Commit e7fe9dc8 authored by Elvis Pranskevichus's avatar Elvis Pranskevichus

Fix latency stats

parent 80f75eb1
......@@ -53,7 +53,7 @@ if __name__ == '__main__':
sock.connect(addr)
n = 0
latency_stats = np.zeros((timeout,))
latency_stats = np.zeros((timeout * 10,))
while time.monotonic() - start < duration:
req_start = time.monotonic()
......@@ -64,12 +64,45 @@ if __name__ == '__main__':
if not resp:
raise SystemExit()
nrecv += len(resp)
req_time = round((time.monotonic() - req_start) * 1000)
req_time = round((time.monotonic() - req_start) * 10000)
latency_stats[req_time] += 1
n += 1
return n, latency_stats
def weighted_quantile(values, quantiles, sample_weight=None,
values_sorted=False, old_style=False):
""" Very close to np.percentile, but supports weights.
NOTE: quantiles should be in [0, 1]!
:param values: np.array with data
:param quantiles: array-like with many quantiles needed
:param sample_weight: array-like of the same length as `array`
:param values_sorted: bool, if True, then will avoid sorting of initial array
:param old_style: if True, will correct output to be consistent with np.percentile.
:return: np.array with computed quantiles.
"""
values = np.array(values)
quantiles = np.array(quantiles)
if sample_weight is None:
sample_weight = np.ones(len(values))
sample_weight = np.array(sample_weight)
assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \
'quantiles should be in [0, 1]'
if not values_sorted:
sorter = np.argsort(values)
values = values[sorter]
sample_weight = sample_weight[sorter]
weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight
if old_style:
# To be convenient with np.percentile
weighted_quantiles -= weighted_quantiles[0]
weighted_quantiles /= weighted_quantiles[-1]
else:
weighted_quantiles /= np.sum(sample_weight)
return np.interp(quantiles, weighted_quantiles, values)
TIMES = args.times
N = args.concurrency
DURATION = args.duration
......@@ -95,26 +128,25 @@ if __name__ == '__main__':
end = time.monotonic()
duration = end - start
weighted_latency = np.multiply(latency_stats, np.arange(timeout))
mean_latency = (np.sum(weighted_latency) / timeout)
arange = np.arange(len(latency_stats))
trimmed_latency = np.trim_zeros(latency_stats, 'b')
weighted_latency = np.multiply(latency_stats, arange)
mean_latency = np.sum(weighted_latency) / messages
percentiles = [50, 75, 90, 99]
percentile_data = []
latency_chart = np.stack((np.arange(len(trimmed_latency)),
trimmed_latency), axis=-1)
percentile_values = np.percentile(latency_chart, percentiles, axis=0)
quantiles = weighted_quantile(arange, [p / 100 for p in percentiles],
sample_weight=latency_stats,
values_sorted=True)
for i, percentile in enumerate(percentiles):
percentile_data.append('{}%: {}ms'.format(
percentile, round(percentile_values[i][0], 2)))
percentile, round(quantiles[i], 2)))
print(messages, 'in', round(duration, 2))
print('Latency avg: {}ms'.format(round(mean_latency, 2)))
# print('Latency distribution: {}'.format('; '.join(percentile_data)))
print('Latency distribution: {}'.format('; '.join(percentile_data)))
print('Requests/sec: {}'.format(round(messages / duration, 2)))
transfer = (messages * MSGSIZE / (1024 * 1024)) / duration
print('Transfer/sec: {}MiB'.format(round(transfer, 2)))
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment