Commit 8e44904f authored by Ioannis Papagiannopoulos's avatar Ioannis Papagiannopoulos Committed by Jérome Perrin

Operator and OperatedMachine added. Not tested yet

parent 007e5b7c
This diff is collapsed.
# ===========================================================================
# Copyright 2013 University of Limerick
#
# This file is part of DREAM.
#
# DREAM is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DREAM is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DREAM. If not, see <http://www.gnu.org/licenses/>.
# ===========================================================================
'''
Created on 22 Nov 2012
@author: Ioannis
'''
'''
models a repairman that can fix a machine when it gets failures
'''
from SimPy.Simulation import Resource, now
import xlwt
import scipy.stats as stat
from ObjectResource import ObjectResource
# ===========================================================================
# the resource that repairs the machines
# ===========================================================================
class Operator(ObjectResource):
def __init__(self, id, name, capacity=1):
self.id=id
self.objName=name
self.capacity=capacity # operator is an instance of resource
self.type="Operator"
# self.Res=Resource(self.capacity)
# lists to hold statistics of multiple runs
self.Waiting=[] # holds the percentage of waiting time
self.Working=[] # holds the percentage of working time
# list with the coreObjects that the Operator operates
self.coreObjectIds=[]
# =======================================================================
# actions to be taken after the simulation ends
# =======================================================================
def postProcessing(self, MaxSimtime=None):
if MaxSimtime==None:
from Globals import G
MaxSimtime=G.maxSimTime
# if the repairman is currently working we have to count the time of this work
if not self.isResourceFree():
# if len(self.getResourceQueue())>0:
self.totalWorkingTime+=now()-self.timeLastOperationStarted
# Repairman was idle when he was not in any other state
self.totalWaitingTime=MaxSimtime-self.totalWorkingTime
# update the waiting/working time percentages lists
self.Waiting.append(100*self.totalWaitingTime/MaxSimtime)
self.Working.append(100*self.totalWorkingTime/MaxSimtime)
# =======================================================================
# outputs data to "output.xls"
# =======================================================================
def outputResultsXL(self, MaxSimtime=None):
from Globals import G
if MaxSimtime==None:
MaxSimtime=G.maxSimTime
# if we had just one replication output the results to excel
if(G.numberOfReplications==1):
G.outputSheet.write(G.outputIndex,0, "The percentage of working of "+self.objName +" is:")
G.outputSheet.write(G.outputIndex,1,100*self.totalWorkingTime/MaxSimtime)
G.outputIndex+=1
G.outputSheet.write(G.outputIndex,0, "The percentage of waiting of "+self.objName +" is:")
G.outputSheet.write(G.outputIndex,1,100*self.totalWaitingTime/MaxSimtime)
G.outputIndex+=1
#if we had multiple replications we output confidence intervals to excel
# for some outputs the results may be the same for each run (eg model is stochastic but failures fixed
# so failurePortion will be exactly the same in each run). That will give 0 variability and errors.
# so for each output value we check if there was difference in the runs' results
# if yes we output the Confidence Intervals. if not we output just the fix value
else:
G.outputSheet.write(G.outputIndex,0, "CI "+str(G.confidenceLevel*100)+"% for the mean percentage of Working of "+self.objName +" is:")
if self.checkIfArrayHasDifValues(self.Working):
G.outputSheet.write(G.outputIndex,1,stat.bayes_mvs(self.Working, G.confidenceLevel)[0][1][0])
G.outputSheet.write(G.outputIndex,2,stat.bayes_mvs(self.Working, G.confidenceLevel)[0][0])
G.outputSheet.write(G.outputIndex,3,stat.bayes_mvs(self.Working, G.confidenceLevel)[0][1][1])
else:
G.outputSheet.write(G.outputIndex,1,self.Working[0])
G.outputSheet.write(G.outputIndex,2,self.Working[0])
G.outputSheet.write(G.outputIndex,3,self.Working[0])
G.outputIndex+=1
G.outputSheet.write(G.outputIndex,0, "CI "+str(G.confidenceLevel*100)+"% for the mean percentage of Waiting of "+self.objName +" is:")
if self.checkIfArrayHasDifValues(self.Waiting):
G.outputSheet.write(G.outputIndex,1,stat.bayes_mvs(self.Waiting, G.confidenceLevel)[0][1][0])
G.outputSheet.write(G.outputIndex,2,stat.bayes_mvs(self.Waiting, G.confidenceLevel)[0][0])
G.outputSheet.write(G.outputIndex,3,stat.bayes_mvs(self.Waiting, G.confidenceLevel)[0][1][1])
else:
G.outputSheet.write(G.outputIndex,1,self.Waiting[0])
G.outputSheet.write(G.outputIndex,2,self.Waiting[0])
G.outputSheet.write(G.outputIndex,3,self.Waiting[0])
G.outputIndex+=1
G.outputIndex+=1
# =======================================================================
# outputs results to JSON File
# =======================================================================
def outputResultsJSON(self):
from Globals import G
# if we had just one replication output the results to JSON
if(G.numberOfReplications==1):
json={}
json['_class'] = 'Dream.Repairman';
json['id'] = str(self.id)
json['results'] = {}
json['results']['working_ratio']=100*self.totalWorkingTime/G.maxSimTime
json['results']['waiting_ratio']=100*self.totalWaitingTime/G.maxSimTime
#if we had multiple replications we output confidence intervals to excel
# for some outputs the results may be the same for each run (eg model is stochastic but failures fixed
# so failurePortion will be exactly the same in each run). That will give 0 variability and errors.
# so for each output value we check if there was difference in the runs' results
# if yes we output the Confidence Intervals. if not we output just the fix value
else:
json={}
json['_class'] = 'Dream.Repairman';
json['id'] = str(self.id)
json['results'] = {}
json['results']['working_ratio']={}
if self.checkIfArrayHasDifValues(self.Working):
json['results']['working_ratio']['min']=stat.bayes_mvs(self.Working, G.confidenceLevel)[0][1][0]
json['results']['working_ratio']['avg']=stat.bayes_mvs(self.Working, G.confidenceLevel)[0][0]
json['results']['working_ratio']['max']=stat.bayes_mvs(self.Working, G.confidenceLevel)[0][1][1]
else:
json['results']['working_ratio']['min']=self.Working[0]
json['results']['working_ratio']['avg']=self.Working[0]
json['results']['working_ratio']['max']=self.Working[0]
json['results']['waiting_ratio']={}
if self.checkIfArrayHasDifValues(self.Waiting):
json['results']['waiting_ratio']['min']=stat.bayes_mvs(self.Waiting, G.confidenceLevel)[0][1][0]
json['results']['waiting_ratio']['avg']=stat.bayes_mvs(self.Waiting, G.confidenceLevel)[0][0]
json['results']['waiting_ratio']['max']=stat.bayes_mvs(self.Waiting, G.confidenceLevel)[0][1][1]
else:
json['results']['waiting_ratio']['min']=self.Waiting[0]
json['results']['waiting_ratio']['avg']=self.Waiting[0]
json['results']['waiting_ratio']['max']=self.Waiting[0]
G.outputJSON['elementList'].append(json)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment