Commit bb1bd489 authored by panos's avatar panos Committed by Jérome Perrin

Insert comments on ConfidenceIntervals script

parent 591fa527
...@@ -22,32 +22,29 @@ Created on 16 Nov 2013 ...@@ -22,32 +22,29 @@ Created on 16 Nov 2013
@author: Panos @author: Panos
''' '''
from rpy2.robjects.packages import importr
from rpy2 import robjects from rpy2 import robjects
MASS= importr('MASS') #The ConfidenceIntervals object
class Intervals: class Intervals:
#Calculate the p (decimal number) confidence intervals for a sample of data
def ConfidIntervals(self,data,p): def ConfidIntervals(self,data,p):
data=robjects.FloatVector(data) data=robjects.FloatVector(data) #The given list changes into float vector in order to be handled by RPy2
alpha=1-p alpha=1-p
rsqrt=robjects.r['sqrt'] rsqrt=robjects.r['sqrt'] #Call square root function - R function
rsd=robjects.r['sd'] rsd=robjects.r['sd'] #Call standard deviation function - R function
rmean=robjects.r['mean'] rmean=robjects.r['mean'] #Call mean function - R function
t=len(data) t=len(data)
n=rsqrt(t) n=rsqrt(t)
b=rsd(data) b=rsd(data)
rqt=robjects.r['qt'] rqt=robjects.r['qt'] #Call the cumulative probability distribution function for t distribution
q=rqt((1-(alpha/2)),t-1) q=rqt((1-(alpha/2)),t-1)
m=rmean(data) m=rmean(data) #Calculate the sample average value
me=q[0]*(b[0]/n[0]) me=q[0]*(b[0]/n[0]) #Calculate the margin of error
#Calculate the lower and the upper bound
lo=m[0]-me lo=m[0]-me
up=m[0]+me up=m[0]+me
l=[lo,up] l=[lo,up]
...@@ -56,3 +53,4 @@ class Intervals: ...@@ -56,3 +53,4 @@ class Intervals:
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment