Commit a5385557 authored by Georgios Dagkakis's avatar Georgios Dagkakis

output also average buffer level

parent 95e2835f
...@@ -8,7 +8,7 @@ import time ...@@ -8,7 +8,7 @@ import time
start=time.time() start=time.time()
# simulation time # simulation time
maxSimTime=10000 maxSimTime=10
# the capacity of B123 # the capacity of B123
capacity=3 #float('inf') capacity=3 #float('inf')
...@@ -28,6 +28,17 @@ class OpQueue(Queue): ...@@ -28,6 +28,17 @@ class OpQueue(Queue):
return M2 return M2
return None return None
# calculate average buffer level
def postProcessing(self):
Queue.postProcessing(self, MaxSimtime=maxSimTime)
totalBufferLevel=0
for i in range(0,len(self.wipStatList)-1):
bufferLevel=self.wipStatList[i][1]
duration=self.wipStatList[i+1][0]-self.wipStatList[i][0]
totalBufferLevel+=bufferLevel*duration
averageBufferLevel=totalBufferLevel/maxSimTime
self.BufferLevel.append(averageBufferLevel)
class OpExit(Exit): class OpExit(Exit):
# set numGoodParts=0 at every replication # set numGoodParts=0 at every replication
def initialize(self): def initialize(self):
...@@ -166,7 +177,7 @@ NS2=NonStarvingEntry('NS2','Entry2',entityData={'_class':'Dream.Part','status':' ...@@ -166,7 +177,7 @@ NS2=NonStarvingEntry('NS2','Entry2',entityData={'_class':'Dream.Part','status':'
M1=OpMachine('M1','Machine1', processingTime={'Fixed':{'mean':0.1}}) M1=OpMachine('M1','Machine1', processingTime={'Fixed':{'mean':0.1}})
M2=OpMachine('M2','Machine2', processingTime={'Fixed':{'mean':0.1}}) M2=OpMachine('M2','Machine2', processingTime={'Fixed':{'mean':0.1}})
M3=OpMachine('M3','Machine3', processingTime={'Fixed':{'mean':0.1}}) M3=OpMachine('M3','Machine3', processingTime={'Fixed':{'mean':0.1}})
B123=OpQueue('B123','Queue', capacity=capacity) B123=OpQueue('B123','Queue', capacity=capacity,gatherWipStat=True)
E=OpExit('E1','Exit') E=OpExit('E1','Exit')
Controller=EventGenerator('EV','Controller',start=0,interval=1,method=controllerMethod) Controller=EventGenerator('EV','Controller',start=0,interval=1,method=controllerMethod)
...@@ -193,6 +204,9 @@ E.GoodExits=[] ...@@ -193,6 +204,9 @@ E.GoodExits=[]
for M in [M1,M2,M3]: for M in [M1,M2,M3]:
M.GoodExits=[] M.GoodExits=[]
# BufferLevel will keep the average buffer level for each replication
B123.BufferLevel=[]
# the transition probabilities for machines # the transition probabilities for machines
M1.p=0.01 M1.p=0.01
M1.g=0.01 M1.g=0.01
...@@ -208,15 +222,17 @@ M3.r=0.1 ...@@ -208,15 +222,17 @@ M3.r=0.1
M3.f=0.2 M3.f=0.2
# call the runSimulation giving the objects and the length of the experiment # call the runSimulation giving the objects and the length of the experiment
runSimulation(objectList, maxSimTime, numberOfReplications=20,trace='No') runSimulation(objectList, maxSimTime, numberOfReplications=1,trace='No')
#print the results #print the results
PRt=sum(E.Exits)/float(len(E.Exits)) PRt=sum(E.Exits)/float(len(E.Exits))
PRg=sum(E.GoodExits)/float(len(E.GoodExits)) PRg=sum(E.GoodExits)/float(len(E.GoodExits))
B123ABF=sum(B123.BufferLevel)/float(len(B123.BufferLevel))
print E.Exits print E.Exits
print E.GoodExits print E.GoodExits
print 'PRt=',PRt/float(maxSimTime) print 'PRt=',PRt/float(maxSimTime)
print 'PRg=',PRg/float(maxSimTime) print 'PRg=',PRg/float(maxSimTime)
print 'B123 average buffer level=',B123ABF
for M in [M1,M2,M3]: for M in [M1,M2,M3]:
GE=sum(M.GoodExits)/float(len(M.GoodExits)) GE=sum(M.GoodExits)/float(len(M.GoodExits))
print 'PRg'+M.id,'=',GE/float(maxSimTime) print 'PRg'+M.id,'=',GE/float(maxSimTime)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment