task;
Linus Torvalds's avatar
Linus Torvalds committed
128 129
	spinlock_t *lock_ptr;
	union futex_key key;
130
	struct futex_pi_state *pi_state;
131
	struct rt_mutex_waiter *rt_waiter;
132
	union futex_key *requeue_pi_key;
133
	u32 bitset;
Linus Torvalds's avatar
Linus Torvalds committed
134 135
};

136 137 138 139 140 141
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

Linus Torvalds's avatar
Linus Torvalds committed
142
/*
Darren Hart's avatar
Darren Hart committed
143 144 145
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
Linus Torvalds's avatar
Linus Torvalds committed
146 147
 */
struct futex_hash_bucket {
Pierre Peiffer's avatar
Pierre Peiffer committed
148 149
	spinlock_t lock;
	struct plist_head chain;
Linus Torvalds's avatar
Linus Torvalds committed
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
170 171
	return (key1 && key2
		&& key1->both.word == key2->both.word
Linus Torvalds's avatar
Linus Torvalds committed
172 173 174 175
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

176 177 178 179 180 181 182 183 184 185 186 187
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
Al Viro's avatar
Al Viro committed
188
		ihold(key->shared.inode);
189 190 191 192 193 194 195 196 197 198 199 200 201
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
202 203 204
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
205
		return;
206
	}
207 208 209 210 211 212 213 214 215 216 217

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

Eric Dumazet's avatar
Eric Dumazet committed
218
/**
219 220 221 222
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
223 224
 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 *              VERIFY_WRITE)
Eric Dumazet's avatar
Eric Dumazet committed
225 226 227
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
Linus Torvalds's avatar
Linus Torvalds committed
228
 *
229
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
Linus Torvalds's avatar
Linus Torvalds committed
230 231 232
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
Darren Hart's avatar
Darren Hart committed
233
 * lock_page() might sleep, the caller should not hold a spinlock.
Linus Torvalds's avatar
Linus Torvalds committed
234
 */
235
static int
236
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
Linus Torvalds's avatar
Linus Torvalds committed
237
{
238
	unsigned long address = (unsigned long)uaddr;
Linus Torvalds's avatar
Linus Torvalds committed
239
	struct mm_struct *mm = current->mm;
240
	struct page *page, *page_head;
241
	int err, ro = 0;
Linus Torvalds's avatar
Linus Torvalds committed
242 243 244 245

	/*
	 * The futex address must be "naturally" aligned.
	 */
246
	key->both.offset = address % PAGE_SIZE;
Eric Dumazet's avatar
Eric Dumazet committed
247
	if (unlikely((address % sizeof(u32)) != 0))
Linus Torvalds's avatar
Linus Torvalds committed
248
		return -EINVAL;
249
	address -= key->both.offset;
Linus Torvalds's avatar
Linus Torvalds committed
250

Eric Dumazet's avatar
Eric Dumazet committed
251 252 253 254 255 256 257 258
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
259
		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
Eric Dumazet's avatar
Eric Dumazet committed
260 261 262
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
263
		get_futex_key_refs(key);
Eric Dumazet's avatar
Eric Dumazet committed
264 265
		return 0;
	}
Linus Torvalds's avatar
Linus Torvalds committed
266

267
again:
268
	err = get_user_pages_fast(address, 1, 1, &page);
269 270 271 272 273 274 275 276
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == VERIFY_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
277 278
	if (err < 0)
		return err;
279 280
	else
		err = 0;
281

282 283 284
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
285
		put_page(page);
286 287
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
288
		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

	/*
	 * If page_head->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page_head->mapping.
	 */
335
	if (!page_head->mapping) {
336
		int shmem_swizzled = PageSwapCache(page_head);
337 338
		unlock_page(page_head);
		put_page(page_head);
339 340 341
		if (shmem_swizzled)
			goto again;
		return -EFAULT;
342
	}
Linus Torvalds's avatar
Linus Torvalds committed
343 344 345 346 347 348

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
349
	 * the object not the particular process.
Linus Torvalds's avatar
Linus Torvalds committed
350
	 */
351
	if (PageAnon(page_head)) {
352 353 354 355 356 357 358 359 360
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (ro) {
			err = -EFAULT;
			goto out;
		}

361
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
Linus Torvalds's avatar
Linus Torvalds committed
362
		key->private.mm = mm;
363
		key->private.address = address;
364 365
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
366
		key->shared.inode = page_head->mapping->host;
367
		key->shared.pgoff = basepage_index(page);
Linus Torvalds's avatar
Linus Torvalds committed
368 369
	}

370
	get_futex_key_refs(key);
Linus Torvalds's avatar
Linus Torvalds committed
371

372
out:
373 374
	unlock_page(page_head);
	put_page(page_head);
375
	return err;
Linus Torvalds's avatar
Linus Torvalds committed
376 377
}

378
static inline void put_futex_key(union futex_key *key)
Linus Torvalds's avatar
Linus Torvalds committed
379
{
380
	drop_futex_key_refs(key);
Linus Torvalds's avatar
Linus Torvalds committed
381 382
}

383 384
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
385 386 387 388 389
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
390
 * We have no generic implementation of a non-destructive write to the
391 392 393 394 395 396
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
397 398 399 400
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
401 402
	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE);
403 404
	up_read(&mm->mmap_sem);

405 406 407
	return ret < 0 ? ret : 0;
}

408 409
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
410 411
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

427 428
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
Thomas Gleixner's avatar
Thomas Gleixner committed
429
{
430
	int ret;
Thomas Gleixner's avatar
Thomas Gleixner committed
431 432

	pagefault_disable();
433
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
Thomas Gleixner's avatar
Thomas Gleixner committed
434 435
	pagefault_enable();

436
	return ret;
Thomas Gleixner's avatar
Thomas Gleixner committed
437 438 439
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
Linus Torvalds's avatar
Linus Torvalds committed
440 441 442
{
	int ret;

443
	pagefault_disable();
444
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
445
	pagefault_enable();
Linus Torvalds's avatar
Linus Torvalds committed
446 447 448 449

	return ret ? -EFAULT : 0;
}

450 451 452 453 454 455 456 457 458 459 460

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

461
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
462 463 464 465 466 467 468 469

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
470
	pi_state->key = FUTEX_KEY_INIT;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
497
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
498
		list_del_init(&pi_state->list);
499
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

526
	rcu_read_lock();
527
	p = find_task_by_vpid(pid);
528 529
	if (p)
		get_task_struct(p);
530

531
	rcu_read_unlock();
532 533 534 535 536 537 538 539 540 541 542 543 544

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
545
	struct futex_hash_bucket *hb;
546
	union futex_key key = FUTEX_KEY_INIT;
547

548 549
	if (!futex_cmpxchg_enabled)
		return;
550 551 552
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
553
	 * versus waiters unqueueing themselves:
554
	 */
555
	raw_spin_lock_irq(&curr->pi_lock);
556 557 558 559 560
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
561
		hb = hash_futex(&key);
562
		raw_spin_unlock_irq(&curr->pi_lock);
563 564 565

		spin_lock(&hb->lock);

566
		raw_spin_lock_irq(&curr->pi_lock);
567 568 569 570
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
571 572 573 574 575 576
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
577 578
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
579
		pi_state->owner = NULL;
580
		raw_spin_unlock_irq(&curr->pi_lock);
581 582 583 584 585

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

586
		raw_spin_lock_irq(&curr->pi_lock);
587
	}
588
	raw_spin_unlock_irq(&curr->pi_lock);
589 590
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync.
 */
640
static int
Pierre Peiffer's avatar
Pierre Peiffer committed
641
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
642
		union futex_key *key, struct futex_pi_state **ps)
643 644 645
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
Pierre Peiffer's avatar
Pierre Peiffer committed
646
	struct plist_head *head;
647
	struct task_struct *p;
648
	pid_t pid = uval & FUTEX_TID_MASK;
649 650 651

	head = &hb->chain;

Pierre Peiffer's avatar
Pierre Peiffer committed
652
	plist_for_each_entry_safe(this, next, head, list) {
Pierre Peiffer's avatar
Pierre Peiffer committed
653
		if (match_futex(&this->key, key)) {
654
			/*
655 656
			 * Sanity check the waiter before increasing
			 * the refcount and attaching to it.
657 658
			 */
			pi_state = this->pi_state;
659
			/*
660 661
			 * Userspace might have messed up non-PI and
			 * PI futexes [3]
662 663 664 665
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

666
			WARN_ON(!atomic_read(&pi_state->refcount));
667 668

			/*
669
			 * Handle the owner died case:
670
			 */
671
			if (uval & FUTEX_OWNER_DIED) {
672
				/*
673 674 675 676
				 * exit_pi_state_list sets owner to NULL and
				 * wakes the topmost waiter. The task which
				 * acquires the pi_state->rt_mutex will fixup
				 * owner.
677
				 */
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
				if (!pi_state->owner) {
					/*
					 * No pi state owner, but the user
					 * space TID is not 0. Inconsistent
					 * state. [5]
					 */
					if (pid)
						return -EINVAL;
					/*
					 * Take a ref on the state and
					 * return. [4]
					 */
					goto out_state;
				}

				/*
				 * If TID is 0, then either the dying owner
				 * has not yet executed exit_pi_state_list()
				 * or some waiter acquired the rtmutex in the
				 * pi state, but did not yet fixup the TID in
				 * user space.
				 *
				 * Take a ref on the state and return. [6]
				 */
				if (!pid)
					goto out_state;
			} else {
				/*
				 * If the owner died bit is not set,
				 * then the pi_state must have an
				 * owner. [7]
				 */
				if (!pi_state->owner)
711 712
					return -EINVAL;
			}
713

714
			/*
715 716 717 718
			 * Bail out if user space manipulated the
			 * futex value. If pi state exists then the
			 * owner TID must be the same as the user
			 * space TID. [9/10]
719
			 */
720 721
			if (pid != task_pid_vnr(pi_state->owner))
				return -EINVAL;
722

723
		out_state:
724
			atomic_inc(&pi_state->refcount);
Pierre Peiffer's avatar
Pierre Peiffer committed
725
			*ps = pi_state;
726 727 728 729 730
			return 0;
		}
	}

	/*
731
	 * We are the first waiter - try to look up the real owner and attach
732
	 * the new pi_state to it, but bail out when TID = 0 [1]
733
	 */
734
	if (!pid)
735
		return -ESRCH;
736
	p = futex_find_get_task(pid);
737 738
	if (!p)
		return -ESRCH;
739

740 741 742 743 744
	if (!p->mm) {
		put_task_struct(p);
		return -EPERM;
	}

745 746 747 748 749 750
	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
751
	raw_spin_lock_irq(&p->pi_lock);
752 753 754 755 756 757 758 759
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

760
		raw_spin_unlock_irq(&p->pi_lock);
761 762 763
		put_task_struct(p);
		return ret;
	}
764

765 766 767
	/*
	 * No existing pi state. First waiter. [2]
	 */
768 769 770 771 772 773 774 775 776
	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
Pierre Peiffer's avatar
Pierre Peiffer committed
777
	pi_state->key = *key;
778

779
	WARN_ON(!list_empty(&pi_state->list));
780 781
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
782
	raw_spin_unlock_irq(&p->pi_lock);
783 784 785

	put_task_struct(p);

Pierre Peiffer's avatar
Pierre Peiffer committed
786
	*ps = pi_state;
787 788 789 790

	return 0;
}

791
/**
792
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
793 794 795 796 797 798 799 800
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
801 802 803 804 805 806 807 808 809 810 811
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
812
				struct task_struct *task, int set_waiters)
813
{
814
	int lock_taken, ret, force_take = 0;
815
	u32 uval, newval, curval, vpid = task_pid_vnr(task);
816 817 818 819 820 821 822 823 824

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
825
	newval = vpid;
826 827
	if (set_waiters)
		newval |= FUTEX_WAITERS;
828

829
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
830 831 832 833 834
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
835
	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
836 837 838
		return -EDEADLK;

	/*
839
	 * Surprise - we got the lock, but we do not trust user space at all.
840
	 */
841 842 843 844 845 846 847 848 849 850
	if (unlikely(!curval)) {
		/*
		 * We verify whether there is kernel state for this
		 * futex. If not, we can safely assume, that the 0 ->
		 * TID transition is correct. If state exists, we do
		 * not bother to fixup the user space state as it was
		 * corrupted already.
		 */
		return futex_top_waiter(hb, key) ? -EINVAL : 1;
	}
851 852 853 854 855 856 857 858 859 860

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
861
	 * Should we force take the futex? See below.
862
	 */
863 864 865 866 867
	if (unlikely(force_take)) {
		/*
		 * Keep the OWNER_DIED and the WAITERS bit and set the
		 * new TID value.
		 */
868
		newval = (curval & ~FUTEX_TID_MASK) | vpid;
869
		force_take = 0;
870 871 872
		lock_taken = 1;
	}

873
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
874 875 876 877 878
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
879
	 * We took the lock due to forced take over.
880 881 882 883 884 885 886 887
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
888
	ret = lookup_pi_state(uval, hb, key, ps);
889 890 891 892 893

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
894 895 896 897 898 899 900 901
			 * We failed to find an owner for this
			 * futex. So we have no pi_state to block
			 * on. This can happen in two cases:
			 *
			 * 1) The owner died
			 * 2) A stale FUTEX_WAITERS bit
			 *
			 * Re-read the futex value.
902 903 904 905 906
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
907 908 909
			 * If the owner died or we have a stale
			 * WAITERS bit the owner TID in the user space
			 * futex is 0.
910
			 */
911 912
			if (!(curval & FUTEX_TID_MASK)) {
				force_take = 1;
913 914 915 916 917 918 919 920 921 922
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

923 924 925 926 927 928 929 930 931 932
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

933 934
	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
	    || WARN_ON(plist_node_empty(&q->list)))
935 936 937 938 939 940
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
}

Linus Torvalds's avatar
Linus Torvalds committed
941 942 943 944 945 946
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
Thomas Gleixner's avatar
Thomas Gleixner committed
947 948
	struct task_struct *p = q->task;

949 950 951
	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

Linus Torvalds's avatar
Linus Torvalds committed
952
	/*
Thomas Gleixner's avatar
Thomas Gleixner committed
953
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
954 955
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
Thomas Gleixner's avatar
Thomas Gleixner committed
956 957
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
Linus Torvalds's avatar
Linus Torvalds committed
958
	 */
Thomas Gleixner's avatar
Thomas Gleixner committed
959 960
	get_task_struct(p);

961
	__unqueue_futex(q);
Linus Torvalds's avatar
Linus Torvalds committed
962
	/*
Thomas Gleixner's avatar
Thomas Gleixner committed
963 964 965 966
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
Linus Torvalds's avatar
Linus Torvalds committed
967
	 */
968
	smp_wmb();
Linus Torvalds's avatar
Linus Torvalds committed
969
	q->lock_ptr = NULL;
Thomas Gleixner's avatar
Thomas Gleixner committed
970 971 972

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
Linus Torvalds's avatar
Linus Torvalds committed
973 974
}

975 976 977 978
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
979
	u32 uninitialized_var(curval), newval;
980
	int ret = 0;
981 982 983 984

	if (!pi_state)
		return -EINVAL;

985 986 987 988 989 990 991
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

992
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
993 994 995
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
996 997 998
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
999 1000 1001 1002 1003
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
1004 1005 1006
	 * We pass it to the next owner. The WAITERS bit is always
	 * kept enabled while there is PI state around. We cleanup the
	 * owner died bit, because we are the owner.
1007
	 */
1008
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1009

1010 1011 1012 1013 1014 1015 1016
	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
		ret = -EFAULT;
	else if (curval != uval)
		ret = -EINVAL;
	if (ret) {
		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
		return ret;
1017
	}
1018

1019
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1020 1021
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
1022
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1023

1024
	raw_spin_lock_irq(&new_owner->pi_lock);
1025
	WARN_ON(!list_empty(&pi_state->list));
1026 1027
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
1028
	raw_spin_unlock_irq(&new_owner->pi_lock);
1029

1030
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1031 1032 1033 1034 1035 1036 1037
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
1038
	u32 uninitialized_var(oldval);
1039 1040 1041 1042 1043

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
1044 1045
	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
		return -EFAULT;
1046 1047 1048 1049 1050 1051
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

Ingo Molnar's avatar
Ingo Molnar committed
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

Darren Hart's avatar
Darren Hart committed
1068 1069 1070
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
1071
	spin_unlock(&hb1->lock);
1072 1073
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
Darren Hart's avatar
Darren Hart committed
1074 1075
}

Linus Torvalds's avatar
Linus Torvalds committed
1076
/*
Darren Hart's avatar
Darren Hart committed
1077
 * Wake up waiters matching bitset queued on this futex (uaddr).
Linus Torvalds's avatar
Linus Torvalds committed
1078
 */
1079 1080
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
Linus Torvalds's avatar
Linus Torvalds committed
1081
{
1082
	struct futex_hash_bucket *hb;
Linus Torvalds's avatar
Linus Torvalds committed
1083
	struct futex_q *this, *next;
Pierre Peiffer's avatar
Pierre Peiffer committed
1084
	struct plist_head *head;
1085
	union futex_key key = FUTEX_KEY_INIT;
Linus Torvalds's avatar
Linus Torvalds committed
1086 1087
	int ret;

1088 1089 1090
	if (!bitset)
		return -EINVAL;

1091
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
Linus Torvalds's avatar
Linus Torvalds committed
1092 1093 1094
	if (unlikely(ret != 0))
		goto out;

1095 1096 1097
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
Linus Torvalds's avatar
Linus Torvalds committed
1098

Pierre Peiffer's avatar
Pierre Peiffer committed
1099
	plist_for_each_entry_safe(this, next, head, list) {
Linus Torvalds's avatar
Linus Torvalds committed
1100
		if (match_futex (&this->key, &key)) {
1101
			if (this->pi_state || this->rt_waiter) {
1102 1103 1104
				ret = -EINVAL;
				break;
			}
1105 1106 1107 1108 1109

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

Linus Torvalds's avatar
Linus Torvalds committed
1110 1111 1112 1113 1114 1115
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

1116
	spin_unlock(&hb->lock);
1117
	put_futex_key(&key);
1118
out:
Linus Torvalds's avatar
Linus Torvalds committed
1119 1120 1121
	return ret;
}

1122 1123 1124 1125
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
1126
static int
1127
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1128
	      int nr_wake, int nr_wake2, int op)
1129
{
1130
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1131
	struct futex_hash_bucket *hb1, *hb2;
Pierre Peiffer's avatar
Pierre Peiffer committed
1132
	struct plist_head *head;
1133
	struct futex_q *this, *next;
Darren Hart's avatar
Darren Hart committed
1134
	int ret, op_ret;
1135

Darren Hart's avatar
Darren Hart committed
1136
retry:
1137
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1138 1139
	if (unlikely(ret != 0))
		goto out;
1140
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1141
	if (unlikely(ret != 0))
1142
		goto out_put_key1;
1143

1144 1145
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
1146

Darren Hart's avatar
Darren Hart committed
1147
retry_private:
Thomas Gleixner's avatar
Thomas Gleixner committed
1148
	double_lock_hb(hb1, hb2);
1149
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1150 1151
	if (unlikely(op_ret < 0)) {

Darren Hart's avatar
Darren Hart committed
1152
		double_unlock_hb(hb1, hb2);
1153

1154
#ifndef CONFIG_MMU
1155 1156 1157 1158
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1159
		ret = op_ret;
1160
		goto out_put_keys;
1161 1162
#endif

1163 1164
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1165
			goto out_put_keys;
1166 1167
		}

1168
		ret = fault_in_user_writeable(uaddr2);
1169
		if (ret)
1170
			goto out_put_keys;
1171

1172
		if (!(flags & FLAGS_SHARED))
Darren Hart's avatar
Darren Hart committed
1173 1174
			goto retry_private;

1175 1176
		put_futex_key(&key2);
		put_futex_key(&key1);
Darren Hart's avatar
Darren Hart committed
1177
		goto retry;
1178 1179
	}

1180
	head = &hb1->chain;
1181

Pierre Peiffer's avatar
Pierre Peiffer committed
1182
	plist_for_each_entry_safe(this, next, head, list) {
1183
		if (match_futex (&this->key, &key1)) {
1184 1185 1186 1187
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
1188 1189 1190 1191 1192 1193 1194
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
1195
		head = &hb2->chain;
1196 1197

		op_ret = 0;
Pierre Peiffer's avatar
Pierre Peiffer committed
1198
		plist_for_each_entry_safe(this, next, head, list) {
1199
			if (match_futex (&this->key, &key2)) {
1200 1201 1202 1203
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
1204 1205 1206 1207 1208 1209 1210 1211
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

1212
out_unlock:
Darren Hart's avatar
Darren Hart committed
1213
	double_unlock_hb(hb1, hb2);
1214
out_put_keys:
1215
	put_futex_key(&key2);
1216
out_put_key1:
1217
	put_futex_key(&key1);
1218
out:
1219 1220 1221
	return ret;
}

Darren Hart's avatar
Darren Hart committed
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1247 1248
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1249 1250 1251
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1252 1253 1254 1255 1256
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1257 1258 1259
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1260 1261
 */
static inline
1262 1263
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1264 1265 1266 1267
{
	get_futex_key_refs(key);
	q->key = *key;

1268
	__unqueue_futex(q);
1269 1270 1271 1272

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1273 1274
	q->lock_ptr = &hb->lock;

Thomas Gleixner's avatar
Thomas Gleixner committed
1275
	wake_up_state(q->task, TASK_NORMAL);
1276 1277 1278 1279
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1280 1281 1282 1283 1284 1285 1286
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1287 1288
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1289 1290 1291
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1292 1293 1294
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
1295
 * >0 - acquired the lock, return value is vpid of the top_waiter
1296 1297 1298 1299 1300 1301
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1302
				 struct futex_pi_state **ps, int set_waiters)
1303
{
1304
	struct futex_q *top_waiter = NULL;
1305
	u32 curval;
1306
	int ret, vpid;
1307 1308 1309 1310

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1319 1320 1321 1322 1323 1324
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1325 1326 1327 1328
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1329
	/*
1330 1331 1332
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1333
	 */
1334
	vpid = task_pid_vnr(top_waiter->task);
1335 1336
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1337
	if (ret == 1) {
1338
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1339 1340
		return vpid;
	}
1341 1342 1343 1344 1345
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1346
 * @uaddr1:	source futex user address
1347
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1348 1349 1350 1351 1352
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1353
 *		pi futex (pi to pi requeue is not supported)
1354 1355 1356 1357 1358 1359 1360
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
Linus Torvalds's avatar
Linus Torvalds committed
1361
 */
1362 1363 1364
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
Linus Torvalds's avatar
Linus Torvalds committed
1365
{
1366
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1367 1368
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1369
	struct futex_hash_bucket *hb1, *hb2;
Pierre Peiffer's avatar
Pierre Peiffer committed
1370
	struct plist_head *head1;
Linus Torvalds's avatar
Linus Torvalds committed
1371
	struct futex_q *this, *next;
1372 1373

	if (requeue_pi) {
1374 1375 1376 1377 1378 1379 1380
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1400

1401
retry:
1402 1403 1404 1405 1406 1407 1408 1409 1410
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1411
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
Linus Torvalds's avatar
Linus Torvalds committed
1412 1413
	if (unlikely(ret != 0))
		goto out;
1414 1415
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
Linus Torvalds's avatar
Linus Torvalds committed
1416
	if (unlikely(ret != 0))
1417
		goto out_put_key1;
Linus Torvalds's avatar
Linus Torvalds committed
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

1428 1429
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
Linus Torvalds's avatar
Linus Torvalds committed
1430

Darren Hart's avatar
Darren Hart committed
1431
retry_private:
Ingo Molnar's avatar
Ingo Molnar committed
1432
	double_lock_hb(hb1, hb2);
Linus Torvalds's avatar
Linus Torvalds committed
1433

1434 1435
	if (likely(cmpval != NULL)) {
		u32 curval;
Linus Torvalds's avatar
Linus Torvalds committed
1436

1437
		ret = get_futex_value_locked(&curval, uaddr1);
Linus Torvalds's avatar
Linus Torvalds committed
1438 1439

		if (unlikely(ret)) {
Darren Hart's avatar
Darren Hart committed
1440
			double_unlock_hb(hb1, hb2);
Linus Torvalds's avatar
Linus Torvalds committed
1441

1442
			ret = get_user(curval, uaddr1);
Darren Hart's avatar
Darren Hart committed
1443 1444
			if (ret)
				goto out_put_keys;
Linus Torvalds's avatar
Linus Torvalds committed
1445

1446
			if (!(flags & FLAGS_SHARED))
Darren Hart's avatar
Darren Hart committed
1447
				goto retry_private;
Linus Torvalds's avatar
Linus Torvalds committed
1448

1449 1450
			put_futex_key(&key2);
			put_futex_key(&key1);
Darren Hart's avatar
Darren Hart committed
1451
			goto retry;
Linus Torvalds's avatar
Linus Torvalds committed
1452
		}
1453
		if (curval != *cmpval) {
Linus Torvalds's avatar
Linus Torvalds committed
1454 1455 1456 1457 1458
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1459
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1460 1461 1462 1463 1464 1465
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1466
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1467
						 &key2, &pi_state, nr_requeue);
1468 1469 1470 1471 1472

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
1473 1474
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
1475
		 */
1476
		if (ret > 0) {
1477
			WARN_ON(pi_state);
1478
			drop_count++;
1479
			task_count++;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
			/*
			 * If we acquired the lock, then the user
			 * space value of uaddr2 should be vpid. It
			 * cannot be changed by the top waiter as it
			 * is blocked on hb2 lock if it tries to do
			 * so. If something fiddled with it behind our
			 * back the pi state lookup might unearth
			 * it. So we rather use the known value than
			 * rereading and handing potential crap to
			 * lookup_pi_state.
			 */
1491
			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1492 1493 1494 1495 1496 1497 1498
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1499 1500
			put_futex_key(&key2);
			put_futex_key(&key1);
1501
			ret = fault_in_user_writeable(uaddr2);
1502 1503 1504 1505 1506 1507
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
1508 1509
			put_futex_key(&key2);
			put_futex_key(&key1);
1510 1511 1512 1513 1514 1515 1516
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1517
	head1 = &hb1->chain;
Pierre Peiffer's avatar
Pierre Peiffer committed
1518
	plist_for_each_entry_safe(this, next, head1, list) {
1519 1520 1521 1522
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
Linus Torvalds's avatar
Linus Torvalds committed
1523
			continue;
1524

1525 1526 1527
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
1528 1529 1530
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
1531 1532
		 */
		if ((requeue_pi && !this->rt_waiter) ||
1533 1534
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
1535 1536 1537
			ret = -EINVAL;
			break;
		}
1538 1539 1540 1541 1542 1543 1544

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
Linus Torvalds's avatar
Linus Torvalds committed
1545
			wake_futex(this);
1546 1547
			continue;
		}
Linus Torvalds's avatar
Linus Torvalds committed
1548

1549 1550 1551 1552 1553 1554
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1568
				requeue_pi_wake_futex(this, &key2, hb2);
1569
				drop_count++;
1570 1571 1572 1573 1574 1575 1576
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
Linus Torvalds's avatar
Linus Torvalds committed
1577
		}
1578 1579
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
Linus Torvalds's avatar
Linus Torvalds committed
1580 1581 1582
	}

out_unlock:
Darren Hart's avatar
Darren Hart committed
1583
	double_unlock_hb(hb1, hb2);
Linus Torvalds's avatar
Linus Torvalds committed
1584

1585 1586 1587 1588 1589 1590
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1591
	while (--drop_count >= 0)
1592
		drop_futex_key_refs(&key1);
Linus Torvalds's avatar
Linus Torvalds committed
1593

1594
out_put_keys:
1595
	put_futex_key(&key2);
1596
out_put_key1:
1597
	put_futex_key(&key1);
1598
out:
1599 1600 1601
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
Linus Torvalds's avatar
Linus Torvalds committed
1602 1603 1604
}

/* The key must be already stored in q->key. */
Eric Sesterhenn's avatar
Eric Sesterhenn committed
1605
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1606
	__acquires(&hb->lock)
Linus Torvalds's avatar
Linus Torvalds committed
1607
{
1608
	struct futex_hash_bucket *hb;
Linus Torvalds's avatar
Linus Torvalds committed
1609

1610 1611
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
Linus Torvalds's avatar
Linus Torvalds committed
1612

1613 1614
	spin_lock(&hb->lock);
	return hb;
Linus Torvalds's avatar
Linus Torvalds committed
1615 1616
}

1617 1618
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1619
	__releases(&hb->lock)
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
{
	spin_unlock(&hb->lock);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
Eric Sesterhenn's avatar
Eric Sesterhenn committed
1636
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1637
	__releases(&hb->lock)
Linus Torvalds's avatar
Linus Torvalds committed
1638
{
Pierre Peiffer's avatar
Pierre Peiffer committed
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1653
	q->task = current;
1654
	spin_unlock(&hb->lock);
Linus Torvalds's avatar
Linus Torvalds committed
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
Linus Torvalds's avatar
Linus Torvalds committed
1667 1668 1669 1670
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1671
	int ret = 0;
Linus Torvalds's avatar
Linus Torvalds committed
1672 1673

	/* In the common case we don't take the spinlock, which is nice. */
1674
retry:
Linus Torvalds's avatar
Linus Torvalds committed
1675
	lock_ptr = q->lock_ptr;
1676
	barrier();
1677
	if (lock_ptr != NULL) {
Linus Torvalds's avatar
Linus Torvalds committed
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1696
		__unqueue_futex(q);
1697 1698 1699

		BUG_ON(q->pi_state);

Linus Torvalds's avatar
Linus Torvalds committed
1700 1701 1702 1703
		spin_unlock(lock_ptr);
		ret = 1;
	}

1704
	drop_futex_key_refs(&q->key);
Linus Torvalds's avatar
Linus Torvalds committed
1705 1706 1707
	return ret;
}

1708 1709
/*
 * PI futexes can not be requeued and must remove themself from the
Pierre Peiffer's avatar
Pierre Peiffer committed
1710 1711
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1712
 */
Pierre Peiffer's avatar
Pierre Peiffer committed
1713
static void unqueue_me_pi(struct futex_q *q)
1714
	__releases(q->lock_ptr)
1715
{
1716
	__unqueue_futex(q);
1717 1718 1719 1720 1721

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

Pierre Peiffer's avatar
Pierre Peiffer committed
1722
	spin_unlock(q->lock_ptr);
1723 1724
}

Pierre Peiffer's avatar
Pierre Peiffer committed
1725
/*
1726
 * Fixup the pi_state owner with the new owner.
Pierre Peiffer's avatar
Pierre Peiffer committed
1727
 *
1728 1729
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
Pierre Peiffer's avatar
Pierre Peiffer committed
1730
 */
1731
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1732
				struct task_struct *newowner)
Pierre Peiffer's avatar
Pierre Peiffer committed
1733
{
1734
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
Pierre Peiffer's avatar
Pierre Peiffer committed
1735
	struct futex_pi_state *pi_state = q->pi_state;
1736
	struct task_struct *oldowner = pi_state->owner;
1737
	u32 uval, uninitialized_var(curval), newval;
Darren Hart's avatar
Darren Hart committed
1738
	int ret;
Pierre Peiffer's avatar
Pierre Peiffer committed
1739 1740

	/* Owner died? */
1741 1742 1743 1744 1745
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
1746 1747 1748 1749
	 * previous highest priority waiter or we are the highest priority
	 * waiter but failed to get the rtmutex the first time.
	 * We have to replace the newowner TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
1750
	 *
Darren Hart's avatar
Darren Hart committed
1751 1752 1753
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1768
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
Pierre Peiffer's avatar
Pierre Peiffer committed
1779
	if (pi_state->owner != NULL) {
1780
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
Pierre Peiffer's avatar
Pierre Peiffer committed
1781 1782
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1783
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1784
	}
Pierre Peiffer's avatar
Pierre Peiffer committed
1785

1786
	pi_state->owner = newowner;
Pierre Peiffer's avatar
Pierre Peiffer committed
1787

1788
	raw_spin_lock_irq(&newowner->pi_lock);
Pierre Peiffer's avatar
Pierre Peiffer committed
1789
	WARN_ON(!list_empty(&pi_state->list));
1790
	list_add(&pi_state->list, &newowner->pi_state_list);
1791
	raw_spin_unlock_irq(&newowner->pi_lock);
1792
	return 0;
Pierre Peiffer's avatar
Pierre Peiffer committed
1793 1794

	/*
1795
	 * To handle the page fault we need to drop the hash bucket
1796 1797
	 * lock here. That gives the other task (either the highest priority
	 * waiter itself or the task which stole the rtmutex) the
1798 1799 1800 1801 1802
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
Pierre Peiffer's avatar
Pierre Peiffer committed
1803
	 */
1804 1805
handle_fault:
	spin_unlock(q->lock_ptr);
1806

1807
	ret = fault_in_user_writeable(uaddr);
1808

1809
	spin_lock(q->lock_ptr);
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
Pierre Peiffer's avatar
Pierre Peiffer committed
1821 1822
}

Nick Piggin's avatar
Nick Piggin committed
1823
static long futex_wait_restart(struct restart_block *restart);
Thomas Gleixner's avatar
Thomas Gleixner committed
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
1840
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1851
			ret = fixup_pi_state_owner(uaddr, q, current);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
1873
		 * rt_mutex. Too late.
1874
		 */
1875
		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1876
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1877 1878 1879
		if (!owner)
			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1880
		ret = fixup_pi_state_owner(uaddr, q, owner);
1881 1882 1883 1884 1885
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
1886
	 * the owner of the rt_mutex.
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1898 1899 1900 1901 1902 1903 1904
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
Thomas Gleixner's avatar
Thomas Gleixner committed
1905
				struct hrtimer_sleeper *timeout)
1906
{
1907 1908 1909 1910 1911 1912
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
Thomas Gleixner's avatar
Thomas Gleixner committed
1913
	set_current_state(TASK_INTERRUPTIBLE);
1914
	queue_me(q, hb);
1915 1916 1917 1918 1919 1920 1921 1922 1923

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1924 1925
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1939 1940 1941 1942
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
1943
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
1954
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1955
 */
1956
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1957
			   struct futex_q *q, struct futex_hash_bucket **hb)
Linus Torvalds's avatar
Linus Torvalds committed
1958
{
1959 1960
	u32 uval;
	int ret;
Linus Torvalds's avatar
Linus Torvalds committed
1961 1962

	/*
Darren Hart's avatar
Darren Hart committed
1963
	 * Access the page AFTER the hash-bucket is locked.
Linus Torvalds's avatar
Linus Torvalds committed
1964 1965 1966 1967 1968 1969 1970
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
1971 1972
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
Linus Torvalds's avatar
Linus Torvalds committed
1973 1974
	 * cond(var) false, which would violate the guarantee.
	 *
1975 1976 1977 1978
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
Linus Torvalds's avatar
Linus Torvalds committed
1979
	 */
1980
retry:
1981
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1982
	if (unlikely(ret != 0))
1983
		return ret;
1984 1985 1986 1987

retry_private:
	*hb = queue_lock(q);

1988
	ret = get_futex_value_locked(&uval, uaddr);
Linus Torvalds's avatar
Linus Torvalds committed
1989

1990 1991
	if (ret) {
		queue_unlock(q, *hb);
Linus Torvalds's avatar
Linus Torvalds committed
1992

1993
		ret = get_user(uval, uaddr);
Darren Hart's avatar
Darren Hart committed
1994
		if (ret)
1995
			goto out;
Linus Torvalds's avatar
Linus Torvalds committed
1996

1997
		if (!(flags & FLAGS_SHARED))
Darren Hart's avatar
Darren Hart committed
1998 1999
			goto retry_private;

2000
		put_futex_key(&q->key);
Darren Hart's avatar
Darren Hart committed
2001
		goto retry;
Linus Torvalds's avatar
Linus Torvalds committed
2002
	}
2003

2004 2005 2006
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
Peter Zijlstra's avatar
Peter Zijlstra committed
2007
	}
Linus Torvalds's avatar
Linus Torvalds committed
2008

2009 2010
out:
	if (ret)
2011
		put_futex_key(&q->key);
2012 2013 2014
	return ret;
}

2015 2016
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
2017 2018 2019 2020
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
2021
	struct futex_q q = futex_q_init;
2022 2023 2024 2025 2026 2027 2028 2029 2030
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

2031 2032 2033
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2034 2035 2036 2037 2038
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

2039
retry:
2040 2041 2042 2043
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
2044
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2045 2046 2047
	if (ret)
		goto out;

2048
	/* queue_me and wait for wakeup, timeout, or a signal. */
Thomas Gleixner's avatar
Thomas Gleixner committed
2049
	futex_wait_queue_me(hb, &q, to);
Linus Torvalds's avatar
Linus Torvalds committed
2050 2051

	/* If we were woken (and unqueued), we succeeded, whatever. */
Peter Zijlstra's avatar
Peter Zijlstra committed
2052
	ret = 0;
2053
	/* unqueue_me() drops q.key ref */
Linus Torvalds's avatar
Linus Torvalds committed
2054
	if (!unqueue_me(&q))
2055
		goto out;
Peter Zijlstra's avatar
Peter Zijlstra committed
2056
	ret = -ETIMEDOUT;
2057
	if (to && !to->task)
2058
		goto out;
Nick Piggin's avatar
Nick Piggin committed
2059

2060
	/*
2061 2062
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
2063
	 */
2064
	if (!signal_pending(current))
2065 2066
		goto retry;

Peter Zijlstra's avatar
Peter Zijlstra committed
2067
	ret = -ERESTARTSYS;
2068
	if (!abs_time)
2069
		goto out;
Linus Torvalds's avatar
Linus Torvalds committed
2070

Peter Zijlstra's avatar
Peter Zijlstra committed
2071 2072
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
2073
	restart->futex.uaddr = uaddr;
Peter Zijlstra's avatar
Peter Zijlstra committed
2074 2075 2076
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
2077
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2078

Peter Zijlstra's avatar
Peter Zijlstra committed
2079 2080
	ret = -ERESTART_RESTARTBLOCK;

2081
out:
2082 2083 2084 2085
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
2086 2087 2088
	return ret;
}

Nick Piggin's avatar
Nick Piggin committed
2089 2090 2091

static long futex_wait_restart(struct restart_block *restart)
{
2092
	u32 __user *uaddr = restart->futex.uaddr;
2093
	ktime_t t, *tp = NULL;
Nick Piggin's avatar
Nick Piggin committed
2094

2095 2096 2097 2098
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
Nick Piggin's avatar
Nick Piggin committed
2099
	restart->fn = do_no_restart_syscall;
2100 2101 2102

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
Nick Piggin's avatar
Nick Piggin committed
2103 2104 2105
}


2106 2107 2108 2109 2110 2111
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
2112 2113
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
2114
{
2115
	struct hrtimer_sleeper timeout, *to = NULL;
2116
	struct futex_hash_bucket *hb;
2117
	struct futex_q q = futex_q_init;
2118
	int res, ret;
2119 2120 2121 2122

	if (refill_pi_state_cache())
		return -ENOMEM;

2123
	if (time) {
2124
		to = &timeout;
2125 2126
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
2127
		hrtimer_init_sleeper(to, current);
2128
		hrtimer_set_expires(&to->timer, *time);
2129 2130
	}

2131
retry:
2132
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2133
	if (unlikely(ret != 0))
2134
		goto out;
2135

Darren Hart's avatar
Darren Hart committed
2136
retry_private:
Eric Sesterhenn's avatar
Eric Sesterhenn committed
2137
	hb = queue_lock(&q);
2138

2139
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2140
	if (unlikely(ret)) {
2141
		switch (ret) {
2142 2143 2144 2145 2146 2147
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
2148 2149 2150 2151 2152 2153
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
2154
			put_futex_key(&q.key);
2155 2156 2157
			cond_resched();
			goto retry;
		default:
2158
			goto out_unlock_put_key;
2159 2160 2161 2162 2163 2164
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
Eric Sesterhenn's avatar
Eric Sesterhenn committed
2165
	queue_me(&q, hb);
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

2179
	spin_lock(q.lock_ptr);
2180 2181 2182 2183
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
2184
	res = fixup_owner(uaddr, &q, !ret);
2185 2186 2187 2188 2189 2190
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2191

2192
	/*
2193 2194
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2195 2196 2197 2198
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2199 2200
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2201

2202
	goto out_put_key;
2203

2204
out_unlock_put_key:
2205 2206
	queue_unlock(&q, hb);

2207
out_put_key:
2208
	put_futex_key(&q.key);
2209
out:
2210 2211
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2212
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2213

2214
uaddr_faulted:
2215 2216
	queue_unlock(&q, hb);

2217
	ret = fault_in_user_writeable(uaddr);
Darren Hart's avatar
Darren Hart committed
2218 2219
	if (ret)
		goto out_put_key;
2220

2221
	if (!(flags & FLAGS_SHARED))
Darren Hart's avatar
Darren Hart committed
2222 2223
		goto retry_private;

2224
	put_futex_key(&q.key);
Darren Hart's avatar
Darren Hart committed
2225
	goto retry;
2226 2227 2228 2229 2230 2231 2232
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2233
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2234 2235 2236
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
Pierre Peiffer's avatar
Pierre Peiffer committed
2237
	struct plist_head *head;
2238
	union futex_key key = FUTEX_KEY_INIT;
2239
	u32 uval, vpid = task_pid_vnr(current);
Darren Hart's avatar
Darren Hart committed
2240
	int ret;
2241 2242 2243 2244 2245 2246 2247

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2248
	if ((uval & FUTEX_TID_MASK) != vpid)
2249 2250
		return -EPERM;

2251
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2252 2253 2254 2255 2256 2257 2258 2259 2260
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
2261 2262
	 * anyone else up. We only try this if neither the waiters nor
	 * the owner died bit are set.
2263
	 */
2264
	if (!(uval & ~FUTEX_TID_MASK) &&
2265
	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2266 2267 2268 2269 2270
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2271
	if (unlikely(uval == vpid))
2272 2273 2274 2275 2276 2277 2278 2279
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

Pierre Peiffer's avatar
Pierre Peiffer committed
2280
	plist_for_each_entry_safe(this, next, head, list) {
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2296 2297 2298
	ret = unlock_futex_pi(uaddr, uval);
	if (ret == -EFAULT)
		goto pi_faulted;
2299 2300 2301

out_unlock:
	spin_unlock(&hb->lock);
2302
	put_futex_key(&key);
2303

2304
out:
2305 2306 2307
	return ret;

pi_faulted:
2308
	spin_unlock(&hb->lock);
2309
	put_futex_key(&key);
2310

2311
	ret = fault_in_user_writeable(uaddr);
2312
	if (!ret)
2313 2314
		goto retry;

Linus Torvalds's avatar
Linus Torvalds committed
2315 2316 2317
	return ret;
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2332
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2354
		plist_del(&q->list, &hb->chain);
2355

2356
		/* Handle spurious wakeups gracefully */
2357
		ret = -EWOULDBLOCK;
2358 2359
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
2360
		else if (signal_pending(current))
2361
			ret = -ERESTARTNOINTR;
2362 2363 2364 2365 2366 2367
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2368
 * @uaddr:	the futex we initially wait on (non-pi)
2369
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2370 2371 2372
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2373
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2374 2375 2376 2377
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2378 2379 2380 2381 2382
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
2383 2384 2385 2386
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2387 2388 2389
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2390
 *
2391
 * If 3, cleanup and return -ERESTARTNOINTR.
2392 2393 2394 2395 2396 2397 2398
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2399
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2400 2401 2402 2403 2404 2405 2406
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
2407
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2408
				 u32 val, ktime_t *abs_time, u32 bitset,
2409
				 u32 __user *uaddr2)
2410 2411 2412 2413 2414
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2415 2416
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2417 2418
	int res, ret;

2419 2420 2421
	if (uaddr == uaddr2)
		return -EINVAL;

2422 2423 2424 2425 2426
	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2427 2428 2429
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

2442
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2443 2444 2445
	if (unlikely(ret != 0))
		goto out;

2446 2447 2448 2449
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2450 2451 2452 2453
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2454
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
Thomas Gleixner's avatar
Thomas Gleixner committed
2455 2456
	if (ret)
		goto out_key2;
2457

2458 2459 2460 2461 2462 2463 2464 2465 2466
	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
		ret = -EINVAL;
		goto out_put_keys;
	}

2467
	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
Thomas Gleixner's avatar
Thomas Gleixner committed
2468
	futex_wait_queue_me(hb, &q, to);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2480 2481 2482
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2493
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2494 2495 2496 2497 2498 2499 2500 2501
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
2502
		WARN_ON(!q.pi_state);
2503 2504 2505 2506 2507 2508 2509 2510 2511
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2512
		res = fixup_owner(uaddr2, &q, !ret);
2513 2514
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2515
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
2529
		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2530 2531 2532
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2533 2534 2535 2536 2537
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2538
		 */
2539
		ret = -EWOULDBLOCK;
2540 2541 2542
	}

out_put_keys:
2543
	put_futex_key(&q.key);
Thomas Gleixner's avatar
Thomas Gleixner committed
2544
out_key2:
2545
	put_futex_key(&key2);
2546 2547 2548 2549 2550 2551 2552 2553 2554

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2555 2556 2557 2558 2559 2560 2561
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2562
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2563 2564 2565 2566 2567 2568 2569 2570
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2571 2572 2573
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2574
 */
2575 2576
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2577
{
2578 2579
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2592 2593 2594 2595
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2596
 */
2597 2598 2599
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2600
{
Al Viro's avatar
Al Viro committed
2601
	struct robust_list_head __user *head;
2602
	unsigned long ret;
2603
	struct task_struct *p;
2604

2605 2606 2607
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2608 2609 2610
	rcu_read_lock();

	ret = -ESRCH;
2611
	if (!pid)
2612
		p = current;
2613
	else {
2614
		p = find_task_by_vpid(pid);
2615 2616 2617 2618
		if (!p)
			goto err_unlock;
	}

2619 2620 2621 2622 2623 2624 2625
	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

2626 2627 2628 2629 2630
	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2631
	rcu_read_unlock();
2632 2633 2634 2635 2636 2637 2638 2639

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2640
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2641
{
2642
	u32 uval, uninitialized_var(nval), mval;
2643

2644 2645
retry:
	if (get_user(uval, uaddr))
2646 2647
		return -1;

2648
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2659
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2674
		if (nval != uval)
2675
			goto retry;
2676

2677 2678 2679 2680
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
Thomas Gleixner's avatar
Thomas Gleixner committed
2681
		if (!pi && (uval & FUTEX_WAITERS))
Peter Zijlstra's avatar
Peter Zijlstra committed
2682
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2683 2684 2685 2686
	}
	return 0;
}

2687 2688 2689 2690
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
Al Viro's avatar
Al Viro committed
2691
				     struct robust_list __user * __user *head,
2692
				     unsigned int *pi)
2693 2694 2695
{
	unsigned long uentry;

Al Viro's avatar
Al Viro committed
2696
	if (get_user(uentry, (unsigned long __user *)head))
2697 2698
		return -EFAULT;

Al Viro's avatar
Al Viro committed
2699
	*entry = (void __user *)(uentry & ~1UL);
2700 2701 2702 2703 2704
	*pi = uentry & 1;

	return 0;
}

2705 2706 2707 2708 2709 2710 2711 2712 2713
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
2714
	struct robust_list __user *entry, *next_entry, *pending;
2715 2716
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2717
	unsigned long futex_offset;
2718
	int rc;
2719

2720 2721 2722
	if (!futex_cmpxchg_enabled)
		return;

2723 2724 2725 2726
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2727
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2738
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2739
		return;
2740

2741
	next_entry = NULL;	/* avoid warning with gcc */
2742
	while (entry != &head->list) {
2743 2744 2745 2746 2747
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2748 2749
		/*
		 * A pending lock might already be on the list, so
2750
		 * don't process it twice:
2751 2752
		 */
		if (entry != pending)
Al Viro's avatar
Al Viro committed
2753
			if (handle_futex_death((void __user *)entry + futex_offset,
2754
						curr, pi))
2755
				return;
2756
		if (rc)
2757
			return;
2758 2759
		entry = next_entry;
		pi = next_pi;
2760 2761 2762 2763 2764 2765 2766 2767
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
2768 2769 2770 2771

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2772 2773
}

2774
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2775
		u32 __user *uaddr2, u32 val2, u32 val3)
Linus Torvalds's avatar
Linus Torvalds committed
2776
{
Thomas Gleixner's avatar
Thomas Gleixner committed
2777
	int cmd = op & FUTEX_CMD_MASK;
2778
	unsigned int flags = 0;
Eric Dumazet's avatar
Eric Dumazet committed
2779 2780

	if (!(op & FUTEX_PRIVATE_FLAG))
2781
		flags |= FLAGS_SHARED;
Linus Torvalds's avatar
Linus Torvalds committed
2782

2783 2784 2785 2786 2787
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
Linus Torvalds's avatar
Linus Torvalds committed
2788

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

Eric Dumazet's avatar
Eric Dumazet committed
2799
	switch (cmd) {
Linus Torvalds's avatar
Linus Torvalds committed
2800
	case FUTEX_WAIT:
2801 2802
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
Thomas Gleixner's avatar
Thomas Gleixner committed
2803
		return futex_wait(uaddr, flags, val, timeout, val3);
Linus Torvalds's avatar
Linus Torvalds committed
2804
	case FUTEX_WAKE:
2805 2806
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
Thomas Gleixner's avatar
Thomas Gleixner committed
2807
		return futex_wake(uaddr, flags, val, val3);
Linus Torvalds's avatar
Linus Torvalds committed
2808
	case FUTEX_REQUEUE:
Thomas Gleixner's avatar
Thomas Gleixner committed
2809
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
Linus Torvalds's avatar
Linus Torvalds committed
2810
	case FUTEX_CMP_REQUEUE:
Thomas Gleixner's avatar
Thomas Gleixner committed
2811
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2812
	case FUTEX_WAKE_OP:
Thomas Gleixner's avatar
Thomas Gleixner committed
2813
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2814
	case FUTEX_LOCK_PI:
Thomas Gleixner's avatar
Thomas Gleixner committed
2815
		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2816
	case FUTEX_UNLOCK_PI:
Thomas Gleixner's avatar
Thomas Gleixner committed
2817
		return futex_unlock_pi(uaddr, flags);
2818
	case FUTEX_TRYLOCK_PI:
Thomas Gleixner's avatar
Thomas Gleixner committed
2819
		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2820 2821
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
Thomas Gleixner's avatar
Thomas Gleixner committed
2822 2823
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
2824
	case FUTEX_CMP_REQUEUE_PI:
Thomas Gleixner's avatar
Thomas Gleixner committed
2825
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
Linus Torvalds's avatar
Linus Torvalds committed
2826
	}
Thomas Gleixner's avatar
Thomas Gleixner committed
2827
	return -ENOSYS;
Linus Torvalds's avatar
Linus Torvalds committed
2828 2829 2830
}


2831 2832 2833
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
Linus Torvalds's avatar
Linus Torvalds committed
2834
{
2835 2836
	struct timespec ts;
	ktime_t t, *tp = NULL;
2837
	u32 val2 = 0;
Eric Dumazet's avatar
Eric Dumazet committed
2838
	int cmd = op & FUTEX_CMD_MASK;
Linus Torvalds's avatar
Linus Torvalds committed
2839

2840
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2841 2842
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2843
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
Linus Torvalds's avatar
Linus Torvalds committed
2844
			return -EFAULT;
2845
		if (!timespec_valid(&ts))
2846
			return -EINVAL;
2847 2848

		t = timespec_to_ktime(ts);
Eric Dumazet's avatar
Eric Dumazet committed
2849
		if (cmd == FUTEX_WAIT)
2850
			t = ktime_add_safe(ktime_get(), t);
2851
		tp = &t;
Linus Torvalds's avatar
Linus Torvalds committed
2852 2853
	}
	/*
2854
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2855
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
Linus Torvalds's avatar
Linus Torvalds committed
2856
	 */
2857
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2858
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2859
		val2 = (u32) (unsigned long) utime;
Linus Torvalds's avatar
Linus Torvalds committed
2860

2861
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
Linus Torvalds's avatar
Linus Torvalds committed
2862 2863
}

2864
static int __init futex_init(void)
Linus Torvalds's avatar
Linus Torvalds committed
2865
{
2866
	u32 curval;
Thomas Gleixner's avatar
Thomas Gleixner committed
2867
	int i;
Akinobu Mita's avatar
Akinobu Mita committed
2868

2869 2870 2871 2872 2873 2874 2875
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
2876
	 * implementation, the non-functional ones will return
2877 2878
	 * -ENOSYS.
	 */
2879
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2880 2881
		futex_cmpxchg_enabled = 1;

Thomas Gleixner's avatar
Thomas Gleixner committed
2882
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2883
		plist_head_init(&futex_queues[i].chain);
Thomas Gleixner's avatar
Thomas Gleixner committed
2884 2885 2886
		spin_lock_init(&futex_queues[i].lock);
	}

Linus Torvalds's avatar
Linus Torvalds committed
2887 2888
	return 0;
}
2889
__initcall(futex_init);