Commit c9e66a58 authored by panos's avatar panos

Example ammended based on the objects name changes

parent 3702fc10
......@@ -22,12 +22,12 @@ Created on 4 Apr 2015
# along with DREAM. If not, see <http://www.gnu.org/licenses/>.
# ===========================================================================
from dream.KnowledgeExtraction.ImportCSVdata import Import_CSV
from dream.KnowledgeExtraction.ImportCSVdata import ImportCSVdata
from dream.KnowledgeExtraction.DistributionFitting import Distributions
from dream.KnowledgeExtraction.DistributionFitting import DistFittest
from dream.KnowledgeExtraction.JSONOutput import JSONOutput
from dream.KnowledgeExtraction.DetectOutliers import HandleOutliers
from dream.KnowledgeExtraction.ReplaceMissingValues import HandleMissingValues
from dream.KnowledgeExtraction.DetectOutliers import DetectOutliers
from dream.KnowledgeExtraction.ReplaceMissingValues import ReplaceMissingValues
import json
import os
################### Import data using the ImportCSVdataobject ###################################
......@@ -40,7 +40,7 @@ def main(test=0, CSVFileName1='InterArrivalData.csv',
if csvFile1:
CSVFileName1 = csvFile1.name
CSV=Import_CSV() #call the Import_CSV module and using its method Input_data import the data set from the CSV file to the tool
CSV=ImportCSVdata() #call the Import_CSV module and using its method Input_data import the data set from the CSV file to the tool
procData=CSV.Input_data(CSVFileName2)
sourceData=CSV.Input_data(CSVFileName1)
M1=procData.get('M1',[]) #get from the returned Python dictionary the data sets
......@@ -49,13 +49,13 @@ def main(test=0, CSVFileName1='InterArrivalData.csv',
################### Processing of the data sets calling the following objects ###################################
#Replace missing values calling the corresponding object
missingValues=HandleMissingValues()
missingValues=ReplaceMissingValues()
M1=missingValues.DeleteMissingValue(M1)
M2=missingValues.DeleteMissingValue(M2)
S1=missingValues.ReplaceWithMean(S1)
#Detect outliers calling the DetectOutliers object
outliers=HandleOutliers()
outliers=DetectOutliers()
M1=outliers.DeleteExtremeOutliers(M1)
M2=outliers.DeleteExtremeOutliers(M2)
S1=outliers.DeleteOutliers(S1)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment