- 21 Jun, 2024 26 commits
-
-
Alan Maguire authored
This will allow it to be shared with the kernel. No functional change. Suggested-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240620091733.1967885-4-alan.maguire@oracle.com
-
Alan Maguire authored
...as this will allow split BTF modules with a base BTF representation (rather than the full vmlinux BTF at time of BTF encoding) to resolve their references to kernel types in a way that is more resilient to small changes in kernel types. This will allow modules that are not built every time the kernel is to provide more resilient BTF, rather than have it invalidated every time BTF ids for core kernel types change. Fields are ordered to avoid holes in struct module. Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240620091733.1967885-3-alan.maguire@oracle.com
-
Alan Maguire authored
Use less verbose names in BTF relocation code and fix off-by-one error and typo in btf_relocate.c. Simplify loop over matching distilled types, moving from assigning a _next value in loop body to moving match check conditions into the guard. Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com> Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240620091733.1967885-2-alan.maguire@oracle.com
-
Mykyta Yatsenko authored
Adding selftest to verify that struct_ops maps are auto attached by bpf skeleton's `*__attach` function. Signed-off-by: Mykyta Yatsenko <yatsenko@meta.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240621180324.238379-1-yatsenko@meta.com
-
Puranjay Mohan authored
On ARM64, the pointer to task_struct is always available in the sp_el0 register and therefore the calls to bpf_get_current_task() and bpf_get_current_task_btf() can be inlined into a single MRS instruction. Here is the difference before and after this change: Before: ; struct task_struct *task = bpf_get_current_task_btf(); 54: mov x10, #0xffffffffffff7978 // #-34440 58: movk x10, #0x802b, lsl #16 5c: movk x10, #0x8000, lsl #32 60: blr x10 --------------> 0xffff8000802b7978 <+0>: mrs x0, sp_el0 64: add x7, x0, #0x0 <-------------- 0xffff8000802b797c <+4>: ret After: ; struct task_struct *task = bpf_get_current_task_btf(); 54: mrs x7, sp_el0 This shows around 1% performance improvement in artificial microbenchmark. Signed-off-by: Puranjay Mohan <puranjay@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Xu Kuohai <xukuohai@huawei.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240619131334.4297-1-puranjay@kernel.org
-
Andrii Nakryiko authored
Cupertino Miranda says: ==================== Regular expression support for test output matching Hi everyone, This version removes regexp from inline assembly examples that did not require the regular expressions to match. Thanks, Cupertino ==================== Link: https://lore.kernel.org/r/20240617141458.471620-1-cupertino.miranda@oracle.comSigned-off-by: Andrii Nakryiko <andrii@kernel.org>
-
Cupertino Miranda authored
This patch changes a few tests to make use of regular expressions. Fixed tests otherwise fail when compiled with GCC. Signed-off-by: Cupertino Miranda <cupertino.miranda@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240617141458.471620-3-cupertino.miranda@oracle.com
-
Cupertino Miranda authored
Add support for __regex and __regex_unpriv macros to check the test execution output against a regular expression. This is similar to __msg and __msg_unpriv, however those expect do substring matching. Signed-off-by: Cupertino Miranda <cupertino.miranda@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240617141458.471620-2-cupertino.miranda@oracle.com
-
Donglin Peng authored
I encountered an issue when building the test_progs from the repository [1]: $ pwd /work/Qemu/x86_64/linux-6.10-rc2/tools/testing/selftests/bpf/ $ make test_progs V=1 [...] ./tools/sbin/bpftool gen object ./ip_check_defrag.bpf.linked2.o ./ip_check_defrag.bpf.linked1.o libbpf: failed to find symbol for variable 'bpf_dynptr_slice' in section '.ksyms' Error: failed to link './ip_check_defrag.bpf.linked1.o': No such file or directory (2) [...] Upon investigation, I discovered that the btf_types referenced in the '.ksyms' section had a kind of BTF_KIND_FUNC instead of BTF_KIND_VAR: $ bpftool btf dump file ./ip_check_defrag.bpf.linked1.o [...] [2] DATASEC '.ksyms' size=0 vlen=2 type_id=16 offset=0 size=0 (FUNC 'bpf_dynptr_from_skb') type_id=17 offset=0 size=0 (FUNC 'bpf_dynptr_slice') [...] [16] FUNC 'bpf_dynptr_from_skb' type_id=82 linkage=extern [17] FUNC 'bpf_dynptr_slice' type_id=85 linkage=extern [...] For a detailed analysis, please refer to [2]. We can add a kind checking to fix the issue. [1] https://github.com/eddyz87/bpf/tree/binsort-btf-dedup [2] https://lore.kernel.org/all/0c0ef20c-c05e-4db9-bad7-2cbc0d6dfae7@oracle.com/ Fixes: 8fd27bf6 ("libbpf: Add BPF static linker BTF and BTF.ext support") Signed-off-by: Donglin Peng <dolinux.peng@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Alan Maguire <alan.maguire@oracle.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240619122355.426405-1-dolinux.peng@gmail.com
-
Matt Bobrowski authored
The new generic LSM hook security_file_post_open() was recently added to the LSM framework in commit 8f46ff57 ("security: Introduce file_post_open hook"). Let's proactively add this generic LSM hook to the sleepable_lsm_hooks BTF ID set, because I can't see there being any strong reasons not to, and it's only a matter of time before someone else comes around and asks for it to be there. security_file_post_open() is inherently sleepable as it's purposely situated in the kernel that allows LSMs to directly read out the contents of the backing file if need be. Additionally, it's called directly after security_file_open(), and that LSM hook in itself already exists in the sleepable_lsm_hooks BTF ID set. Signed-off-by: Matt Bobrowski <mattbobrowski@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20240618192923.379852-1-mattbobrowski@google.com
-
Andrii Nakryiko authored
New versions of bpftool now emit additional link placeholders for BPF maps (struct_ops maps are the only maps right now that support attachment), and set up BPF skeleton in such a way that libbpf will auto-attach BPF maps automatically, assumming libbpf is recent enough (v1.5+). Old libbpf will do nothing with those links and won't attempt to auto-attach maps. This allows user code to handle both pre-v1.5 and v1.5+ versions of libbpf at runtime, if necessary. But if users don't have (or don't want to) control bpftool version that generates skeleton, then they can't just assume that skeleton will have link placeholders. To make this detection possible and easy, let's add the following to generated skeleton header file: #define BPF_SKEL_SUPPORTS_MAP_AUTO_ATTACH 1 This can be used during compilation time to guard code that accesses skel->links.<map> slots. Note, if auto-attachment is undesirable, libbpf allows to disable this through bpf_map__set_autoattach(map, false). This is necessary only on libbpf v1.5+, older libbpf doesn't support map auto-attach anyways. Libbpf version can be detected at compilation time using LIBBPF_MAJOR_VERSION and LIBBPF_MINOR_VERSION macros, or at runtime with libbpf_major_version() and libbpf_minor_version() APIs. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <qmo@kernel.org> Link: https://lore.kernel.org/bpf/20240618183832.2535876-1-andrii@kernel.org
-
Jiri Olsa authored
This reverts [1] and changes return value for bpf_session_cookie in bpf selftests. Having long * might lead to problems on 32-bit architectures. Fixes: 2b8dd873 ("bpf: Make bpf_session_cookie() kfunc return long *") Suggested-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240619081624.1620152-1-jolsa@kernel.org
-
Alexei Starovoitov authored
Geliang Tang says: ==================== use network helpers, part 7 From: Geliang Tang <tanggeliang@kylinos.cn> v6: - update ASSERT strings in patch 4 as Eduard suggested. (thanks) v5: - update patch 1, add getsockopt(SO_PROTOCOL) in connect_to_fd() to fix errors reported by CI. v4: - fix errors reported by CI. v3: - rename start_client to client_socket - Use connect_to_addr in connect_to_fd_opt v2: - update patch 2, extract a new helper start_client. - drop patch 3, keep must_fail in network_helper_opts. Drop type and noconnect from network_helper_opts. And use start_server_str in mptcp and test_tcp_check_syncookie_user. Patches 1-4 address Martin's comments in the previous series. ==================== Link: https://lore.kernel.org/r/cover.1718932493.git.tanggeliang@kylinos.cnSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Geliang Tang authored
Since start_server_str() is added now, it can be used in script test_tcp_check_syncookie_user.c instead of start_server_addr() to simplify the code. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn> Link: https://lore.kernel.org/r/5d2f442261d37cff16c1f1b21a2b188508ab67fa.1718932493.git.tanggeliang@kylinos.cnSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Geliang Tang authored
Since start_server_str() is added now, it can be used in mptcp.c in start_mptcp_server() instead of using helpers make_sockaddr() and start_server_addr() to simplify the code. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn> Link: https://lore.kernel.org/r/16fb3e2cd60b64b5470b0e69f1aa233feaf2717c.1718932493.git.tanggeliang@kylinos.cnSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Geliang Tang authored
In test_bpf_ip_check_defrag_ok(), the new helper client_socket() can be used to replace connect_to_fd_opts() with "noconnect" opts, and the strcut member "noconnect" of network_helper_opts can be dropped now, always connect to server in connect_to_fd_opts(). Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn> Link: https://lore.kernel.org/r/f45760becce51986e4e08283c7df0f933eb0da14.1718932493.git.tanggeliang@kylinos.cnSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Geliang Tang authored
This patch extracts a new helper client_socket() from connect_to_fd_opts() to create the client socket, but don't connect to the server. Then connect_to_fd_opts() can be implemented using client_socket() and connect_fd_to_addr(). This helper can be used in connect_to_addr() too, and make "noconnect" opts useless. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn> Link: https://lore.kernel.org/r/4169c554e1cee79223feea49a1adc459d55e1ffe.1718932493.git.tanggeliang@kylinos.cnSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Geliang Tang authored
This patch moves "post_socket_cb" and "noconnect" into connect_to_addr(), then connect_to_fd_opts() can be implemented by getsockname() and connect_to_addr(). This change makes connect_to_* interfaces more unified. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn> Link: https://lore.kernel.org/r/4569c30533e14c22fae6c05070aad809720551c1.1718932493.git.tanggeliang@kylinos.cnSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Geliang Tang authored
The opts.{type, noconnect} is at least a bit non intuitive or unnecessary. The only use case now is in test_bpf_ip_check_defrag_ok which ends up bypassing most (or at least some) of the connect_to_fd_opts() logic. It's much better that test should have its own connect_to_fd_opts() instead. This patch adds a new "type" parameter for connect_to_fd_opts(), then opts->type and getsockopt(SO_TYPE) can be replaced by "type" parameter in it. In connect_to_fd(), use getsockopt(SO_TYPE) to get "type" value and pass it to connect_to_fd_opts(). In bpf_tcp_ca.c and cgroup_v1v2.c, "SOCK_STREAM" types are passed to connect_to_fd_opts(), and in ip_check_defrag.c, different types "SOCK_RAW" and "SOCK_DGRAM" are passed to it. With these changes, the strcut member "type" of network_helper_opts can be dropped now. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Geliang Tang <tanggeliang@kylinos.cn> Link: https://lore.kernel.org/r/cfd20b5ad4085c1d1af5e79df3b09013a407199f.1718932493.git.tanggeliang@kylinos.cnSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Alexei Starovoitov authored
Rafael Passos says: ==================== Fix compiler warnings, looking for suggestions Hi, This patchset has a few fixes to compiler warnings. I am studying the BPF subsystem and wish to bring more tangible contributions. I would appreciate receiving suggestions on things to investigate. I also documented a bit in my blog. I could help with docs here, too. https://rcpassos.me/post/linux-ebpf-understanding-kernel-level-mechanics Thanks! Changelog V1 -> V2: - rebased all commits to updated for-next base - removes new cases of the extra parameter for bpf_jit_binary_pack_finalize - built and tested for ARM64 - sent the series for the test workflow: https://github.com/kernel-patches/bpf/pull/7198 ==================== Acked-by: Puranjay Mohan <puranjay@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20240615022641.210320-1-rafael@rcpassos.meSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Rafael Passos authored
This new_n is defined in the start of this function. Its value is overwritten by `new_n = min(n, log->len_total);` a couple lines before my change, rendering the shadow declaration unnecessary. Signed-off-by: Rafael Passos <rafael@rcpassos.me> Link: https://lore.kernel.org/r/20240615022641.210320-4-rafael@rcpassos.meSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Rafael Passos authored
Fixes a compiler warning. The __bpf_free_used_btfs function was taking an extra unused struct bpf_prog_aux *aux param Signed-off-by: Rafael Passos <rafael@rcpassos.me> Link: https://lore.kernel.org/r/20240615022641.210320-3-rafael@rcpassos.meSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Rafael Passos authored
Fixes a compiler warning. the bpf_jit_binary_pack_finalize function was taking an extra bpf_prog parameter that went unused. This removves it and updates the callers accordingly. Signed-off-by: Rafael Passos <rafael@rcpassos.me> Link: https://lore.kernel.org/r/20240615022641.210320-2-rafael@rcpassos.meSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Alexei Starovoitov authored
Leon Hwang says: ==================== bpf, verifier: Correct tail_call_reachable for bpf prog It's confusing to inspect 'prog->aux->tail_call_reachable' with drgn[0], when bpf prog has tail call but 'tail_call_reachable' is false. This patch corrects 'tail_call_reachable' when bpf prog has tail call. Therefore, it's unnecessary to detect tail call in x86 jit. Let's remove it. Changes: v1 -> v2: * Address comment from Yonghong: * Remove unnecessary tail call detection in x86 jit. Acked-by: Eduard Zingerman <eddyz87@gmail.com> --- Links: [0] https://github.com/osandov/drgn ==================== Link: https://lore.kernel.org/r/20240610124224.34673-1-hffilwlqm@gmail.comSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Leon Hwang authored
As 'prog->aux->tail_call_reachable' is correct for tail call present, it's unnecessary to detect tail call in x86 jit. Therefore, let's remove it. Signed-off-by: Leon Hwang <hffilwlqm@gmail.com> Link: https://lore.kernel.org/r/20240610124224.34673-3-hffilwlqm@gmail.comSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Leon Hwang authored
It's confusing to inspect 'prog->aux->tail_call_reachable' with drgn[0], when bpf prog has tail call but 'tail_call_reachable' is false. This patch corrects 'tail_call_reachable' when bpf prog has tail call. Signed-off-by: Leon Hwang <hffilwlqm@gmail.com> Link: https://lore.kernel.org/r/20240610124224.34673-2-hffilwlqm@gmail.comSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
- 17 Jun, 2024 7 commits
-
-
Andrii Nakryiko authored
Alan Maguire says: ==================== bpf: support resilient split BTF Split BPF Type Format (BTF) provides huge advantages in that kernel modules only have to provide type information for types that they do not share with the core kernel; for core kernel types, split BTF refers to core kernel BTF type ids. So for a STRUCT sk_buff, a module that uses that structure (or a pointer to it) simply needs to refer to the core kernel type id, saving the need to define the structure and its many dependents. This cuts down on duplication and makes BTF as compact as possible. However, there is a downside. This scheme requires the references from split BTF to base BTF to be valid not just at encoding time, but at use time (when the module is loaded). Even a small change in kernel types can perturb the type ids in core kernel BTF, and - if the new reproducible BTF option is not used - pahole's parallel processing of compilation units can lead to different type ids for the same kernel if the BTF is regenerated. So we have a robustness problem for split BTF for cases where a module is not always compiled at the same time as the kernel. This problem is particularly acute for distros which generally want module builders to be able to compile a module for the lifetime of a Linux stable-based release, and have it continue to be valid over the lifetime of that release, even as changes in data structures (and hence BTF types) accrue. Today it's not possible to generate BTF for modules that works beyond the initial kernel it is compiled against - kernel bugfixes etc invalidate the split BTF references to vmlinux BTF, and BTF is no longer usable for the module. The goal of this series is to provide options to provide additional context for cases like this. That context comes in the form of distilled base BTF; it stands in for the base BTF, and contains information about the types referenced from split BTF, but not their full descriptions. The modified split BTF will refer to type ids in this .BTF.base section, and when the kernel loads such modules it will use that .BTF.base to map references from split BTF to the equivalent current vmlinux base BTF types. Once this relocation process has succeeded, the module BTF available in /sys/kernel/btf will look exactly as if it was built with the current vmlinux; references to base types will be fixed up etc. A module builder - using this series along with the pahole changes - can then build a module with distilled base BTF via an out-of-tree module build, i.e. make -C . M=path/2/module The module will have a .BTF section (the split BTF) and a .BTF.base section. The latter is small in size - distilled base BTF does not need full struct/union/enum information for named types for example. For 2667 modules built with distilled base BTF, the average size observed was 1556 bytes (stddev 1563). The overall size added to this 2667 modules was 5.3Mb. Note that for the in-tree modules, this approach is not needed as split and base BTF in the case of in-tree modules are always built and re-built together. The series first focuses on generating split BTF with distilled base BTF; then relocation support is added to allow split BTF with an associated distlled base to be relocated with a new base BTF. Next Eduard's patch allows BTF ELF parsing to work with both .BTF and .BTF.base sections; this ensures that bpftool will be able to dump BTF for a module with a .BTF.base section for example, or indeed dump relocated BTF where a module and a "-B vmlinux" is supplied. Then we add support to resolve_btfids to ignore base BTF - i.e. to avoid relocation - if a .BTF.base section is found. This ensures the .BTF.ids section is populated with ids relative to the distilled base (these will be relocated as part of module load). Finally the series supports storage of .BTF.base data/size in modules and supports sharing of relocation code with the kernel to allow relocation of module BTF. For the kernel, this relocation process happens at module load time, and we relocate split BTF references to point at types in the current vmlinux BTF. As part of this, .BTF.ids references need to be mapped also. So concretely, what happens is - we generate split BTF in the .BTF section of a module that refers to types in the .BTF.base section as base types; the latter are not full type descriptions but provide information about the base type. So a STRUCT sk_buff would be represented as a FWD struct sk_buff in distilled base BTF for example. - when the module is loaded, the split BTF is relocated with vmlinux BTF; in the case of the FWD struct sk_buff, we find the STRUCT sk_buff in vmlinux BTF and map all split BTF references to the distilled base FWD sk_buff, replacing them with references to the vmlinux BTF STRUCT sk_buff. A previous approach to this problem [1] utilized standalone BTF for such cases - where the BTF is not defined relative to base BTF so there is no relocation required. The problem with that approach is that from the verifier perspective, some types are special, and having a custom representation of a core kernel type that did not necessarily match the current representation is not tenable. So the approach taken here was to preserve the split BTF model while minimizing the representation of the context needed to relocate split and current vmlinux BTF. To generate distilled .BTF.base sections the associated dwarves patch (to be applied on the "next" branch there) is needed [3] Without it, things will still work but modules will not be built with a .BTF.base section. Changes since v5[4]: - Update search of distilled types to return the first occurrence of a string (or a string+size pair); this allows us to iterate over all matches in distilled base BTF (Andrii, patch 3) - Update to use BTF field iterators (Andrii, patches 1, 3 and 8) - Update tests to cover multiple match and associated error cases (Eduard, patch 4) - Rename elf_sections_info to btf_elf_secs, remove use of libbpf_get_error(), reset btf->owns_base when relocation succeeds (Andrii, patch 5) Changes since v4[5]: - Moved embeddedness, duplicate name checks to relocation time and record struct/union size for all distilled struct/unions instead of using forwards. This allows us to carry out type compatibility checks based on the base BTF we want to relocate with (Eduard, patches 1, 3) - Moved to using qsort() instead of qsort_r() as support for qsort_r() appears to be missing in Android libc (Andrii, patch 3) - Sorting/searching now incorporates size matching depending on BTF kind and embeddedness of struct/union (Eduard, Andrii, patch 3) - Improved naming of various types during relocation to avoid confusion (Andrii, patch 3) - Incorporated Eduard's patch (patch 5) which handles .BTF.base sections internally in btf_parse_elf(). This makes ELF parsing work with split BTF, split BTF with a distilled base, split BTF with a distilled base _and_ base BTF (by relocating) etc. Having this avoids the need for bpftool changes; it will work as-is with .BTF.base sections (Eduard, patch 4) - Updated resolve_btfids to _not_ relocate BTF for modules where a .BTF.base section is present; in that one case we do not want to relocate BTF as the .BTF.ids section should reflect ids in .BTF.base which will later be relocated on module load (Eduard, Andrii, patch 5) Changes since v3[6]: - distill now checks for duplicate-named struct/unions and records them as a sized struct/union to help identify which of the multiple base BTF structs/unions it refers to (Eduard, patch 1) - added test support for multiple name handling (Eduard, patch 2) - simplified the string mapping when updating split BTF to use base BTF instead of distilled base. Since the only string references split BTF can make to base BTF are the names of the base types, create a string map from distilled string offset -> base BTF string offset and update string offsets by visiting all strings in split BTF; this saves having to do costly searches of base BTF (Eduard, patch 7,10) - fixed bpftool manpage and indentation issues (Quentin, patch 11) Also explored Eduard's suggestion of doing an implicit fallback to checking for .BTF.base section in btf__parse() when it is called to get base BTF. However while it is doable, it turned out to be difficult operationally. Since fallback is implicit we do not know the source of the BTF - was it from .BTF or .BTF.base? In bpftool, we want to try first standalone BTF, then split, then split with distilled base. Having a way to explicitly request .BTF.base via btf__parse_opts() fits that model better. Changes since v2[7]: - submitted patch to use --btf_features in Makefile.btf for pahole v1.26 and later separately (Andrii). That has landed in bpf-next now. - distilled base now encodes ENUM64 as fwd ENUM (size 8), eliminating the need for support for ENUM64 in btf__add_fwd (patch 1, Andrii) - moved to distilling only named types, augmenting split BTF with associated reference types; this simplifies greatly the distilled base BTF and the mapping operation between distilled and base BTF when relocating (most of the series changes, Andrii) - relocation now iterates over base BTF, looking for matches based on name in distilled BTF. Distilled BTF is pre-sorted by name (Andrii, patch 8) - removed most redundant compabitiliby checks aside from struct size for base types/embedded structs and kind compatibility (since we only match on name) (Andrii, patch 8) - btf__parse_opts() now replaces btf_parse() internally in libbpf (Eduard, patch 3) Changes since RFC [8]: - updated terminology; we replace clunky "base reference" BTF with distilling base BTF into a .BTF.base section. Similarly BTF reconcilation becomes BTF relocation (Andrii, most patches) - add distilled base BTF by default for out-of-tree modules (Alexei, patch 8) - distill algorithm updated to record size of embedded struct/union by recording it as a 0-vlen STRUCT/UNION with size preserved (Andrii, patch 2) - verify size match on relocation for such STRUCT/UNIONs (Andrii, patch 9) - with embedded STRUCT/UNION recording size, we can have bpftool dump a header representation using .BTF.base + .BTF sections rather than special-casing and refusing to use "format c" for that case (patch 5) - match enum with enum64 and vice versa (Andrii, patch 9) - ensure that resolve_btfids works with BTF without .BTF.base section (patch 7) - update tests to cover embedded types, arrays and function prototypes (patches 3, 12) [1] https://lore.kernel.org/bpf/20231112124834.388735-14-alan.maguire@oracle.com/ [2] https://lore.kernel.org/bpf/20240501175035.2476830-1-alan.maguire@oracle.com/ [3] https://lore.kernel.org/bpf/20240517102714.4072080-1-alan.maguire@oracle.com/ [4] https://lore.kernel.org/bpf/20240528122408.3154936-1-alan.maguire@oracle.com/ [5] https://lore.kernel.org/bpf/20240517102246.4070184-1-alan.maguire@oracle.com/ [6] https://lore.kernel.org/bpf/20240510103052.850012-1-alan.maguire@oracle.com/ [7] https://lore.kernel.org/bpf/20240424154806.3417662-1-alan.maguire@oracle.com/ [8] https://lore.kernel.org/bpf/20240322102455.98558-1-alan.maguire@oracle.com/ ==================== Link: https://lore.kernel.org/r/20240613095014.357981-1-alan.maguire@oracle.comSigned-off-by: Andrii Nakryiko <andrii@kernel.org>
-
Alan Maguire authored
Now that btf_parse_elf() handles .BTF.base section presence, we need to ensure that resolve_btfids uses .BTF.base when present rather than the vmlinux base BTF passed in via the -B option. Detect .BTF.base section presence and unset the base BTF path to ensure that BTF ELF parsing will do the right thing. Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240613095014.357981-7-alan.maguire@oracle.com
-
Eduard Zingerman authored
Update btf_parse_elf() to check if .BTF.base section is present. The logic is as follows: if .BTF.base section exists: distilled_base := btf_new(.BTF.base) if distilled_base: btf := btf_new(.BTF, .base_btf=distilled_base) if base_btf: btf_relocate(btf, base_btf) else: btf := btf_new(.BTF) return btf In other words: - if .BTF.base section exists, load BTF from it and use it as a base for .BTF load; - if base_btf is specified and .BTF.base section exist, relocate newly loaded .BTF against base_btf. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240613095014.357981-6-alan.maguire@oracle.com
-
Alan Maguire authored
Ensure relocated BTF looks as expected; in this case identical to original split BTF, with a few duplicate anonymous types added to split BTF by the relocation process. Also add relocation tests for edge cases like missing type in base BTF and multiple types of the same name. Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240613095014.357981-5-alan.maguire@oracle.com
-
Alan Maguire authored
Map distilled base BTF type ids referenced in split BTF and their references to the base BTF passed in, and if the mapping succeeds, reparent the split BTF to the base BTF. Relocation is done by first verifying that distilled base BTF only consists of named INT, FLOAT, ENUM, FWD, STRUCT and UNION kinds; then we sort these to speed lookups. Once sorted, the base BTF is iterated, and for each relevant kind we check for an equivalent in distilled base BTF. When found, the mapping from distilled -> base BTF id and string offset is recorded. In establishing mappings, we need to ensure we check STRUCT/UNION size when the STRUCT/UNION is embedded in a split BTF STRUCT/UNION, and when duplicate names exist for the same STRUCT/UNION. Otherwise size is ignored in matching STRUCT/UNIONs. Once all mappings are established, we can update type ids and string offsets in split BTF and reparent it to the new base. Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240613095014.357981-4-alan.maguire@oracle.com
-
Alan Maguire authored
Test generation of split+distilled base BTF, ensuring that - named base BTF STRUCTs and UNIONs are represented as 0-vlen sized STRUCT/UNIONs - named ENUM[64]s are represented as 0-vlen named ENUM[64]s - anonymous struct/unions are represented in full in split BTF - anonymous enums are represented in full in split BTF - types unreferenced from split BTF are not present in distilled base BTF Also test that with vmlinux BTF and split BTF based upon it, we only represent needed base types referenced from split BTF in distilled base. Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240613095014.357981-3-alan.maguire@oracle.com
-
Alan Maguire authored
To support more robust split BTF, adding supplemental context for the base BTF type ids that split BTF refers to is required. Without such references, a simple shuffling of base BTF type ids (without any other significant change) invalidates the split BTF. Here the attempt is made to store additional context to make split BTF more robust. This context comes in the form of distilled base BTF providing minimal information (name and - in some cases - size) for base INTs, FLOATs, STRUCTs, UNIONs, ENUMs and ENUM64s along with modified split BTF that points at that base and contains any additional types needed (such as TYPEDEF, PTR and anonymous STRUCT/UNION declarations). This information constitutes the minimal BTF representation needed to disambiguate or remove split BTF references to base BTF. The rules are as follows: - INT, FLOAT, FWD are recorded in full. - if a named base BTF STRUCT or UNION is referred to from split BTF, it will be encoded as a zero-member sized STRUCT/UNION (preserving size for later relocation checks). Only base BTF STRUCT/UNIONs that are either embedded in split BTF STRUCT/UNIONs or that have multiple STRUCT/UNION instances of the same name will _need_ size checks at relocation time, but as it is possible a different set of types will be duplicates in the later to-be-resolved base BTF, we preserve size information for all named STRUCT/UNIONs. - if an ENUM[64] is named, a ENUM forward representation (an ENUM with no values) of the same size is used. - in all other cases, the type is added to the new split BTF. Avoiding struct/union/enum/enum64 expansion is important to keep the distilled base BTF representation to a minimum size. When successful, new representations of the distilled base BTF and new split BTF that refers to it are returned. Both need to be freed by the caller. So to take a simple example, with split BTF with a type referring to "struct sk_buff", we will generate distilled base BTF with a 0-member STRUCT sk_buff of the appropriate size, and the split BTF will refer to it instead. Tools like pahole can utilize such split BTF to populate the .BTF section (split BTF) and an additional .BTF.base section. Then when the split BTF is loaded, the distilled base BTF can be used to relocate split BTF to reference the current (and possibly changed) base BTF. So for example if "struct sk_buff" was id 502 when the split BTF was originally generated, we can use the distilled base BTF to see that id 502 refers to a "struct sk_buff" and replace instances of id 502 with the current (relocated) base BTF sk_buff type id. Distilled base BTF is small; when building a kernel with all modules using distilled base BTF as a test, overall module size grew by only 5.3Mb total across ~2700 modules. Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240613095014.357981-2-alan.maguire@oracle.com
-
- 14 Jun, 2024 4 commits
-
-
Alexei Starovoitov authored
Improve arena based tests and add several C and asm tests with specific pattern. These tests would have failed without add_const verifier support. Also add several loop_inside_iter*() tests that are not related to add_const, but nice to have. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20240613013815.953-5-alexei.starovoitov@gmail.com
-
Alexei Starovoitov authored
Add big endian support for can_loop/cond_break macros. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/bpf/20240613013815.953-4-alexei.starovoitov@gmail.com
-
Alexei Starovoitov authored
Compilers can generate the code r1 = r2 r1 += 0x1 if r2 < 1000 goto ... use knowledge of r2 range in subsequent r1 operations So remember constant delta between r2 and r1 and update r1 after 'if' condition. Unfortunately LLVM still uses this pattern for loops with 'can_loop' construct: for (i = 0; i < 1000 && can_loop; i++) The "undo" pass was introduced in LLVM https://reviews.llvm.org/D121937 to prevent this optimization, but it cannot cover all cases. Instead of fighting middle end optimizer in BPF backend teach the verifier about this pattern. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240613013815.953-3-alexei.starovoitov@gmail.com
-
Alexei Starovoitov authored
__bpf_skc_lookup() safely handles incorrect values of tuple len, hence we can allow zero to be passed as tuple len. This patch alone doesn't make an observable verifier difference. It's a trivial improvement that might simplify bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240613013815.953-2-alexei.starovoitov@gmail.com
-
- 13 Jun, 2024 3 commits
-
-
Alexei Starovoitov authored
Vadim Fedorenko says: ==================== bpf: make trusted args nullable Current verifier checks for the arg to be nullable after checking for certain pointer types. It prevents programs to pass NULL to kfunc args even if they are marked as nullable. This patchset adjusts verifier and changes bpf crypto kfuncs to allow null for IV parameter which is optional for some ciphers. Benchmark shows ~4% improvements when there is no need to initialise 0-sized dynptr. v3: - add special selftest for nullable parameters v2: - adjust kdoc accordingly ==================== Link: https://lore.kernel.org/r/20240613211817.1551967-1-vadfed@meta.comSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Vadim Fedorenko authored
Add special test to be sure that only __nullable BTF params can be replaced by NULL. This patch adds fake kfuncs in bpf_testmod to properly test different params. Acked-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Vadim Fedorenko <vadfed@meta.com> Link: https://lore.kernel.org/r/20240613211817.1551967-6-vadfed@meta.comSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-
Vadim Fedorenko authored
The bench shows some improvements, around 4% faster on decrypt. Before: Benchmark 'crypto-decrypt' started. Iter 0 (325.719us): hits 5.105M/s ( 5.105M/prod), drops 0.000M/s, total operations 5.105M/s Iter 1 (-17.295us): hits 5.224M/s ( 5.224M/prod), drops 0.000M/s, total operations 5.224M/s Iter 2 ( 5.504us): hits 4.630M/s ( 4.630M/prod), drops 0.000M/s, total operations 4.630M/s Iter 3 ( 9.239us): hits 5.148M/s ( 5.148M/prod), drops 0.000M/s, total operations 5.148M/s Iter 4 ( 37.885us): hits 5.198M/s ( 5.198M/prod), drops 0.000M/s, total operations 5.198M/s Iter 5 (-53.282us): hits 5.167M/s ( 5.167M/prod), drops 0.000M/s, total operations 5.167M/s Iter 6 (-17.809us): hits 5.186M/s ( 5.186M/prod), drops 0.000M/s, total operations 5.186M/s Summary: hits 5.092 ± 0.228M/s ( 5.092M/prod), drops 0.000 ±0.000M/s, total operations 5.092 ± 0.228M/s After: Benchmark 'crypto-decrypt' started. Iter 0 (268.912us): hits 5.312M/s ( 5.312M/prod), drops 0.000M/s, total operations 5.312M/s Iter 1 (124.869us): hits 5.354M/s ( 5.354M/prod), drops 0.000M/s, total operations 5.354M/s Iter 2 (-36.801us): hits 5.334M/s ( 5.334M/prod), drops 0.000M/s, total operations 5.334M/s Iter 3 (254.628us): hits 5.334M/s ( 5.334M/prod), drops 0.000M/s, total operations 5.334M/s Iter 4 (-77.691us): hits 5.275M/s ( 5.275M/prod), drops 0.000M/s, total operations 5.275M/s Iter 5 (-164.510us): hits 5.313M/s ( 5.313M/prod), drops 0.000M/s, total operations 5.313M/s Iter 6 (-81.376us): hits 5.346M/s ( 5.346M/prod), drops 0.000M/s, total operations 5.346M/s Summary: hits 5.326 ± 0.029M/s ( 5.326M/prod), drops 0.000 ±0.000M/s, total operations 5.326 ± 0.029M/s Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Vadim Fedorenko <vadfed@meta.com> Link: https://lore.kernel.org/r/20240613211817.1551967-5-vadfed@meta.comSigned-off-by: Alexei Starovoitov <ast@kernel.org>
-