Commit 687f187f authored by Georgios Dagkakis's avatar Georgios Dagkakis

FutureDemandCreator to pass correct data to KE

parent 5861301f
...@@ -33,11 +33,15 @@ import xlrd ...@@ -33,11 +33,15 @@ import xlrd
import random import random
import urllib import urllib
def generateDemandPlanning(input_url): def generateDemandPlanning(input_url, PPOSQuantity=1000, PlannedWeek=1, PPOSToBeDisaggregated='PPOS1',
MinPackagingSize=10, planningHorizon=10):
"""Generate random demand from spreadsheet at input_url. """Generate random demand from spreadsheet at input_url.
""" """
# id is given as an integer and minus one
# ToDo we have to standardize data
PPOSToBeDisaggregated='PPOS'+str(PPOSToBeDisaggregated+1)
# Read data from the exported Excel file from RapidMiner and call the Import_Excel object of the KE tool to import this data in the tool # Read data from the exported Excel file from RapidMiner and call the Import_Excel object of the KE tool to import this data in the tool
demand_data = urllib.urlopen(input_url).read() demand_data = urllib.urlopen(input_url).read()
...@@ -46,10 +50,6 @@ def generateDemandPlanning(input_url): ...@@ -46,10 +50,6 @@ def generateDemandPlanning(input_url):
worksheets = workbook.sheet_names() worksheets = workbook.sheet_names()
worksheet_RapidMiner = worksheets[0] worksheet_RapidMiner = worksheets[0]
PPOSToBeDisaggregated='PPOS4'
PPOSQuantity=1000
PlannedWeek=2
A= Import_Excel() A= Import_Excel()
Turnovers=A.Input_data(worksheet_RapidMiner, workbook) #Dictionary with the data from the Excel file Turnovers=A.Input_data(worksheet_RapidMiner, workbook) #Dictionary with the data from the Excel file
...@@ -81,8 +81,10 @@ def generateDemandPlanning(input_url): ...@@ -81,8 +81,10 @@ def generateDemandPlanning(input_url):
return [x - 1 for x in constrained_sum_sample_pos(n, total + n)] return [x - 1 for x in constrained_sum_sample_pos(n, total + n)]
DemandProfile={} #Create a dictionary DemandProfile={} #Create a dictionary
MinPackagingSize=10
week=[1,2,3,4,5,6,7,8,9,10] # list that defines the planning horizon, i.e. 10 weeks week=[] # list that defines the planning horizon, i.e. 10 weeks
for i in range(int(planningHorizon)):
week.append(i+1)
for i in week: for i in week:
Demand=int(abs(random.normalvariate(avg,stdev))) # Generate a random, non-negative, integer number from the Normal distribution Demand=int(abs(random.normalvariate(avg,stdev))) # Generate a random, non-negative, integer number from the Normal distribution
......
...@@ -57,7 +57,9 @@ class FutureDemandCreator(): ...@@ -57,7 +57,9 @@ class FutureDemandCreator():
from dream.KnowledgeExtraction.PilotCases.InputData_DemandPlanning \ from dream.KnowledgeExtraction.PilotCases.InputData_DemandPlanning \
import generateDemandPlanning import generateDemandPlanning
G.generatedDemandPlanning = generateDemandPlanning(G.demandFile) G.generatedDemandPlanning = generateDemandPlanning(G.demandFile, PPOSToBeDisaggregated=G.TargetPPOS,
PPOSQuantity=G.TargetPPOSqty, PlannedWeek=G.TargetPPOSweek,
planningHorizon=G.maxSimTime, MinPackagingSize=G.minPackingSize)
wbin = xlrd.open_workbook(file_contents=G.generatedDemandPlanning) wbin = xlrd.open_workbook(file_contents=G.generatedDemandPlanning)
MAData=G.RouteDict MAData=G.RouteDict
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment