Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
dream
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
dream
Commits
b27e5db6
Commit
b27e5db6
authored
Oct 20, 2015
by
Georgios Dagkakis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
calculate PG for every machine and allow machines have different transition probabilities
parent
11247272
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
44 additions
and
11 deletions
+44
-11
dream/simulation/Examples/OperationalFailures.py
dream/simulation/Examples/OperationalFailures.py
+44
-11
No files found.
dream/simulation/Examples/OperationalFailures.py
View file @
b27e5db6
...
...
@@ -10,8 +10,11 @@ g=0.01
r
=
0.1
f
=
0.2
# simulation time
maxSimTime
=
1000
# the capacity of B123
capacity
=
3
5
capacity
=
3
class
OpQueue
(
Queue
):
# allow to be locked between the time periods
...
...
@@ -41,7 +44,7 @@ class OpExit(Exit):
# update the GoodExits list
def
postProcessing
(
self
):
Exit
.
postProcessing
(
self
,
MaxSimtime
=
1000.1
)
Exit
.
postProcessing
(
self
,
MaxSimtime
=
maxSimTime
)
self
.
GoodExits
.
append
(
self
.
numGoodParts
)
class
OpMachine
(
Machine
):
...
...
@@ -57,6 +60,7 @@ class OpMachine(Machine):
# set state=1 at the start of each replication
def
initialize
(
self
):
Machine
.
initialize
(
self
)
self
.
numGoodParts
=
0
self
.
state
=
1
# if the state is -1 set that the disposed Entity is 'Bad'
...
...
@@ -64,7 +68,14 @@ class OpMachine(Machine):
activeEntity
=
Machine
.
removeEntity
(
self
,
entity
)
if
self
.
state
==-
1
:
activeEntity
.
status
=
'Bad'
else
:
self
.
numGoodParts
+=
1
return
activeEntity
# update the GoodParts list
def
postProcessing
(
self
):
Machine
.
postProcessing
(
self
,
MaxSimtime
=
maxSimTime
)
self
.
GoodExits
.
append
(
self
.
numGoodParts
)
# method invoked by the generator at every time period
def
controllerMethod
():
...
...
@@ -74,15 +85,15 @@ def controllerMethod():
rn1
=
createRandomNumber
()
rn2
=
createRandomNumber
()
if
M
.
state
==
1
:
if
rn1
<
p
:
if
rn1
<
M
.
p
:
M
.
state
=
0
elif
rn2
<
g
:
elif
rn2
<
M
.
g
:
M
.
state
=-
1
elif
M
.
state
==
0
:
if
rn1
<
r
:
if
rn1
<
M
.
r
:
M
.
state
=
1
elif
M
.
state
==-
1
:
if
rn1
<
f
:
if
rn1
<
M
.
f
:
M
.
state
=
0
# unlock E and let part get from M3 to E
...
...
@@ -108,7 +119,6 @@ def controllerMethod():
i
=
0
while
(
len
(
M1
.
getActiveObjectQueue
())
and
(
not
M1
.
state
==
0
))
\
or
(
len
(
M2
.
getActiveObjectQueue
())
and
(
not
M2
.
state
==
0
)):
# print G.env.now, len(M1.getActiveObjectQueue()), M1.state, len(M2.getActiveObjectQueue()), M2.state, len(B123.getActiveObjectQueue())
yield
G
.
env
.
timeout
(
0
)
if
len
(
B123
.
getActiveObjectQueue
())
==
B123
.
capacity
:
break
...
...
@@ -162,14 +172,37 @@ for obj in objectList:
# GoodExits will keep the number of good parts produced in every replication
E
.
GoodExits
=
[]
# GoodParts will keep the number of good parts a machine produced in every replication
for
M
in
[
M1
,
M2
,
M3
]:
M
.
GoodExits
=
[]
# the transition probabilities for machines
M1
.
p
=
0.01
M1
.
g
=
0.01
M1
.
r
=
0.1
M1
.
f
=
0.2
M2
.
p
=
0.01
M2
.
g
=
0.01
M2
.
r
=
0.1
M2
.
f
=
0.2
M3
.
p
=
0.01
M3
.
g
=
0.01
M3
.
r
=
0.1
M3
.
f
=
0.2
# call the runSimulation giving the objects and the length of the experiment
runSimulation
(
objectList
,
1000
,
numberOfReplications
=
50
)
runSimulation
(
objectList
,
maxSimTime
,
numberOfReplications
=
5
)
#print the results
PRt
=
sum
(
E
.
Exits
)
/
float
(
len
(
E
.
Exits
))
PRg
=
sum
(
E
.
GoodExits
)
/
float
(
len
(
E
.
GoodExits
))
print
E
.
Exits
print
E
.
GoodExits
print
'PRt='
,
PRt
/
float
(
1000
)
print
'PRg='
,
PRg
/
float
(
1000
)
print
'PRt='
,
PRt
/
float
(
maxSimTime
)
print
'PRg='
,
PRg
/
float
(
maxSimTime
)
for
M
in
[
M1
,
M2
,
M3
]:
G
=
sum
(
M
.
GoodExits
)
/
float
(
len
(
M
.
GoodExits
))
print
'PRg'
+
M
.
id
,
'='
,
G
/
float
(
maxSimTime
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment