Commit 6844c7e5 authored by panos's avatar panos Committed by Jérome Perrin

Knowledge Extraction tool new pilot case

parent 3a5934ae
# ===========================================================================
# Copyright 2013 University of Limerick
#
# This file is part of DREAM.
#
# DREAM is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DREAM is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DREAM. If not, see <http://www.gnu.org/licenses/>.
# ===========================================================================
'''
Created on 7 May 2014
@author: Panos
'''
from DistributionFitting import Distributions
from ImportExceldata import Import_Excel
from ReplaceMissingValues import HandleMissingValues
import rpy2.robjects as robjects
from xlwt import Workbook
import json
import xlrd
import random
#Read data from the exported Excel file from RapidMiner and call the Import_Excel object of the KE tool to import this data in the tool
workbook = xlrd.open_workbook(r'Input8PPOS.xlsx','r')
worksheets = workbook.sheet_names()
worksheet_RapidMiner = worksheets[0]
A= Import_Excel()
Turnovers=A.Input_data(worksheet_RapidMiner, workbook) #Dictionary with the data from the Excel file
#Create lists with the MAs' names and the Turnovers for the first twelve weeks of 2010 retrieving this data from the dictionary
PPOS=Turnovers.get('Ppos',[])
SP=Turnovers.get('SP',[])
MA=Turnovers.get('FP Material No PGS+',[])
GlobalDemand=Turnovers.get('Global demand',[])
#Call the Distributions object and fit the data from the list in Normal distribution, so as to have info on Global demand (mean and standard deviation)
D=Distributions()
E=HandleMissingValues()
MA=E.DeleteMissingValue(MA)
t=D.Normal_distrfit(GlobalDemand)
avg=t.get('mean')
stdev=t.get('stdev')
def constrained_sum_sample_pos(n, total):
"""Return a randomly chosen list of n positive integers summing to total.
Each such list is equally likely to occur."""
dividers = sorted(random.sample(xrange(1, total), n - 1))
return [a - b for a, b in zip(dividers + [total], [0] + dividers)]
def constrained_sum_sample_nonneg(n, total):
"""Return a randomly chosen list of n nonnegative integers summing to total.
Each such list is equally likely to occur."""
return [x - 1 for x in constrained_sum_sample_pos(n, total + n)]
DemandProfile={} #Create a dictionary
MinPackagingSize=10
week=[1,2,3,4,5,6,7,8,9,10] # list that defines the planning horizon, i.e. 10 weeks
for i in week:
Demand=int(abs(random.normalvariate(avg,stdev))) # Generate a random, non-negative, integer number from the Normal distribution
AllocatedPercent=0.8-(0.05*i) # Defines a number starts with 0.8 or 80% and reduced with every iteration at 0.05 or 5%
Remaining_Demand=int((1-AllocatedPercent)*Demand) # Defines the Remaining demand
a=constrained_sum_sample_nonneg(len(MA),100)
myInt=100
a=robjects.FloatVector(a)
lista = [x/myInt for x in a] # Define a list with the same length as the MA list and elements float numbers with total sum equal to 1
b=constrained_sum_sample_nonneg(len(MA),Remaining_Demand) # Define a list with the same length as the MA list and elements with total sum the Remaining demand
dicta={}
for index in range(0,len(MA)):
MinUnits=round(b[index]*(random.uniform(0,0.2)),0)
TotalUnits=b[index]
if TotalUnits<MinPackagingSize:
TotalUnits=0
if MinUnits<MinPackagingSize:
MinUnits=0
dicta.update({MA[index]:[TotalUnits,MinUnits]}) # it updates a dictionary with key the different MAs and values the remaining demand and (b[index]*lista[index])
DemandProfile.update({i:dicta}) #It updates a dictionary with key the number of each iteration (week) and value the dictionary dicta
Table=[]
i=0
for i in range(len(MA)):
Table.append([PPOS[i],SP[i],MA[i]])
i+=1
uniquePPOS=[]
for ppos in PPOS:
if not ppos in uniquePPOS and ppos!='':
uniquePPOS.append(ppos)
# ###=====================================================================================================###
#
# book = Workbook()
# sheet1 = book.add_sheet('Future Demand Profile', cell_overwrite_ok=True)
# r=0
# for key in DemandProfile.keys():
# t=1
# for elem in DemandProfile[key]:
# sheet1.write(2+t,0,elem)
# sheet1.write(t+2,key+r,DemandProfile[key].get(elem)[0])
# sheet1.write(t+2,key+r+1,DemandProfile[key].get(elem)[1])
# book.save('Output8PPOS.xls')
# t+=1
# r+=1
###======================================================================================================###
book=Workbook()
sheet1 = book.add_sheet('New Output', cell_overwrite_ok=True)
aggrTable=[]
for key in DemandProfile.keys():
for elem in DemandProfile[key]:
if DemandProfile[key].get(elem)[0]> 0:
MAkey=elem
totalUnits=DemandProfile[key].get(elem)[0]
minUnits=DemandProfile[key].get(elem)[1]
plannedWeek=key
aggrTable.append([MAkey,totalUnits,minUnits,plannedWeek])
else:
continue
t=1
aggrTable.sort(key=lambda x:x[1], reverse=False)
for i in sorted(aggrTable, key= lambda x:int(x[3])):
sheet1.write(0,0,'Order ID')
sheet1.write(0,1,'MA ID')
sheet1.write(0,2,'Total # Units')
sheet1.write(0,3,'Min # Units')
sheet1.write(0,4,'Planned Week')
sheet1.write(t,1,i[0])
sheet1.write(t,2,i[1])
sheet1.write(t,3,i[2])
sheet1.write(t,4,i[3])
sheet1.write(t,0,t)
book.save('NewOutput8PPOS.xls')
t+=1
# open json file
futureDemandProfileFile=open('futureDemandProfile.json', mode='w')
futureDemandProfile={}
t=1
for i in sorted(aggrTable, key= lambda x:int(x[3])):
dicta={'MAID':i[0],'TotalUnits':i[1],'MinUnits':i[2],'PlannedWeek':i[3]}
futureDemandProfile[t]=dicta
futureDemandProfileString=json.dumps(futureDemandProfile, indent=5)
t+=1
#write json file
futureDemandProfileFile.write(futureDemandProfileString)
###==================================================================================================###
book=Workbook()
sheet1 = book.add_sheet('PPOS Profile', cell_overwrite_ok=True)
PPOSToBeDisaggregated='PPOS4'
PPOSQuantity=1000
PlannedWeek=2
dictPPOS={}
dictPPOSMA={}
for ind in uniquePPOS:
indices=[i for i,j in enumerate(PPOS) if j==ind]
mas=[ma for ma in MA if (MA.index(ma) in indices)]
dictPPOSMA.update({ind: mas})
t=1
for key in dictPPOSMA.keys():
for elem in dictPPOSMA[key]:
if key==PPOSToBeDisaggregated:
c=constrained_sum_sample_nonneg(len(dictPPOSMA[key]),PPOSQuantity)
d=constrained_sum_sample_nonneg(len(dictPPOSMA[key]),100)
myInt=100
d=robjects.FloatVector(d)
listd = [x/myInt for x in d]
for i in range(0,len(dictPPOSMA[key])):
MinUnits=round(c[i]*(random.uniform(0,0.2)),0)
TotalUnits=c[i]
if TotalUnits<MinPackagingSize:
TotalUnits=0
if MinUnits<MinPackagingSize:
MinUnits=0
dictPPOS.update({dictPPOSMA[key][i]:[TotalUnits,MinUnits]})
t=1
for i in range(0,len(dictPPOS)):
sheet1.write(0,0,'Order ID')
sheet1.write(0,1,'MA ID')
sheet1.write(0,2,'Total # Units')
sheet1.write(0,3,'Min # Units')
sheet1.write(0,4,'Planned Week')
sheet1.write(t,0,t)
sheet1.write(t,1,dictPPOSMA[PPOSToBeDisaggregated][i])
sheet1.write(t,2,dictPPOS[dictPPOSMA[PPOSToBeDisaggregated][i]][0])
sheet1.write(t,3,dictPPOS[dictPPOSMA[PPOSToBeDisaggregated][i]][1])
sheet1.write(t,4,PlannedWeek)
book.save('PPOSOutput8PPOS.xls')
t+=1
# open json file
PPOSProfileFile=open('PPOSProfile.json', mode='w')
PPOSProfile={}
t=1
for i in range(0,len(dictPPOS)):
dictb={'MAID':dictPPOSMA[PPOSToBeDisaggregated][i],'TotalUnits':dictPPOS[dictPPOSMA[PPOSToBeDisaggregated][i]][0],'MinUnits':dictPPOS[dictPPOSMA[PPOSToBeDisaggregated][i]][1],'PlannedWeek':PlannedWeek}
PPOSProfile[t]=dictb
PPOSProfileString=json.dumps(PPOSProfile, indent=5)
t+=1
#write json file
PPOSProfileFile.write(PPOSProfileString)
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment