Commit 22206f11 authored by Georgios Dagkakis's avatar Georgios Dagkakis

calculate PG for every machine and allow machines have different transition probabilities

parent e6ecf617
......@@ -10,8 +10,11 @@ g=0.01
r=0.1
f=0.2
# simulation time
maxSimTime=1000
# the capacity of B123
capacity=35
capacity=3
class OpQueue(Queue):
# allow to be locked between the time periods
......@@ -41,7 +44,7 @@ class OpExit(Exit):
# update the GoodExits list
def postProcessing(self):
Exit.postProcessing(self, MaxSimtime=1000.1)
Exit.postProcessing(self, MaxSimtime=maxSimTime)
self.GoodExits.append(self.numGoodParts)
class OpMachine(Machine):
......@@ -57,6 +60,7 @@ class OpMachine(Machine):
# set state=1 at the start of each replication
def initialize(self):
Machine.initialize(self)
self.numGoodParts=0
self.state=1
# if the state is -1 set that the disposed Entity is 'Bad'
......@@ -64,7 +68,14 @@ class OpMachine(Machine):
activeEntity=Machine.removeEntity(self, entity)
if self.state==-1:
activeEntity.status='Bad'
else:
self.numGoodParts+=1
return activeEntity
# update the GoodParts list
def postProcessing(self):
Machine.postProcessing(self, MaxSimtime=maxSimTime)
self.GoodExits.append(self.numGoodParts)
# method invoked by the generator at every time period
def controllerMethod():
......@@ -74,15 +85,15 @@ def controllerMethod():
rn1=createRandomNumber()
rn2=createRandomNumber()
if M.state==1:
if rn1<p:
if rn1<M.p:
M.state=0
elif rn2<g:
elif rn2<M.g:
M.state=-1
elif M.state==0:
if rn1<r:
if rn1<M.r:
M.state=1
elif M.state==-1:
if rn1<f:
if rn1<M.f:
M.state=0
# unlock E and let part get from M3 to E
......@@ -108,7 +119,6 @@ def controllerMethod():
i=0
while (len(M1.getActiveObjectQueue()) and (not M1.state==0)) \
or (len(M2.getActiveObjectQueue()) and (not M2.state==0)):
# print G.env.now, len(M1.getActiveObjectQueue()), M1.state, len(M2.getActiveObjectQueue()), M2.state, len(B123.getActiveObjectQueue())
yield G.env.timeout(0)
if len(B123.getActiveObjectQueue())==B123.capacity:
break
......@@ -162,14 +172,37 @@ for obj in objectList:
# GoodExits will keep the number of good parts produced in every replication
E.GoodExits=[]
# GoodParts will keep the number of good parts a machine produced in every replication
for M in [M1,M2,M3]:
M.GoodExits=[]
# the transition probabilities for machines
M1.p=0.01
M1.g=0.01
M1.r=0.1
M1.f=0.2
M2.p=0.01
M2.g=0.01
M2.r=0.1
M2.f=0.2
M3.p=0.01
M3.g=0.01
M3.r=0.1
M3.f=0.2
# call the runSimulation giving the objects and the length of the experiment
runSimulation(objectList, 1000, numberOfReplications=50)
runSimulation(objectList, maxSimTime, numberOfReplications=5)
#print the results
PRt=sum(E.Exits)/float(len(E.Exits))
PRg=sum(E.GoodExits)/float(len(E.GoodExits))
print E.Exits
print E.GoodExits
print 'PRt=',PRt/float(1000)
print 'PRg=',PRg/float(1000)
print 'PRt=',PRt/float(maxSimTime)
print 'PRg=',PRg/float(maxSimTime)
for M in [M1,M2,M3]:
G=sum(M.GoodExits)/float(len(M.GoodExits))
print 'PRg'+M.id,'=',G/float(maxSimTime)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment