Commit c29d48a9 authored by Jérome Perrin's avatar Jérome Perrin

ACO: Distribute calculation over a cluster of machines

Currently implemented distributor is ERP5. See erp5_test_result from
https://github.com/erp5/erp5/tree/dream_distributor
The URL must be point to a DREAM Simulation Distributor, something like
http://localhost:55163/erp5/portal_task_distribution/dream_distributor
parent a3aae79d
......@@ -3,6 +3,7 @@ import json
import time
import random
import operator
import xmlrpclib
from dream.simulation.GUI.Default import Simulation as DefaultSimulation
from dream.simulation.Queue import Queue
......@@ -30,6 +31,14 @@ class Simulation(DefaultSimulation):
"name": "Number of solutions",
"_class": "Dream.Property",
"_default": 4} )
conf["Dream-Configuration"]["property_list"].append(
{ "id": "distributorURL",
"type": "string",
"name": "Distributor URL",
"description": "URL of an ERP5 Distributor, see "
"https://github.com/erp5/erp5/tree/dream_distributor",
"_class": "Dream.Property",
"_default": ''} )
return conf
def _preprocess(self, data):
......@@ -59,8 +68,13 @@ class Simulation(DefaultSimulation):
def run(self, data):
data = self._preprocess(data)
distributor_url = data['general']['distributorURL']
distributor = None
if distributor_url:
distributor = xmlrpclib.Server(distributor_url)
tested_ants = set()
start=time.time() # start counting execution time
start = time.time() # start counting execution time
# the list of options collated into a dictionary for ease of referencing in
# ManPy
......@@ -74,9 +88,11 @@ class Simulation(DefaultSimulation):
ants = [] #list of ants for keeping track of their performance
# Number of times new ants are to be created, i.e. number of generations (a
# generation can have more than 1 ant)
for i in range(data["general"]["numberOfGenerations"]):
scenario_list = [] # for the distributor
# number of ants created per generation
for j in range(data["general"]["numberOfAntsPerGenerations"]):
# an ant dictionary to contain rule to queue assignment information
......@@ -91,29 +107,49 @@ class Simulation(DefaultSimulation):
if ant_key not in tested_ants:
tested_ants.add(ant_key)
# the current ant to be simulated (evaluated) is added to the
# ants list
ants.append(ant)
# set scheduling rule on queues based on ant data
ant_data = copy(data)
for k, v in ant.items():
ant_data["nodes"][k]['schedulingRule'] = v
ant['key'] = ant_key
# TODO: those two steps have to be parallelized
ant['result'] = DefaultSimulation.runOneScenario(self, ant_data)
ant['input'] = ant_data
ant['score'] = self._calculateAntScore(ant)
scenario_list.append(ant)
if distributor is None:
# synchronous
for ant in scenario_list:
ant['result'] = DefaultSimulation.runOneScenario(self, ant['input'])
else: # asynchronous
job_id = distributor.requestSimulationRun(
[json.dumps(x) for x in scenario_list])
print "Job registered", job_id
while True:
time.sleep(1.)
result_list = distributor.getJobResult(job_id)
# The distributor returns None when calculation is still ongoing,
# or the list of result in the same order.
if result_list is not None:
print "Job terminated"
break
for ant, result in zip(scenario_list, result_list):
ant['result'] = json.loads(result)
for ant in scenario_list:
ant['score'] = self._calculateAntScore(ant)
ants.extend(scenario_list)
# remove ants that outputs the same schedules
ants_without_duplicates = dict()
for ant in ants:
ant_result = copy(ant['result'])
ant_result['general'].pop('totalExecutionTime', None)
ant_result = json.dumps(ant_result, sort_keys=True)
ants_without_duplicates[ant_result] = ant
ant_result = copy(ant['result'])
ant_result['general'].pop('totalExecutionTime', None)
ant_result = json.dumps(ant_result, sort_keys=True)
ants_without_duplicates[ant_result] = ant
# The ants in this generation are ranked based on their scores and the
# best (max_results) are selected
......@@ -130,4 +166,5 @@ class Simulation(DefaultSimulation):
# selected by the next ants.
collated[m].append(l[m])
print "ACO finished, execution time %0.2fs" % (time.time() - start)
return ants
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment