svm.c 113 KB
Newer Older
1 2 3 4 5 6
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * AMD SVM support
 *
 * Copyright (C) 2006 Qumranet, Inc.
7
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
17 18
#include <linux/kvm_host.h>

19
#include "irq.h"
20
#include "mmu.h"
21
#include "kvm_cache_regs.h"
22
#include "x86.h"
23
#include "cpuid.h"
Avi Kivity's avatar
Avi Kivity committed
24

25
#include <linux/module.h>
26
#include <linux/mod_devicetable.h>
27
#include <linux/kernel.h>
28 29
#include <linux/vmalloc.h>
#include <linux/highmem.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
30
#include <linux/sched.h>
31
#include <linux/ftrace_event.h>
32
#include <linux/slab.h>
33

34
#include <asm/perf_event.h>
35
#include <asm/tlbflush.h>
Avi Kivity's avatar
Avi Kivity committed
36
#include <asm/desc.h>
37
#include <asm/debugreg.h>
38
#include <asm/kvm_para.h>
39

40
#include <asm/virtext.h>
41
#include "trace.h"
42

43 44
#define __ex(x) __kvm_handle_fault_on_reboot(x)

45 46 47
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");

48 49 50 51 52 53
static const struct x86_cpu_id svm_cpu_id[] = {
	X86_FEATURE_MATCH(X86_FEATURE_SVM),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);

54 55 56 57 58 59
#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1

#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3

60 61 62 63
#define SVM_FEATURE_NPT            (1 <<  0)
#define SVM_FEATURE_LBRV           (1 <<  1)
#define SVM_FEATURE_SVML           (1 <<  2)
#define SVM_FEATURE_NRIP           (1 <<  3)
64 65 66 67
#define SVM_FEATURE_TSC_RATE       (1 <<  4)
#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68
#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69

70 71 72 73
#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */

74 75
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))

76
#define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 78
#define TSC_RATIO_MIN		0x0000000000000001ULL
#define TSC_RATIO_MAX		0x000000ffffffffffULL
79

80 81
static bool erratum_383_found __read_mostly;

82 83 84 85 86 87 88 89 90 91 92 93
static const u32 host_save_user_msrs[] = {
#ifdef CONFIG_X86_64
	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
	MSR_FS_BASE,
#endif
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
};

#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)

struct kvm_vcpu;

94 95 96
struct nested_state {
	struct vmcb *hsave;
	u64 hsave_msr;
97
	u64 vm_cr_msr;
98 99 100 101 102 103 104
	u64 vmcb;

	/* These are the merged vectors */
	u32 *msrpm;

	/* gpa pointers to the real vectors */
	u64 vmcb_msrpm;
105
	u64 vmcb_iopm;
106

107 108 109
	/* A VMEXIT is required but not yet emulated */
	bool exit_required;

110
	/* cache for intercepts of the guest */
111
	u32 intercept_cr;
112
	u32 intercept_dr;
113 114 115
	u32 intercept_exceptions;
	u64 intercept;

116 117
	/* Nested Paging related state */
	u64 nested_cr3;
118 119
};

120 121 122
#define MSRPM_OFFSETS	16
static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;

123 124 125 126 127 128
/*
 * Set osvw_len to higher value when updated Revision Guides
 * are published and we know what the new status bits are
 */
static uint64_t osvw_len = 4, osvw_status;

129 130 131 132 133 134 135 136 137 138 139 140
struct vcpu_svm {
	struct kvm_vcpu vcpu;
	struct vmcb *vmcb;
	unsigned long vmcb_pa;
	struct svm_cpu_data *svm_data;
	uint64_t asid_generation;
	uint64_t sysenter_esp;
	uint64_t sysenter_eip;

	u64 next_rip;

	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141
	struct {
142 143 144
		u16 fs;
		u16 gs;
		u16 ldt;
145 146
		u64 gs_base;
	} host;
147 148 149

	u32 *msrpm;

150 151
	ulong nmi_iret_rip;

152
	struct nested_state nested;
153 154

	bool nmi_singlestep;
155 156 157

	unsigned int3_injected;
	unsigned long int3_rip;
158
	u32 apf_reason;
159 160

	u64  tsc_ratio;
161 162
};

163 164 165
static DEFINE_PER_CPU(u64, current_tsc_ratio);
#define TSC_RATIO_DEFAULT	0x0100000000ULL

166 167
#define MSR_INVALID			0xffffffffU

168
static const struct svm_direct_access_msrs {
169 170 171
	u32 index;   /* Index of the MSR */
	bool always; /* True if intercept is always on */
} direct_access_msrs[] = {
Brian Gerst's avatar
Brian Gerst committed
172
	{ .index = MSR_STAR,				.always = true  },
173 174 175 176 177 178 179 180 181 182 183 184 185 186
	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
#ifdef CONFIG_X86_64
	{ .index = MSR_GS_BASE,				.always = true  },
	{ .index = MSR_FS_BASE,				.always = true  },
	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
	{ .index = MSR_LSTAR,				.always = true  },
	{ .index = MSR_CSTAR,				.always = true  },
	{ .index = MSR_SYSCALL_MASK,			.always = true  },
#endif
	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
	{ .index = MSR_INVALID,				.always = false },
187 188
};

189 190 191 192
/* enable NPT for AMD64 and X86 with PAE */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
static bool npt_enabled = true;
#else
193
static bool npt_enabled;
194
#endif
195

196 197
/* allow nested paging (virtualized MMU) for all guests */
static int npt = true;
198
module_param(npt, int, S_IRUGO);
199

200 201
/* allow nested virtualization in KVM/SVM */
static int nested = true;
202 203
module_param(nested, int, S_IRUGO);

204
static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205
static void svm_complete_interrupts(struct vcpu_svm *svm);
206

207
static int nested_svm_exit_handled(struct vcpu_svm *svm);
208
static int nested_svm_intercept(struct vcpu_svm *svm);
209 210 211
static int nested_svm_vmexit(struct vcpu_svm *svm);
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
				      bool has_error_code, u32 error_code);
212
static u64 __scale_tsc(u64 ratio, u64 tsc);
213

214
enum {
215 216
	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
			    pause filter count */
217
	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218
	VMCB_ASID,	 /* ASID */
219
	VMCB_INTR,	 /* int_ctl, int_vector */
220
	VMCB_NPT,        /* npt_en, nCR3, gPAT */
221
	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
222
	VMCB_DR,         /* DR6, DR7 */
223
	VMCB_DT,         /* GDT, IDT */
224
	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225
	VMCB_CR2,        /* CR2 only */
226
	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227 228 229
	VMCB_DIRTY_MAX,
};

230 231
/* TPR and CR2 are always written before VMRUN */
#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

static inline void mark_all_dirty(struct vmcb *vmcb)
{
	vmcb->control.clean = 0;
}

static inline void mark_all_clean(struct vmcb *vmcb)
{
	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
			       & ~VMCB_ALWAYS_DIRTY_MASK;
}

static inline void mark_dirty(struct vmcb *vmcb, int bit)
{
	vmcb->control.clean &= ~(1 << bit);
}

249 250
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
251
	return container_of(vcpu, struct vcpu_svm, vcpu);
252 253
}

254 255 256 257 258
static void recalc_intercepts(struct vcpu_svm *svm)
{
	struct vmcb_control_area *c, *h;
	struct nested_state *g;

259 260
	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);

261 262 263 264 265 266 267
	if (!is_guest_mode(&svm->vcpu))
		return;

	c = &svm->vmcb->control;
	h = &svm->nested.hsave->control;
	g = &svm->nested;

268
	c->intercept_cr = h->intercept_cr | g->intercept_cr;
269
	c->intercept_dr = h->intercept_dr | g->intercept_dr;
270 271 272 273
	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
	c->intercept = h->intercept | g->intercept;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
{
	if (is_guest_mode(&svm->vcpu))
		return svm->nested.hsave;
	else
		return svm->vmcb;
}

static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_cr |= (1U << bit);

	recalc_intercepts(svm);
}

static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_cr &= ~(1U << bit);

	recalc_intercepts(svm);
}

static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	return vmcb->control.intercept_cr & (1U << bit);
}

307
static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 309 310
{
	struct vmcb *vmcb = get_host_vmcb(svm);

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
		| (1 << INTERCEPT_DR1_READ)
		| (1 << INTERCEPT_DR2_READ)
		| (1 << INTERCEPT_DR3_READ)
		| (1 << INTERCEPT_DR4_READ)
		| (1 << INTERCEPT_DR5_READ)
		| (1 << INTERCEPT_DR6_READ)
		| (1 << INTERCEPT_DR7_READ)
		| (1 << INTERCEPT_DR0_WRITE)
		| (1 << INTERCEPT_DR1_WRITE)
		| (1 << INTERCEPT_DR2_WRITE)
		| (1 << INTERCEPT_DR3_WRITE)
		| (1 << INTERCEPT_DR4_WRITE)
		| (1 << INTERCEPT_DR5_WRITE)
		| (1 << INTERCEPT_DR6_WRITE)
		| (1 << INTERCEPT_DR7_WRITE);
327 328 329 330

	recalc_intercepts(svm);
}

331
static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 333 334
{
	struct vmcb *vmcb = get_host_vmcb(svm);

335
	vmcb->control.intercept_dr = 0;
336 337 338 339

	recalc_intercepts(svm);
}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_exceptions |= (1U << bit);

	recalc_intercepts(svm);
}

static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_exceptions &= ~(1U << bit);

	recalc_intercepts(svm);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static inline void set_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept |= (1ULL << bit);

	recalc_intercepts(svm);
}

static inline void clr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept &= ~(1ULL << bit);

	recalc_intercepts(svm);
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static inline void enable_gif(struct vcpu_svm *svm)
{
	svm->vcpu.arch.hflags |= HF_GIF_MASK;
}

static inline void disable_gif(struct vcpu_svm *svm)
{
	svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
}

static inline bool gif_set(struct vcpu_svm *svm)
{
	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
}

391
static unsigned long iopm_base;
392 393 394 395

struct kvm_ldttss_desc {
	u16 limit0;
	u16 base0;
396 397
	unsigned base1:8, type:5, dpl:2, p:1;
	unsigned limit1:4, zero0:3, g:1, base2:8;
398 399 400 401 402 403 404
	u32 base3;
	u32 zero1;
} __attribute__((packed));

struct svm_cpu_data {
	int cpu;

Avi Kivity's avatar
Avi Kivity committed
405 406 407
	u64 asid_generation;
	u32 max_asid;
	u32 next_asid;
408 409 410 411 412 413 414 415 416 417 418 419
	struct kvm_ldttss_desc *tss_desc;

	struct page *save_area;
};

static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);

struct svm_init_data {
	int cpu;
	int r;
};

420
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421

422
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 424 425
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static u32 svm_msrpm_offset(u32 msr)
{
	u32 offset;
	int i;

	for (i = 0; i < NUM_MSR_MAPS; i++) {
		if (msr < msrpm_ranges[i] ||
		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
			continue;

		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */

		/* Now we have the u8 offset - but need the u32 offset */
		return offset / 4;
	}

	/* MSR not in any range */
	return MSR_INVALID;
}

447 448 449 450
#define MAX_INST_SIZE 15

static inline void clgi(void)
{
451
	asm volatile (__ex(SVM_CLGI));
452 453 454 455
}

static inline void stgi(void)
{
456
	asm volatile (__ex(SVM_STGI));
457 458 459 460
}

static inline void invlpga(unsigned long addr, u32 asid)
{
461
	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 463
}

464 465 466 467 468 469 470 471 472
static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
	return PT64_ROOT_LEVEL;
#else
	return PT32E_ROOT_LEVEL;
#endif
}

473 474
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
475
	vcpu->arch.efer = efer;
476
	if (!npt_enabled && !(efer & EFER_LMA))
477
		efer &= ~EFER_LME;
478

479
	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480
	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 482 483 484 485 486 487 488
}

static int is_external_interrupt(u32 info)
{
	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}

489
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 491 492 493 494
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 ret = 0;

	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495 496
		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
	return ret;
497 498 499 500 501 502 503 504 505 506 507 508 509
}

static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (mask == 0)
		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
	else
		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;

}

510 511
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
512 513
	struct vcpu_svm *svm = to_svm(vcpu);

514 515 516
	if (svm->vmcb->control.next_rip != 0)
		svm->next_rip = svm->vmcb->control.next_rip;

517
	if (!svm->next_rip) {
518
		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519 520
				EMULATE_DONE)
			printk(KERN_DEBUG "%s: NOP\n", __func__);
521 522
		return;
	}
523 524 525
	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
		       __func__, kvm_rip_read(vcpu), svm->next_rip);
526

527
	kvm_rip_write(vcpu, svm->next_rip);
528
	svm_set_interrupt_shadow(vcpu, 0);
529 530
}

531
static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532 533
				bool has_error_code, u32 error_code,
				bool reinject)
534 535 536
{
	struct vcpu_svm *svm = to_svm(vcpu);

537 538 539 540
	/*
	 * If we are within a nested VM we'd better #VMEXIT and let the guest
	 * handle the exception
	 */
541 542
	if (!reinject &&
	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
543 544
		return;

545
	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);

		/*
		 * For guest debugging where we have to reinject #BP if some
		 * INT3 is guest-owned:
		 * Emulate nRIP by moving RIP forward. Will fail if injection
		 * raises a fault that is not intercepted. Still better than
		 * failing in all cases.
		 */
		skip_emulated_instruction(&svm->vcpu);
		rip = kvm_rip_read(&svm->vcpu);
		svm->int3_rip = rip + svm->vmcb->save.cs.base;
		svm->int3_injected = rip - old_rip;
	}

561 562 563 564 565 566 567
	svm->vmcb->control.event_inj = nr
		| SVM_EVTINJ_VALID
		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
		| SVM_EVTINJ_TYPE_EXEPT;
	svm->vmcb->control.event_inj_err = error_code;
}

568 569 570 571 572 573
static void svm_init_erratum_383(void)
{
	u32 low, high;
	int err;
	u64 val;

574
	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		return;

	/* Use _safe variants to not break nested virtualization */
	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
	if (err)
		return;

	val |= (1ULL << 47);

	low  = lower_32_bits(val);
	high = upper_32_bits(val);

	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);

	erratum_383_found = true;
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static void svm_init_osvw(struct kvm_vcpu *vcpu)
{
	/*
	 * Guests should see errata 400 and 415 as fixed (assuming that
	 * HLT and IO instructions are intercepted).
	 */
	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
	vcpu->arch.osvw.status = osvw_status & ~(6ULL);

	/*
	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
	 * all osvw.status bits inside that length, including bit 0 (which is
	 * reserved for erratum 298), are valid. However, if host processor's
	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
	 * be conservative here and therefore we tell the guest that erratum 298
	 * is present (because we really don't know).
	 */
	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
		vcpu->arch.osvw.status |= 1;
}

613 614
static int has_svm(void)
{
615
	const char *msg;
616

617
	if (!cpu_has_svm(&msg)) {
618
		printk(KERN_INFO "has_svm: %s\n", msg);
619 620 621 622 623 624 625 626
		return 0;
	}

	return 1;
}

static void svm_hardware_disable(void *garbage)
{
627 628 629 630
	/* Make sure we clean up behind us */
	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);

631
	cpu_svm_disable();
632 633

	amd_pmu_disable_virt();
634 635
}

636
static int svm_hardware_enable(void *garbage)
637 638
{

639
	struct svm_cpu_data *sd;
640
	uint64_t efer;
641
	struct desc_ptr gdt_descr;
642 643 644
	struct desc_struct *gdt;
	int me = raw_smp_processor_id();

645 646 647 648
	rdmsrl(MSR_EFER, efer);
	if (efer & EFER_SVME)
		return -EBUSY;

649
	if (!has_svm()) {
650
		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651
		return -EINVAL;
652
	}
653 654
	sd = per_cpu(svm_data, me);
	if (!sd) {
655
		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656
		return -EINVAL;
657 658
	}

659 660 661
	sd->asid_generation = 1;
	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
	sd->next_asid = sd->max_asid + 1;
662

663
	native_store_gdt(&gdt_descr);
664
	gdt = (struct desc_struct *)gdt_descr.address;
665
	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666

667
	wrmsrl(MSR_EFER, efer | EFER_SVME);
668

669
	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670

671 672 673 674 675
	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
		__get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
	}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

	/*
	 * Get OSVW bits.
	 *
	 * Note that it is possible to have a system with mixed processor
	 * revisions and therefore different OSVW bits. If bits are not the same
	 * on different processors then choose the worst case (i.e. if erratum
	 * is present on one processor and not on another then assume that the
	 * erratum is present everywhere).
	 */
	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
		uint64_t len, status = 0;
		int err;

		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
		if (!err)
			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
						      &err);

		if (err)
			osvw_status = osvw_len = 0;
		else {
			if (len < osvw_len)
				osvw_len = len;
			osvw_status |= status;
			osvw_status &= (1ULL << osvw_len) - 1;
		}
	} else
		osvw_status = osvw_len = 0;

706 707
	svm_init_erratum_383();

708 709
	amd_pmu_enable_virt();

710
	return 0;
711 712
}

713 714
static void svm_cpu_uninit(int cpu)
{
715
	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716

717
	if (!sd)
718 719 720
		return;

	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721 722
	__free_page(sd->save_area);
	kfree(sd);
723 724
}

725 726
static int svm_cpu_init(int cpu)
{
727
	struct svm_cpu_data *sd;
728 729
	int r;

730 731
	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
	if (!sd)
732
		return -ENOMEM;
733 734
	sd->cpu = cpu;
	sd->save_area = alloc_page(GFP_KERNEL);
735
	r = -ENOMEM;
736
	if (!sd->save_area)
737 738
		goto err_1;

739
	per_cpu(svm_data, cpu) = sd;
740 741 742 743

	return 0;

err_1:
744
	kfree(sd);
745 746 747 748
	return r;

}

749 750 751 752 753 754 755 756 757 758 759
static bool valid_msr_intercept(u32 index)
{
	int i;

	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
		if (direct_access_msrs[i].index == index)
			return true;

	return false;
}

760 761
static void set_msr_interception(u32 *msrpm, unsigned msr,
				 int read, int write)
762
{
763 764 765
	u8 bit_read, bit_write;
	unsigned long tmp;
	u32 offset;
766

767 768 769 770 771 772
	/*
	 * If this warning triggers extend the direct_access_msrs list at the
	 * beginning of the file
	 */
	WARN_ON(!valid_msr_intercept(msr));

773 774 775 776 777 778 779 780 781 782 783
	offset    = svm_msrpm_offset(msr);
	bit_read  = 2 * (msr & 0x0f);
	bit_write = 2 * (msr & 0x0f) + 1;
	tmp       = msrpm[offset];

	BUG_ON(offset == MSR_INVALID);

	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);

	msrpm[offset] = tmp;
784 785
}

786
static void svm_vcpu_init_msrpm(u32 *msrpm)
787 788 789
{
	int i;

790 791
	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));

792 793 794 795 796 797
	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
		if (!direct_access_msrs[i].always)
			continue;

		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
	}
798 799
}

800 801 802 803 804 805 806 807
static void add_msr_offset(u32 offset)
{
	int i;

	for (i = 0; i < MSRPM_OFFSETS; ++i) {

		/* Offset already in list? */
		if (msrpm_offsets[i] == offset)
808
			return;
809 810 811 812 813 814 815 816 817

		/* Slot used by another offset? */
		if (msrpm_offsets[i] != MSR_INVALID)
			continue;

		/* Add offset to list */
		msrpm_offsets[i] = offset;

		return;
818
	}
819 820 821 822 823

	/*
	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
	 * increase MSRPM_OFFSETS in this case.
	 */
824
	BUG();
825 826
}

827
static void init_msrpm_offsets(void)
828
{
829
	int i;
830

831 832 833 834 835 836 837 838 839 840
	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));

	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
		u32 offset;

		offset = svm_msrpm_offset(direct_access_msrs[i].index);
		BUG_ON(offset == MSR_INVALID);

		add_msr_offset(offset);
	}
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static void svm_enable_lbrv(struct vcpu_svm *svm)
{
	u32 *msrpm = svm->msrpm;

	svm->vmcb->control.lbr_ctl = 1;
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
}

static void svm_disable_lbrv(struct vcpu_svm *svm)
{
	u32 *msrpm = svm->msrpm;

	svm->vmcb->control.lbr_ctl = 0;
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
}

865 866 867 868
static __init int svm_hardware_setup(void)
{
	int cpu;
	struct page *iopm_pages;
869
	void *iopm_va;
870 871 872 873 874 875
	int r;

	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);

	if (!iopm_pages)
		return -ENOMEM;
876 877 878

	iopm_va = page_address(iopm_pages);
	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879 880
	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;

881 882
	init_msrpm_offsets();

883 884 885
	if (boot_cpu_has(X86_FEATURE_NX))
		kvm_enable_efer_bits(EFER_NX);

Alexander Graf's avatar
Alexander Graf committed
886 887 888
	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
		kvm_enable_efer_bits(EFER_FFXSR);

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
		u64 max;

		kvm_has_tsc_control = true;

		/*
		 * Make sure the user can only configure tsc_khz values that
		 * fit into a signed integer.
		 * A min value is not calculated needed because it will always
		 * be 1 on all machines and a value of 0 is used to disable
		 * tsc-scaling for the vcpu.
		 */
		max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));

		kvm_max_guest_tsc_khz = max;
	}

906 907
	if (nested) {
		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908
		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909 910
	}

Zachary Amsden's avatar
Zachary Amsden committed
911
	for_each_possible_cpu(cpu) {
912 913
		r = svm_cpu_init(cpu);
		if (r)
914
			goto err;
915
	}
916

917
	if (!boot_cpu_has(X86_FEATURE_NPT))
918 919
		npt_enabled = false;

920 921 922 923 924
	if (npt_enabled && !npt) {
		printk(KERN_INFO "kvm: Nested Paging disabled\n");
		npt_enabled = false;
	}

925
	if (npt_enabled) {
926
		printk(KERN_INFO "kvm: Nested Paging enabled\n");
927
		kvm_enable_tdp();
928 929
	} else
		kvm_disable_tdp();
930

931 932
	return 0;

933
err:
934 935 936 937 938 939 940
	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
	iopm_base = 0;
	return r;
}

static __exit void svm_hardware_unsetup(void)
{
941 942
	int cpu;

Zachary Amsden's avatar
Zachary Amsden committed
943
	for_each_possible_cpu(cpu)
944 945
		svm_cpu_uninit(cpu);

946
	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947
	iopm_base = 0;
948 949 950 951 952 953
}

static void init_seg(struct vmcb_seg *seg)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954
		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955 956 957 958 959 960 961 962 963 964 965 966
	seg->limit = 0xffff;
	seg->base = 0;
}

static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | type;
	seg->limit = 0xffff;
	seg->base = 0;
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static u64 __scale_tsc(u64 ratio, u64 tsc)
{
	u64 mult, frac, _tsc;

	mult  = ratio >> 32;
	frac  = ratio & ((1ULL << 32) - 1);

	_tsc  = tsc;
	_tsc *= mult;
	_tsc += (tsc >> 32) * frac;
	_tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;

	return _tsc;
}

static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 _tsc = tsc;

	if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
		_tsc = __scale_tsc(svm->tsc_ratio, tsc);

	return _tsc;
}

993
static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 995 996 997 998
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 ratio;
	u64 khz;

999 1000 1001
	/* Guest TSC same frequency as host TSC? */
	if (!scale) {
		svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002
		return;
1003
	}
1004

1005 1006 1007 1008 1009 1010 1011
	/* TSC scaling supported? */
	if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
		if (user_tsc_khz > tsc_khz) {
			vcpu->arch.tsc_catchup = 1;
			vcpu->arch.tsc_always_catchup = 1;
		} else
			WARN(1, "user requested TSC rate below hardware speed\n");
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		return;
	}

	khz = user_tsc_khz;

	/* TSC scaling required  - calculate ratio */
	ratio = khz << 32;
	do_div(ratio, tsc_khz);

	if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
		WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
				user_tsc_khz);
		return;
	}
	svm->tsc_ratio             = ratio;
}

1029 1030 1031 1032 1033 1034 1035
static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return svm->vmcb->control.tsc_offset;
}

1036 1037 1038 1039 1040
static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 g_tsc_offset = 0;

1041
	if (is_guest_mode(vcpu)) {
1042 1043 1044
		g_tsc_offset = svm->vmcb->control.tsc_offset -
			       svm->nested.hsave->control.tsc_offset;
		svm->nested.hsave->control.tsc_offset = offset;
1045 1046 1047 1048
	} else
		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
					   svm->vmcb->control.tsc_offset,
					   offset);
1049 1050

	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051 1052

	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 1054
}

1055
static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
Zachary Amsden's avatar
Zachary Amsden committed
1056 1057 1058
{
	struct vcpu_svm *svm = to_svm(vcpu);

1059 1060 1061 1062
	WARN_ON(adjustment < 0);
	if (host)
		adjustment = svm_scale_tsc(vcpu, adjustment);

Zachary Amsden's avatar
Zachary Amsden committed
1063
	svm->vmcb->control.tsc_offset += adjustment;
1064
	if (is_guest_mode(vcpu))
Zachary Amsden's avatar
Zachary Amsden committed
1065
		svm->nested.hsave->control.tsc_offset += adjustment;
1066 1067 1068 1069 1070
	else
		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
				     svm->vmcb->control.tsc_offset - adjustment,
				     svm->vmcb->control.tsc_offset);

1071
	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
Zachary Amsden's avatar
Zachary Amsden committed
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082
static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
{
	u64 tsc;

	tsc = svm_scale_tsc(vcpu, native_read_tsc());

	return target_tsc - tsc;
}

1083
static void init_vmcb(struct vcpu_svm *svm)
1084
{
1085 1086
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct vmcb_save_area *save = &svm->vmcb->save;
1087

1088
	svm->vcpu.fpu_active = 1;
1089
	svm->vcpu.arch.hflags = 0;
1090

1091 1092 1093 1094 1095 1096 1097
	set_cr_intercept(svm, INTERCEPT_CR0_READ);
	set_cr_intercept(svm, INTERCEPT_CR3_READ);
	set_cr_intercept(svm, INTERCEPT_CR4_READ);
	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
	set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098

1099
	set_dr_intercepts(svm);
1100

1101 1102 1103
	set_exception_intercept(svm, PF_VECTOR);
	set_exception_intercept(svm, UD_VECTOR);
	set_exception_intercept(svm, MC_VECTOR);
1104

1105 1106 1107 1108
	set_intercept(svm, INTERCEPT_INTR);
	set_intercept(svm, INTERCEPT_NMI);
	set_intercept(svm, INTERCEPT_SMI);
	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
Avi Kivity's avatar
Avi Kivity committed
1109
	set_intercept(svm, INTERCEPT_RDPMC);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	set_intercept(svm, INTERCEPT_CPUID);
	set_intercept(svm, INTERCEPT_INVD);
	set_intercept(svm, INTERCEPT_HLT);
	set_intercept(svm, INTERCEPT_INVLPG);
	set_intercept(svm, INTERCEPT_INVLPGA);
	set_intercept(svm, INTERCEPT_IOIO_PROT);
	set_intercept(svm, INTERCEPT_MSR_PROT);
	set_intercept(svm, INTERCEPT_TASK_SWITCH);
	set_intercept(svm, INTERCEPT_SHUTDOWN);
	set_intercept(svm, INTERCEPT_VMRUN);
	set_intercept(svm, INTERCEPT_VMMCALL);
	set_intercept(svm, INTERCEPT_VMLOAD);
	set_intercept(svm, INTERCEPT_VMSAVE);
	set_intercept(svm, INTERCEPT_STGI);
	set_intercept(svm, INTERCEPT_CLGI);
	set_intercept(svm, INTERCEPT_SKINIT);
	set_intercept(svm, INTERCEPT_WBINVD);
	set_intercept(svm, INTERCEPT_MONITOR);
	set_intercept(svm, INTERCEPT_MWAIT);
1129
	set_intercept(svm, INTERCEPT_XSETBV);
1130 1131

	control->iopm_base_pa = iopm_base;
1132
	control->msrpm_base_pa = __pa(svm->msrpm);
1133 1134 1135 1136 1137 1138 1139 1140 1141
	control->int_ctl = V_INTR_MASKING_MASK;

	init_seg(&save->es);
	init_seg(&save->ss);
	init_seg(&save->ds);
	init_seg(&save->fs);
	init_seg(&save->gs);

	save->cs.selector = 0xf000;
1142
	save->cs.base = 0xffff0000;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/* Executable/Readable Code Segment */
	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
	save->cs.limit = 0xffff;

	save->gdtr.limit = 0xffff;
	save->idtr.limit = 0xffff;

	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);

1154
	svm_set_efer(&svm->vcpu, 0);
Mike Day's avatar
Mike Day committed
1155
	save->dr6 = 0xffff0ff0;
1156
	kvm_set_rflags(&svm->vcpu, 2);
1157
	save->rip = 0x0000fff0;
1158
	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159

1160 1161
	/*
	 * This is the guest-visible cr0 value.
1162
	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163
	 */
1164 1165
	svm->vcpu.arch.cr0 = 0;
	(void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166

1167
	save->cr4 = X86_CR4_PAE;
1168
	/* rdx = ?? */
1169 1170 1171 1172

	if (npt_enabled) {
		/* Setup VMCB for Nested Paging */
		control->nested_ctl = 1;
1173
		clr_intercept(svm, INTERCEPT_INVLPG);
1174
		clr_exception_intercept(svm, PF_VECTOR);
1175 1176
		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177 1178 1179 1180
		save->g_pat = 0x0007040600070406ULL;
		save->cr3 = 0;
		save->cr4 = 0;
	}
1181
	svm->asid_generation = 0;
1182

1183
	svm->nested.vmcb = 0;
1184 1185
	svm->vcpu.arch.hflags = 0;

1186
	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187
		control->pause_filter_count = 3000;
1188
		set_intercept(svm, INTERCEPT_PAUSE);
1189 1190
	}

1191 1192
	mark_all_dirty(svm->vmcb);

1193
	enable_gif(svm);
1194 1195
}

1196
static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 1198
{
	struct vcpu_svm *svm = to_svm(vcpu);
1199 1200
	u32 dummy;
	u32 eax = 1;
1201

1202
	init_vmcb(svm);
1203

1204 1205
	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 1207
}

1208
static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209
{
1210
	struct vcpu_svm *svm;
1211
	struct page *page;
1212
	struct page *msrpm_pages;
Alexander Graf's avatar
Alexander Graf committed
1213
	struct page *hsave_page;
Alexander Graf's avatar
Alexander Graf committed
1214
	struct page *nested_msrpm_pages;
1215
	int err;
1216

1217
	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218 1219 1220 1221 1222
	if (!svm) {
		err = -ENOMEM;
		goto out;
	}

1223 1224
	svm->tsc_ratio = TSC_RATIO_DEFAULT;

1225 1226 1227 1228
	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
	if (err)
		goto free_svm;

1229
	err = -ENOMEM;
1230
	page = alloc_page(GFP_KERNEL);
1231
	if (!page)
1232
		goto uninit;
1233

1234 1235
	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
	if (!msrpm_pages)
1236
		goto free_page1;
Alexander Graf's avatar
Alexander Graf committed
1237 1238 1239

	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
	if (!nested_msrpm_pages)
1240
		goto free_page2;
1241

Alexander Graf's avatar
Alexander Graf committed
1242 1243
	hsave_page = alloc_page(GFP_KERNEL);
	if (!hsave_page)
1244 1245
		goto free_page3;

1246
	svm->nested.hsave = page_address(hsave_page);
Alexander Graf's avatar
Alexander Graf committed
1247

1248 1249 1250
	svm->msrpm = page_address(msrpm_pages);
	svm_vcpu_init_msrpm(svm->msrpm);

1251
	svm->nested.msrpm = page_address(nested_msrpm_pages);
1252
	svm_vcpu_init_msrpm(svm->nested.msrpm);
Alexander Graf's avatar
Alexander Graf committed
1253

1254 1255 1256 1257
	svm->vmcb = page_address(page);
	clear_page(svm->vmcb);
	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
	svm->asid_generation = 0;
1258
	init_vmcb(svm);
1259

1260
	svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1261
	if (kvm_vcpu_is_bsp(&svm->vcpu))
1262
		svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1263

1264 1265
	svm_init_osvw(&svm->vcpu);

1266
	return &svm->vcpu;
1267

1268 1269 1270 1271 1272 1273
free_page3:
	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
free_page2:
	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
free_page1:
	__free_page(page);
1274 1275 1276
uninit:
	kvm_vcpu_uninit(&svm->vcpu);
free_svm:
1277
	kmem_cache_free(kvm_vcpu_cache, svm);
1278 1279
out:
	return ERR_PTR(err);
1280 1281 1282 1283
}

static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
1284 1285
	struct vcpu_svm *svm = to_svm(vcpu);

1286
	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1287
	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1288 1289
	__free_page(virt_to_page(svm->nested.hsave));
	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1290
	kvm_vcpu_uninit(vcpu);
1291
	kmem_cache_free(kvm_vcpu_cache, svm);
1292 1293
}

1294
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1295
{
1296
	struct vcpu_svm *svm = to_svm(vcpu);
1297
	int i;
1298 1299

	if (unlikely(cpu != vcpu->cpu)) {
1300
		svm->asid_generation = 0;
1301
		mark_all_dirty(svm->vmcb);
1302
	}
1303

1304 1305 1306
#ifdef CONFIG_X86_64
	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
#endif
1307 1308 1309 1310
	savesegment(fs, svm->host.fs);
	savesegment(gs, svm->host.gs);
	svm->host.ldt = kvm_read_ldt();

1311
	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1312
		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1313 1314 1315 1316 1317 1318

	if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
	    svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
		__get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
		wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
	}
1319 1320 1321 1322
}

static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
1323
	struct vcpu_svm *svm = to_svm(vcpu);
1324 1325
	int i;

1326
	++vcpu->stat.host_state_reload;
1327 1328 1329 1330
	kvm_load_ldt(svm->host.ldt);
#ifdef CONFIG_X86_64
	loadsegment(fs, svm->host.fs);
	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1331
	load_gs_index(svm->host.gs);
1332
#else
1333
#ifdef CONFIG_X86_32_LAZY_GS
1334
	loadsegment(gs, svm->host.gs);
1335
#endif
1336
#endif
1337
	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1338
		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1339 1340 1341 1342
}

static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
1343
	return to_svm(vcpu)->vmcb->save.rflags;
1344 1345 1346 1347
}

static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
1348 1349 1350 1351 1352
       /*
        * Any change of EFLAGS.VM is accompained by a reload of SS
        * (caused by either a task switch or an inter-privilege IRET),
        * so we do not need to update the CPL here.
        */
1353
	to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 1355
}

Avi Kivity's avatar
Avi Kivity committed
1356 1357 1358 1359 1360
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
	switch (reg) {
	case VCPU_EXREG_PDPTR:
		BUG_ON(!npt_enabled);
1361
		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
Avi Kivity's avatar
Avi Kivity committed
1362 1363 1364 1365 1366 1367
		break;
	default:
		BUG();
	}
}

1368 1369
static void svm_set_vintr(struct vcpu_svm *svm)
{
1370
	set_intercept(svm, INTERCEPT_VINTR);
1371 1372 1373 1374
}

static void svm_clear_vintr(struct vcpu_svm *svm)
{
1375
	clr_intercept(svm, INTERCEPT_VINTR);
1376 1377
}

1378 1379
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
1380
	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

	switch (seg) {
	case VCPU_SREG_CS: return &save->cs;
	case VCPU_SREG_DS: return &save->ds;
	case VCPU_SREG_ES: return &save->es;
	case VCPU_SREG_FS: return &save->fs;
	case VCPU_SREG_GS: return &save->gs;
	case VCPU_SREG_SS: return &save->ss;
	case VCPU_SREG_TR: return &save->tr;
	case VCPU_SREG_LDTR: return &save->ldtr;
	}
	BUG();
Al Viro's avatar
Al Viro committed
1393
	return NULL;
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
}

static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	return s->base;
}

static void svm_get_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	var->base = s->base;
	var->limit = s->limit;
	var->selector = s->selector;
	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	/*
	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
	 * However, the SVM spec states that the G bit is not observed by the
	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
	 * So let's synthesize a legal G bit for all segments, this helps
	 * running KVM nested. It also helps cross-vendor migration, because
	 * Intel's vmentry has a check on the 'G' bit.
	 */
	var->g = s->limit > 0xfffff;
1428

1429 1430
	/*
	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1431 1432 1433 1434
	 * for cross vendor migration purposes by "not present"
	 */
	var->unusable = !var->present || (var->type == 0);

1435 1436 1437 1438 1439 1440
	switch (seg) {
	case VCPU_SREG_TR:
		/*
		 * Work around a bug where the busy flag in the tr selector
		 * isn't exposed
		 */
1441
		var->type |= 0x2;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		break;
	case VCPU_SREG_DS:
	case VCPU_SREG_ES:
	case VCPU_SREG_FS:
	case VCPU_SREG_GS:
		/*
		 * The accessed bit must always be set in the segment
		 * descriptor cache, although it can be cleared in the
		 * descriptor, the cached bit always remains at 1. Since
		 * Intel has a check on this, set it here to support
		 * cross-vendor migration.
		 */
		if (!var->unusable)
			var->type |= 0x1;
		break;
1457
	case VCPU_SREG_SS:
1458 1459
		/*
		 * On AMD CPUs sometimes the DB bit in the segment
1460 1461 1462 1463 1464 1465
		 * descriptor is left as 1, although the whole segment has
		 * been made unusable. Clear it here to pass an Intel VMX
		 * entry check when cross vendor migrating.
		 */
		if (var->unusable)
			var->db = 0;
1466
		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1467
		break;
1468
	}
1469 1470
}

1471 1472 1473 1474 1475 1476 1477
static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;

	return save->cpl;
}

1478
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1479
{
1480 1481
	struct vcpu_svm *svm = to_svm(vcpu);

1482 1483
	dt->size = svm->vmcb->save.idtr.limit;
	dt->address = svm->vmcb->save.idtr.base;
1484 1485
}

1486
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1487
{
1488 1489
	struct vcpu_svm *svm = to_svm(vcpu);

1490 1491
	svm->vmcb->save.idtr.limit = dt->size;
	svm->vmcb->save.idtr.base = dt->address ;
1492
	mark_dirty(svm->vmcb, VMCB_DT);
1493 1494
}

1495
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1496
{
1497 1498
	struct vcpu_svm *svm = to_svm(vcpu);

1499 1500
	dt->size = svm->vmcb->save.gdtr.limit;
	dt->address = svm->vmcb->save.gdtr.base;
1501 1502
}

1503
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1504
{
1505 1506
	struct vcpu_svm *svm = to_svm(vcpu);

1507 1508
	svm->vmcb->save.gdtr.limit = dt->size;
	svm->vmcb->save.gdtr.base = dt->address ;
1509
	mark_dirty(svm->vmcb, VMCB_DT);
1510 1511
}

1512 1513 1514 1515
static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
}

1516 1517 1518 1519
static void svm_decache_cr3(struct kvm_vcpu *vcpu)
{
}

1520
static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1521 1522 1523
{
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static void update_cr0_intercept(struct vcpu_svm *svm)
{
	ulong gcr0 = svm->vcpu.arch.cr0;
	u64 *hcr0 = &svm->vmcb->save.cr0;

	if (!svm->vcpu.fpu_active)
		*hcr0 |= SVM_CR0_SELECTIVE_MASK;
	else
		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
			| (gcr0 & SVM_CR0_SELECTIVE_MASK);

1535
	mark_dirty(svm->vmcb, VMCB_CR);
1536 1537

	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1538 1539
		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1540
	} else {
1541 1542
		set_cr_intercept(svm, INTERCEPT_CR0_READ);
		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1543 1544 1545
	}
}

1546 1547
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
1548 1549
	struct vcpu_svm *svm = to_svm(vcpu);

1550
#ifdef CONFIG_X86_64
1551
	if (vcpu->arch.efer & EFER_LME) {
1552
		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1553
			vcpu->arch.efer |= EFER_LMA;
1554
			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1555 1556
		}

Mike Day's avatar
Mike Day committed
1557
		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1558
			vcpu->arch.efer &= ~EFER_LMA;
1559
			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1560 1561 1562
		}
	}
#endif
1563
	vcpu->arch.cr0 = cr0;
1564 1565 1566

	if (!npt_enabled)
		cr0 |= X86_CR0_PG | X86_CR0_WP;
1567 1568

	if (!vcpu->fpu_active)
1569
		cr0 |= X86_CR0_TS;
1570 1571 1572 1573 1574 1575
	/*
	 * re-enable caching here because the QEMU bios
	 * does not do it - this results in some delay at
	 * reboot
	 */
	cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1576
	svm->vmcb->save.cr0 = cr0;
1577
	mark_dirty(svm->vmcb, VMCB_CR);
1578
	update_cr0_intercept(svm);
1579 1580
}

1581
static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1582
{
1583
	unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1584 1585
	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;

1586 1587 1588
	if (cr4 & X86_CR4_VMXE)
		return 1;

1589
	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1590
		svm_flush_tlb(vcpu);
1591

1592 1593 1594
	vcpu->arch.cr4 = cr4;
	if (!npt_enabled)
		cr4 |= X86_CR4_PAE;
1595
	cr4 |= host_cr4_mce;
1596
	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1597
	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1598
	return 0;
1599 1600 1601 1602 1603
}

static void svm_set_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
1604
	struct vcpu_svm *svm = to_svm(vcpu);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	s->base = var->base;
	s->limit = var->limit;
	s->selector = var->selector;
	if (var->unusable)
		s->attrib = 0;
	else {
		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
	}
1622 1623 1624 1625 1626 1627 1628 1629 1630

	/*
	 * This is always accurate, except if SYSRET returned to a segment
	 * with SS.DPL != 3.  Intel does not have this quirk, and always
	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
	 * would entail passing the CPL to userspace and back.
	 */
	if (seg == VCPU_SREG_SS)
		svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1631

1632
	mark_dirty(svm->vmcb, VMCB_SEG);
1633 1634
}

1635
static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1636
{
Jan Kiszka's avatar
Jan Kiszka committed
1637 1638
	struct vcpu_svm *svm = to_svm(vcpu);

1639 1640
	clr_exception_intercept(svm, DB_VECTOR);
	clr_exception_intercept(svm, BP_VECTOR);
1641

1642
	if (svm->nmi_singlestep)
1643
		set_exception_intercept(svm, DB_VECTOR);
1644

Jan Kiszka's avatar
Jan Kiszka committed
1645 1646 1647
	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
		if (vcpu->guest_debug &
		    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1648
			set_exception_intercept(svm, DB_VECTOR);
Jan Kiszka's avatar
Jan Kiszka committed
1649
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1650
			set_exception_intercept(svm, BP_VECTOR);
Jan Kiszka's avatar
Jan Kiszka committed
1651 1652
	} else
		vcpu->guest_debug = 0;
1653 1654
}

1655
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1656
{
1657 1658 1659
	if (sd->next_asid > sd->max_asid) {
		++sd->asid_generation;
		sd->next_asid = 1;
1660
		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1661 1662
	}

1663 1664
	svm->asid_generation = sd->asid_generation;
	svm->vmcb->control.asid = sd->next_asid++;
1665 1666

	mark_dirty(svm->vmcb, VMCB_ASID);
1667 1668
}

Jan Kiszka's avatar
Jan Kiszka committed
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
{
	return to_svm(vcpu)->vmcb->save.dr6;
}

static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->save.dr6 = value;
	mark_dirty(svm->vmcb, VMCB_DR);
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	get_debugreg(vcpu->arch.db[0], 0);
	get_debugreg(vcpu->arch.db[1], 1);
	get_debugreg(vcpu->arch.db[2], 2);
	get_debugreg(vcpu->arch.db[3], 3);
	vcpu->arch.dr6 = svm_get_dr6(vcpu);
	vcpu->arch.dr7 = svm->vmcb->save.dr7;

	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
	set_dr_intercepts(svm);
}

1697
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1698
{
1699 1700
	struct vcpu_svm *svm = to_svm(vcpu);

1701
	svm->vmcb->save.dr7 = value;
1702
	mark_dirty(svm->vmcb, VMCB_DR);
1703 1704
}

1705
static int pf_interception(struct vcpu_svm *svm)
1706
{
1707
	u64 fault_address = svm->vmcb->control.exit_info_2;
1708
	u32 error_code;
1709
	int r = 1;
1710

1711 1712 1713
	switch (svm->apf_reason) {
	default:
		error_code = svm->vmcb->control.exit_info_1;
1714

1715 1716 1717
		trace_kvm_page_fault(fault_address, error_code);
		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1718 1719 1720
		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
			svm->vmcb->control.insn_bytes,
			svm->vmcb->control.insn_len);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		svm->apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wait(fault_address);
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		svm->apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
1736 1737
}

1738
static int db_interception(struct vcpu_svm *svm)
Jan Kiszka's avatar
Jan Kiszka committed
1739
{
1740 1741
	struct kvm_run *kvm_run = svm->vcpu.run;

Jan Kiszka's avatar
Jan Kiszka committed
1742
	if (!(svm->vcpu.guest_debug &
1743
	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1744
		!svm->nmi_singlestep) {
Jan Kiszka's avatar
Jan Kiszka committed
1745 1746 1747
		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
		return 1;
	}
1748

1749 1750
	if (svm->nmi_singlestep) {
		svm->nmi_singlestep = false;
1751 1752 1753
		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
			svm->vmcb->save.rflags &=
				~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1754
		update_db_bp_intercept(&svm->vcpu);
1755 1756 1757
	}

	if (svm->vcpu.guest_debug &
1758
	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1759 1760 1761 1762 1763 1764 1765 1766
		kvm_run->exit_reason = KVM_EXIT_DEBUG;
		kvm_run->debug.arch.pc =
			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
		kvm_run->debug.arch.exception = DB_VECTOR;
		return 0;
	}

	return 1;
Jan Kiszka's avatar
Jan Kiszka committed
1767 1768
}

1769
static int bp_interception(struct vcpu_svm *svm)
Jan Kiszka's avatar
Jan Kiszka committed
1770
{
1771 1772
	struct kvm_run *kvm_run = svm->vcpu.run;

Jan Kiszka's avatar
Jan Kiszka committed
1773 1774 1775 1776 1777 1778
	kvm_run->exit_reason = KVM_EXIT_DEBUG;
	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
	kvm_run->debug.arch.exception = BP_VECTOR;
	return 0;
}

1779
static int ud_interception(struct vcpu_svm *svm)
1780 1781 1782
{
	int er;

1783
	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1784
	if (er != EMULATE_DONE)
1785
		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1786 1787 1788
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
1789
static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1790
{
Avi Kivity's avatar
Avi Kivity committed
1791
	struct vcpu_svm *svm = to_svm(vcpu);
1792

1793
	clr_exception_intercept(svm, NM_VECTOR);
1794

Rusty Russell's avatar
Rusty Russell committed
1795
	svm->vcpu.fpu_active = 1;
1796
	update_cr0_intercept(svm);
Avi Kivity's avatar
Avi Kivity committed
1797
}
1798

Avi Kivity's avatar
Avi Kivity committed
1799 1800 1801
static int nm_interception(struct vcpu_svm *svm)
{
	svm_fpu_activate(&svm->vcpu);
1802
	return 1;
1803 1804
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static bool is_erratum_383(void)
{
	int err, i;
	u64 value;

	if (!erratum_383_found)
		return false;

	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
	if (err)
		return false;

	/* Bit 62 may or may not be set for this mce */
	value &= ~(1ULL << 62);

	if (value != 0xb600000000010015ULL)
		return false;

	/* Clear MCi_STATUS registers */
	for (i = 0; i < 6; ++i)
		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);

	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
	if (!err) {
		u32 low, high;

		value &= ~(1ULL << 2);
		low    = lower_32_bits(value);
		high   = upper_32_bits(value);

		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
	}

	/* Flush tlb to evict multi-match entries */
	__flush_tlb_all();

	return true;
}

1844
static void svm_handle_mce(struct vcpu_svm *svm)
1845
{
1846 1847 1848 1849 1850 1851 1852
	if (is_erratum_383()) {
		/*
		 * Erratum 383 triggered. Guest state is corrupt so kill the
		 * guest.
		 */
		pr_err("KVM: Guest triggered AMD Erratum 383\n");

1853
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1854 1855 1856 1857

		return;
	}

1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * On an #MC intercept the MCE handler is not called automatically in
	 * the host. So do it by hand here.
	 */
	asm volatile (
		"int $0x12\n");
	/* not sure if we ever come back to this point */

1866 1867 1868 1869 1870
	return;
}

static int mc_interception(struct vcpu_svm *svm)
{
1871 1872 1873
	return 1;
}

1874
static int shutdown_interception(struct vcpu_svm *svm)
1875
{
1876 1877
	struct kvm_run *kvm_run = svm->vcpu.run;

1878 1879 1880 1881
	/*
	 * VMCB is undefined after a SHUTDOWN intercept
	 * so reinitialize it.
	 */
1882
	clear_page(svm->vmcb);
1883
	init_vmcb(svm);
1884 1885 1886 1887 1888

	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
	return 0;
}

1889
static int io_interception(struct vcpu_svm *svm)
1890
{
1891
	struct kvm_vcpu *vcpu = &svm->vcpu;
Mike Day's avatar
Mike Day committed
1892
	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1893
	int size, in, string;
1894
	unsigned port;
1895

Rusty Russell's avatar
Rusty Russell committed
1896
	++svm->vcpu.stat.io_exits;
1897
	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1898
	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1899
	if (string || in)
1900
		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1901

1902 1903
	port = io_info >> 16;
	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1904
	svm->next_rip = svm->vmcb->control.exit_info_2;
1905
	skip_emulated_instruction(&svm->vcpu);
1906 1907

	return kvm_fast_pio_out(vcpu, size, port);
1908 1909
}

1910
static int nmi_interception(struct vcpu_svm *svm)
1911 1912 1913 1914
{
	return 1;
}

1915
static int intr_interception(struct vcpu_svm *svm)
1916 1917 1918 1919 1920
{
	++svm->vcpu.stat.irq_exits;
	return 1;
}

1921
static int nop_on_interception(struct vcpu_svm *svm)
1922 1923 1924 1925
{
	return 1;
}

1926
static int halt_interception(struct vcpu_svm *svm)
1927
{
1928
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
Rusty Russell's avatar
Rusty Russell committed
1929 1930
	skip_emulated_instruction(&svm->vcpu);
	return kvm_emulate_halt(&svm->vcpu);
1931 1932
}

1933
static int vmmcall_interception(struct vcpu_svm *svm)
1934
{
1935
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
Rusty Russell's avatar
Rusty Russell committed
1936
	skip_emulated_instruction(&svm->vcpu);
1937 1938
	kvm_emulate_hypercall(&svm->vcpu);
	return 1;
1939 1940
}

1941 1942 1943 1944 1945 1946 1947
static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return svm->nested.nested_cr3;
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 cr3 = svm->nested.nested_cr3;
	u64 pdpte;
	int ret;

	ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
				  offset_in_page(cr3) + index * 8, 8);
	if (ret)
		return 0;
	return pdpte;
}

1962 1963 1964 1965 1966 1967
static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
				   unsigned long root)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.nested_cr3 = root;
1968
	mark_dirty(svm->vmcb, VMCB_NPT);
1969
	svm_flush_tlb(vcpu);
1970 1971
}

1972 1973
static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
				       struct x86_exception *fault)
1974 1975 1976 1977 1978
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.exit_code = SVM_EXIT_NPF;
	svm->vmcb->control.exit_code_hi = 0;
1979 1980
	svm->vmcb->control.exit_info_1 = fault->error_code;
	svm->vmcb->control.exit_info_2 = fault->address;
1981 1982 1983 1984

	nested_svm_vmexit(svm);
}

1985
static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1986
{
1987
	kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1988 1989 1990

	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1991
	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
	vcpu->arch.mmu.shadow_root_level = get_npt_level();
	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
}

static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
}

2002 2003
static int nested_svm_check_permissions(struct vcpu_svm *svm)
{
2004
	if (!(svm->vcpu.arch.efer & EFER_SVME)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	    || !is_paging(&svm->vcpu)) {
		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
		return 1;
	}

	if (svm->vmcb->save.cpl) {
		kvm_inject_gp(&svm->vcpu, 0);
		return 1;
	}

       return 0;
}

2018 2019 2020
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
				      bool has_error_code, u32 error_code)
{
2021 2022
	int vmexit;

2023
	if (!is_guest_mode(&svm->vcpu))
2024
		return 0;
2025

2026 2027 2028 2029 2030
	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
	svm->vmcb->control.exit_code_hi = 0;
	svm->vmcb->control.exit_info_1 = error_code;
	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;

2031 2032 2033 2034 2035
	vmexit = nested_svm_intercept(svm);
	if (vmexit == NESTED_EXIT_DONE)
		svm->nested.exit_required = true;

	return vmexit;
2036 2037
}

2038 2039
/* This function returns true if it is save to enable the irq window */
static inline bool nested_svm_intr(struct vcpu_svm *svm)
2040
{
2041
	if (!is_guest_mode(&svm->vcpu))
2042
		return true;
2043

2044
	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2045
		return true;
2046

2047
	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2048
		return false;
2049

2050 2051 2052 2053 2054 2055 2056 2057
	/*
	 * if vmexit was already requested (by intercepted exception
	 * for instance) do not overwrite it with "external interrupt"
	 * vmexit.
	 */
	if (svm->nested.exit_required)
		return false;

2058 2059 2060
	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
	svm->vmcb->control.exit_info_1 = 0;
	svm->vmcb->control.exit_info_2 = 0;
2061

2062 2063 2064
	if (svm->nested.intercept & 1ULL) {
		/*
		 * The #vmexit can't be emulated here directly because this
Guo Chao's avatar
Guo Chao committed
2065
		 * code path runs with irqs and preemption disabled. A
2066 2067 2068 2069
		 * #vmexit emulation might sleep. Only signal request for
		 * the #vmexit here.
		 */
		svm->nested.exit_required = true;
2070
		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2071
		return false;
2072 2073
	}

2074
	return true;
2075 2076
}

2077 2078 2079
/* This function returns true if it is save to enable the nmi window */
static inline bool nested_svm_nmi(struct vcpu_svm *svm)
{
2080
	if (!is_guest_mode(&svm->vcpu))
2081 2082 2083 2084 2085 2086 2087 2088 2089
		return true;

	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
		return true;

	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
	svm->nested.exit_required = true;

	return false;
2090 2091
}

2092
static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2093 2094 2095
{
	struct page *page;

2096 2097
	might_sleep();

2098 2099 2100 2101
	page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
	if (is_error_page(page))
		goto error;

2102 2103 2104
	*_page = page;

	return kmap(page);
2105 2106 2107 2108 2109 2110 2111

error:
	kvm_inject_gp(&svm->vcpu, 0);

	return NULL;
}

2112
static void nested_svm_unmap(struct page *page)
2113
{
2114
	kunmap(page);
2115 2116 2117
	kvm_release_page_dirty(page);
}

2118 2119
static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
{
2120 2121 2122
	unsigned port, size, iopm_len;
	u16 val, mask;
	u8 start_bit;
2123
	u64 gpa;
2124

2125 2126
	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
		return NESTED_EXIT_HOST;
2127

2128
	port = svm->vmcb->control.exit_info_1 >> 16;
2129 2130
	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
		SVM_IOIO_SIZE_SHIFT;
2131
	gpa  = svm->nested.vmcb_iopm + (port / 8);
2132 2133 2134 2135
	start_bit = port % 8;
	iopm_len = (start_bit + size > 8) ? 2 : 1;
	mask = (0xf >> (4 - size)) << start_bit;
	val = 0;
2136

2137 2138
	if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
		return NESTED_EXIT_DONE;
2139

2140
	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2141 2142
}

2143
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2144
{
2145 2146
	u32 offset, msr, value;
	int write, mask;
2147

2148
	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2149
		return NESTED_EXIT_HOST;
2150

2151 2152 2153 2154
	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
	offset = svm_msrpm_offset(msr);
	write  = svm->vmcb->control.exit_info_1 & 1;
	mask   = 1 << ((2 * (msr & 0xf)) + write);
2155

2156 2157
	if (offset == MSR_INVALID)
		return NESTED_EXIT_DONE;
2158

2159 2160
	/* Offset is in 32 bit units but need in 8 bit units */
	offset *= 4;
2161

2162 2163
	if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
		return NESTED_EXIT_DONE;
2164

2165
	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2166 2167
}

2168
static int nested_svm_exit_special(struct vcpu_svm *svm)
2169 2170
{
	u32 exit_code = svm->vmcb->control.exit_code;
2171

2172 2173 2174
	switch (exit_code) {
	case SVM_EXIT_INTR:
	case SVM_EXIT_NMI:
2175
	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2176 2177
		return NESTED_EXIT_HOST;
	case SVM_EXIT_NPF:
2178
		/* For now we are always handling NPFs when using them */
2179 2180 2181 2182
		if (npt_enabled)
			return NESTED_EXIT_HOST;
		break;
	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2183 2184
		/* When we're shadowing, trap PFs, but not async PF */
		if (!npt_enabled && svm->apf_reason == 0)
2185 2186
			return NESTED_EXIT_HOST;
		break;
2187 2188 2189
	case SVM_EXIT_EXCP_BASE + NM_VECTOR:
		nm_interception(svm);
		break;
2190 2191
	default:
		break;
2192 2193
	}

2194 2195 2196 2197 2198 2199
	return NESTED_EXIT_CONTINUE;
}

/*
 * If this function returns true, this #vmexit was already handled
 */
2200
static int nested_svm_intercept(struct vcpu_svm *svm)
2201 2202 2203 2204
{
	u32 exit_code = svm->vmcb->control.exit_code;
	int vmexit = NESTED_EXIT_HOST;

2205
	switch (exit_code) {
2206
	case SVM_EXIT_MSR:
2207
		vmexit = nested_svm_exit_handled_msr(svm);
2208
		break;
2209 2210 2211
	case SVM_EXIT_IOIO:
		vmexit = nested_svm_intercept_ioio(svm);
		break;
2212 2213 2214
	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
		if (svm->nested.intercept_cr & bit)
2215
			vmexit = NESTED_EXIT_DONE;
2216 2217
		break;
	}
2218 2219 2220
	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
		if (svm->nested.intercept_dr & bit)
2221
			vmexit = NESTED_EXIT_DONE;
2222 2223 2224 2225
		break;
	}
	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2226
		if (svm->nested.intercept_exceptions & excp_bits)
2227
			vmexit = NESTED_EXIT_DONE;
2228 2229 2230 2231
		/* async page fault always cause vmexit */
		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
			 svm->apf_reason != 0)
			vmexit = NESTED_EXIT_DONE;
2232 2233
		break;
	}
2234 2235 2236 2237
	case SVM_EXIT_ERR: {
		vmexit = NESTED_EXIT_DONE;
		break;
	}
2238 2239
	default: {
		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2240
		if (svm->nested.intercept & exit_bits)
2241
			vmexit = NESTED_EXIT_DONE;
2242 2243 2244
	}
	}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	return vmexit;
}

static int nested_svm_exit_handled(struct vcpu_svm *svm)
{
	int vmexit;

	vmexit = nested_svm_intercept(svm);

	if (vmexit == NESTED_EXIT_DONE)
2255 2256 2257
		nested_svm_vmexit(svm);

	return vmexit;
2258 2259
}

2260 2261 2262 2263 2264
static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
{
	struct vmcb_control_area *dst  = &dst_vmcb->control;
	struct vmcb_control_area *from = &from_vmcb->control;

2265
	dst->intercept_cr         = from->intercept_cr;
2266
	dst->intercept_dr         = from->intercept_dr;
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	dst->intercept_exceptions = from->intercept_exceptions;
	dst->intercept            = from->intercept;
	dst->iopm_base_pa         = from->iopm_base_pa;
	dst->msrpm_base_pa        = from->msrpm_base_pa;
	dst->tsc_offset           = from->tsc_offset;
	dst->asid                 = from->asid;
	dst->tlb_ctl              = from->tlb_ctl;
	dst->int_ctl              = from->int_ctl;
	dst->int_vector           = from->int_vector;
	dst->int_state            = from->int_state;
	dst->exit_code            = from->exit_code;
	dst->exit_code_hi         = from->exit_code_hi;
	dst->exit_info_1          = from->exit_info_1;
	dst->exit_info_2          = from->exit_info_2;
	dst->exit_int_info        = from->exit_int_info;
	dst->exit_int_info_err    = from->exit_int_info_err;
	dst->nested_ctl           = from->nested_ctl;
	dst->event_inj            = from->event_inj;
	dst->event_inj_err        = from->event_inj_err;
	dst->nested_cr3           = from->nested_cr3;
	dst->lbr_ctl              = from->lbr_ctl;
}

2290
static int nested_svm_vmexit(struct vcpu_svm *svm)
2291
{
2292
	struct vmcb *nested_vmcb;
2293
	struct vmcb *hsave = svm->nested.hsave;
2294
	struct vmcb *vmcb = svm->vmcb;
2295
	struct page *page;
2296

2297 2298 2299 2300
	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
				       vmcb->control.exit_info_1,
				       vmcb->control.exit_info_2,
				       vmcb->control.exit_int_info,
2301 2302
				       vmcb->control.exit_int_info_err,
				       KVM_ISA_SVM);
2303

2304
	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2305 2306 2307
	if (!nested_vmcb)
		return 1;

2308 2309
	/* Exit Guest-Mode */
	leave_guest_mode(&svm->vcpu);
2310 2311
	svm->nested.vmcb = 0;

2312
	/* Give the current vmcb to the guest */
2313 2314 2315 2316 2317 2318 2319 2320
	disable_gif(svm);

	nested_vmcb->save.es     = vmcb->save.es;
	nested_vmcb->save.cs     = vmcb->save.cs;
	nested_vmcb->save.ss     = vmcb->save.ss;
	nested_vmcb->save.ds     = vmcb->save.ds;
	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
	nested_vmcb->save.idtr   = vmcb->save.idtr;
2321
	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2322
	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2323
	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2324
	nested_vmcb->save.cr2    = vmcb->save.cr2;
2325
	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2326
	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	nested_vmcb->save.rip    = vmcb->save.rip;
	nested_vmcb->save.rsp    = vmcb->save.rsp;
	nested_vmcb->save.rax    = vmcb->save.rax;
	nested_vmcb->save.dr7    = vmcb->save.dr7;
	nested_vmcb->save.dr6    = vmcb->save.dr6;
	nested_vmcb->save.cpl    = vmcb->save.cpl;

	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
	nested_vmcb->control.int_state         = vmcb->control.int_state;
	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2343
	nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

	/*
	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
	 * to make sure that we do not lose injected events. So check event_inj
	 * here and copy it to exit_int_info if it is valid.
	 * Exit_int_info and event_inj can't be both valid because the case
	 * below only happens on a VMRUN instruction intercept which has
	 * no valid exit_int_info set.
	 */
	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
		struct vmcb_control_area *nc = &nested_vmcb->control;

		nc->exit_int_info     = vmcb->control.event_inj;
		nc->exit_int_info_err = vmcb->control.event_inj_err;
	}

2360 2361 2362
	nested_vmcb->control.tlb_ctl           = 0;
	nested_vmcb->control.event_inj         = 0;
	nested_vmcb->control.event_inj_err     = 0;
2363 2364 2365 2366 2367 2368

	/* We always set V_INTR_MASKING and remember the old value in hflags */
	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;

	/* Restore the original control entries */
2369
	copy_vmcb_control_area(vmcb, hsave);
2370

2371 2372
	kvm_clear_exception_queue(&svm->vcpu);
	kvm_clear_interrupt_queue(&svm->vcpu);
2373

2374 2375
	svm->nested.nested_cr3 = 0;

2376 2377 2378 2379 2380 2381 2382
	/* Restore selected save entries */
	svm->vmcb->save.es = hsave->save.es;
	svm->vmcb->save.cs = hsave->save.cs;
	svm->vmcb->save.ss = hsave->save.ss;
	svm->vmcb->save.ds = hsave->save.ds;
	svm->vmcb->save.gdtr = hsave->save.gdtr;
	svm->vmcb->save.idtr = hsave->save.idtr;
2383
	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2384 2385 2386 2387 2388 2389 2390
	svm_set_efer(&svm->vcpu, hsave->save.efer);
	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
	if (npt_enabled) {
		svm->vmcb->save.cr3 = hsave->save.cr3;
		svm->vcpu.arch.cr3 = hsave->save.cr3;
	} else {
2391
		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2392 2393 2394 2395 2396 2397 2398 2399
	}
	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
	svm->vmcb->save.dr7 = 0;
	svm->vmcb->save.cpl = 0;
	svm->vmcb->control.exit_int_info = 0;

2400 2401
	mark_all_dirty(svm->vmcb);

2402
	nested_svm_unmap(page);
2403

2404
	nested_svm_uninit_mmu_context(&svm->vcpu);
2405 2406 2407 2408 2409
	kvm_mmu_reset_context(&svm->vcpu);
	kvm_mmu_load(&svm->vcpu);

	return 0;
}
Alexander Graf's avatar
Alexander Graf committed
2410

2411
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2412
{
2413 2414
	/*
	 * This function merges the msr permission bitmaps of kvm and the
Guo Chao's avatar
Guo Chao committed
2415
	 * nested vmcb. It is optimized in that it only merges the parts where
2416 2417
	 * the kvm msr permission bitmap may contain zero bits
	 */
Alexander Graf's avatar
Alexander Graf committed
2418
	int i;
2419

2420 2421
	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
		return true;
2422

2423 2424 2425
	for (i = 0; i < MSRPM_OFFSETS; i++) {
		u32 value, p;
		u64 offset;
2426

2427 2428
		if (msrpm_offsets[i] == 0xffffffff)
			break;
Alexander Graf's avatar
Alexander Graf committed
2429

2430 2431
		p      = msrpm_offsets[i];
		offset = svm->nested.vmcb_msrpm + (p * 4);
2432 2433 2434 2435 2436 2437

		if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
			return false;

		svm->nested.msrpm[p] = svm->msrpm[p] | value;
	}
Alexander Graf's avatar
Alexander Graf committed
2438

2439
	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2440 2441

	return true;
Alexander Graf's avatar
Alexander Graf committed
2442 2443
}

2444 2445 2446 2447 2448
static bool nested_vmcb_checks(struct vmcb *vmcb)
{
	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
		return false;

2449 2450 2451
	if (vmcb->control.asid == 0)
		return false;

2452 2453 2454
	if (vmcb->control.nested_ctl && !npt_enabled)
		return false;

2455 2456 2457
	return true;
}

2458
static bool nested_svm_vmrun(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2459
{
2460
	struct vmcb *nested_vmcb;
2461
	struct vmcb *hsave = svm->nested.hsave;
2462
	struct vmcb *vmcb = svm->vmcb;
2463
	struct page *page;
2464
	u64 vmcb_gpa;
Alexander Graf's avatar
Alexander Graf committed
2465

2466
	vmcb_gpa = svm->vmcb->save.rax;
Alexander Graf's avatar
Alexander Graf committed
2467

2468
	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2469 2470 2471
	if (!nested_vmcb)
		return false;

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	if (!nested_vmcb_checks(nested_vmcb)) {
		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
		nested_vmcb->control.exit_code_hi = 0;
		nested_vmcb->control.exit_info_1  = 0;
		nested_vmcb->control.exit_info_2  = 0;

		nested_svm_unmap(page);

		return false;
	}

2483
	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2484 2485 2486 2487 2488
			       nested_vmcb->save.rip,
			       nested_vmcb->control.int_ctl,
			       nested_vmcb->control.event_inj,
			       nested_vmcb->control.nested_ctl);

2489 2490
	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
				    nested_vmcb->control.intercept_cr >> 16,
2491 2492 2493
				    nested_vmcb->control.intercept_exceptions,
				    nested_vmcb->control.intercept);

Alexander Graf's avatar
Alexander Graf committed
2494
	/* Clear internal status */
2495 2496
	kvm_clear_exception_queue(&svm->vcpu);
	kvm_clear_interrupt_queue(&svm->vcpu);
Alexander Graf's avatar
Alexander Graf committed
2497

2498 2499 2500 2501
	/*
	 * Save the old vmcb, so we don't need to pick what we save, but can
	 * restore everything when a VMEXIT occurs
	 */
2502 2503 2504 2505 2506 2507
	hsave->save.es     = vmcb->save.es;
	hsave->save.cs     = vmcb->save.cs;
	hsave->save.ss     = vmcb->save.ss;
	hsave->save.ds     = vmcb->save.ds;
	hsave->save.gdtr   = vmcb->save.gdtr;
	hsave->save.idtr   = vmcb->save.idtr;
2508
	hsave->save.efer   = svm->vcpu.arch.efer;
2509
	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2510
	hsave->save.cr4    = svm->vcpu.arch.cr4;
2511
	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2512
	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2513 2514 2515 2516 2517
	hsave->save.rsp    = vmcb->save.rsp;
	hsave->save.rax    = vmcb->save.rax;
	if (npt_enabled)
		hsave->save.cr3    = vmcb->save.cr3;
	else
2518
		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2519

2520
	copy_vmcb_control_area(hsave, vmcb);
Alexander Graf's avatar
Alexander Graf committed
2521

2522
	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
Alexander Graf's avatar
Alexander Graf committed
2523 2524 2525 2526
		svm->vcpu.arch.hflags |= HF_HIF_MASK;
	else
		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;

2527 2528 2529 2530 2531 2532
	if (nested_vmcb->control.nested_ctl) {
		kvm_mmu_unload(&svm->vcpu);
		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
		nested_svm_init_mmu_context(&svm->vcpu);
	}

Alexander Graf's avatar
Alexander Graf committed
2533 2534 2535 2536 2537 2538 2539
	/* Load the nested guest state */
	svm->vmcb->save.es = nested_vmcb->save.es;
	svm->vmcb->save.cs = nested_vmcb->save.cs;
	svm->vmcb->save.ss = nested_vmcb->save.ss;
	svm->vmcb->save.ds = nested_vmcb->save.ds;
	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2540
	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
Alexander Graf's avatar
Alexander Graf committed
2541 2542 2543 2544 2545 2546
	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
	if (npt_enabled) {
		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2547
	} else
2548
		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2549 2550 2551 2552

	/* Guest paging mode is active - reset mmu */
	kvm_mmu_reset_context(&svm->vcpu);

2553
	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
Alexander Graf's avatar
Alexander Graf committed
2554 2555 2556
	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2557

Alexander Graf's avatar
Alexander Graf committed
2558 2559 2560 2561 2562 2563 2564 2565
	/* In case we don't even reach vcpu_run, the fields are not updated */
	svm->vmcb->save.rax = nested_vmcb->save.rax;
	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
	svm->vmcb->save.rip = nested_vmcb->save.rip;
	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
	svm->vmcb->save.cpl = nested_vmcb->save.cpl;

2566
	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2567
	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
Alexander Graf's avatar
Alexander Graf committed
2568

2569
	/* cache intercepts */
2570
	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2571
	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2572 2573 2574
	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
	svm->nested.intercept            = nested_vmcb->control.intercept;

2575
	svm_flush_tlb(&svm->vcpu);
Alexander Graf's avatar
Alexander Graf committed
2576 2577 2578 2579 2580 2581
	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
	else
		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;

2582 2583
	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
		/* We only want the cr8 intercept bits of the guest */
2584 2585
		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2586 2587
	}

2588
	/* We don't want to see VMMCALLs from a nested guest */
2589
	clr_intercept(svm, INTERCEPT_VMMCALL);
2590

2591
	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
Alexander Graf's avatar
Alexander Graf committed
2592 2593 2594 2595 2596 2597
	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;

2598
	nested_svm_unmap(page);
2599

2600 2601 2602
	/* Enter Guest-Mode */
	enter_guest_mode(&svm->vcpu);

2603 2604 2605 2606 2607 2608
	/*
	 * Merge guest and host intercepts - must be called  with vcpu in
	 * guest-mode to take affect here
	 */
	recalc_intercepts(svm);

2609
	svm->nested.vmcb = vmcb_gpa;
2610

2611
	enable_gif(svm);
Alexander Graf's avatar
Alexander Graf committed
2612

2613 2614
	mark_all_dirty(svm->vmcb);

2615
	return true;
Alexander Graf's avatar
Alexander Graf committed
2616 2617
}

2618
static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
{
	to_vmcb->save.fs = from_vmcb->save.fs;
	to_vmcb->save.gs = from_vmcb->save.gs;
	to_vmcb->save.tr = from_vmcb->save.tr;
	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
	to_vmcb->save.star = from_vmcb->save.star;
	to_vmcb->save.lstar = from_vmcb->save.lstar;
	to_vmcb->save.cstar = from_vmcb->save.cstar;
	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
}

2634
static int vmload_interception(struct vcpu_svm *svm)
2635
{
2636
	struct vmcb *nested_vmcb;
2637
	struct page *page;
2638

2639 2640 2641
	if (nested_svm_check_permissions(svm))
		return 1;

2642
	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2643 2644 2645
	if (!nested_vmcb)
		return 1;

2646 2647 2648
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);

2649
	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2650
	nested_svm_unmap(page);
2651 2652 2653 2654

	return 1;
}

2655
static int vmsave_interception(struct vcpu_svm *svm)
2656
{
2657
	struct vmcb *nested_vmcb;
2658
	struct page *page;
2659

2660 2661 2662
	if (nested_svm_check_permissions(svm))
		return 1;

2663
	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2664 2665 2666
	if (!nested_vmcb)
		return 1;

2667 2668 2669
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);

2670
	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2671
	nested_svm_unmap(page);
2672 2673 2674 2675

	return 1;
}

2676
static int vmrun_interception(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2677 2678 2679 2680
{
	if (nested_svm_check_permissions(svm))
		return 1;

2681 2682
	/* Save rip after vmrun instruction */
	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
Alexander Graf's avatar
Alexander Graf committed
2683

2684
	if (!nested_svm_vmrun(svm))
Alexander Graf's avatar
Alexander Graf committed
2685 2686
		return 1;

2687
	if (!nested_svm_vmrun_msrpm(svm))
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		goto failed;

	return 1;

failed:

	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
	svm->vmcb->control.exit_code_hi = 0;
	svm->vmcb->control.exit_info_1  = 0;
	svm->vmcb->control.exit_info_2  = 0;

	nested_svm_vmexit(svm);
Alexander Graf's avatar
Alexander Graf committed
2700 2701 2702 2703

	return 1;
}

2704
static int stgi_interception(struct vcpu_svm *svm)
2705 2706 2707 2708 2709 2710
{
	if (nested_svm_check_permissions(svm))
		return 1;

	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);
2711
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2712

2713
	enable_gif(svm);
2714 2715 2716 2717

	return 1;
}

2718
static int clgi_interception(struct vcpu_svm *svm)
2719 2720 2721 2722 2723 2724 2725
{
	if (nested_svm_check_permissions(svm))
		return 1;

	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);

2726
	disable_gif(svm);
2727 2728 2729 2730 2731

	/* After a CLGI no interrupts should come */
	svm_clear_vintr(svm);
	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;

2732 2733
	mark_dirty(svm->vmcb, VMCB_INTR);

2734 2735 2736
	return 1;
}

2737
static int invlpga_interception(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2738 2739 2740
{
	struct kvm_vcpu *vcpu = &svm->vcpu;

2741 2742 2743
	trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
			  vcpu->arch.regs[VCPU_REGS_RAX]);

Alexander Graf's avatar
Alexander Graf committed
2744 2745 2746 2747 2748 2749 2750 2751
	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
	kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);

	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);
	return 1;
}

2752 2753 2754 2755 2756 2757 2758 2759
static int skinit_interception(struct vcpu_svm *svm)
{
	trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);

	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
	return 1;
}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
static int xsetbv_interception(struct vcpu_svm *svm)
{
	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);

	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
		skip_emulated_instruction(&svm->vcpu);
	}

	return 1;
}

2773
static int task_switch_interception(struct vcpu_svm *svm)
2774
{
2775
	u16 tss_selector;
2776 2777 2778
	int reason;
	int int_type = svm->vmcb->control.exit_int_info &
		SVM_EXITINTINFO_TYPE_MASK;
2779
	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2780 2781 2782 2783
	uint32_t type =
		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
	uint32_t idt_v =
		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2784 2785
	bool has_error_code = false;
	u32 error_code = 0;
2786 2787

	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2788

2789 2790
	if (svm->vmcb->control.exit_info_2 &
	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2791 2792 2793 2794
		reason = TASK_SWITCH_IRET;
	else if (svm->vmcb->control.exit_info_2 &
		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
		reason = TASK_SWITCH_JMP;
2795
	else if (idt_v)
2796 2797 2798 2799
		reason = TASK_SWITCH_GATE;
	else
		reason = TASK_SWITCH_CALL;

2800 2801 2802 2803 2804 2805
	if (reason == TASK_SWITCH_GATE) {
		switch (type) {
		case SVM_EXITINTINFO_TYPE_NMI:
			svm->vcpu.arch.nmi_injected = false;
			break;
		case SVM_EXITINTINFO_TYPE_EXEPT:
2806 2807 2808 2809 2810 2811
			if (svm->vmcb->control.exit_info_2 &
			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
				has_error_code = true;
				error_code =
					(u32)svm->vmcb->control.exit_info_2;
			}
2812 2813 2814 2815 2816 2817 2818 2819 2820
			kvm_clear_exception_queue(&svm->vcpu);
			break;
		case SVM_EXITINTINFO_TYPE_INTR:
			kvm_clear_interrupt_queue(&svm->vcpu);
			break;
		default:
			break;
		}
	}
2821

2822 2823 2824
	if (reason != TASK_SWITCH_GATE ||
	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2825 2826
	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
		skip_emulated_instruction(&svm->vcpu);
2827

2828 2829 2830 2831
	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
		int_vec = -1;

	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2832 2833 2834 2835 2836 2837 2838
				has_error_code, error_code) == EMULATE_FAIL) {
		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		svm->vcpu.run->internal.ndata = 0;
		return 0;
	}
	return 1;
2839 2840
}

2841
static int cpuid_interception(struct vcpu_svm *svm)
2842
{
2843
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
Rusty Russell's avatar
Rusty Russell committed
2844
	kvm_emulate_cpuid(&svm->vcpu);
2845
	return 1;
2846 2847
}

2848
static int iret_interception(struct vcpu_svm *svm)
2849 2850
{
	++svm->vcpu.stat.nmi_window_exits;
2851
	clr_intercept(svm, INTERCEPT_IRET);
2852
	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2853
	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2854
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2855 2856 2857
	return 1;
}

2858
static int invlpg_interception(struct vcpu_svm *svm)
Marcelo Tosatti's avatar
Marcelo Tosatti committed
2859
{
2860 2861 2862 2863 2864 2865
	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;

	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
	skip_emulated_instruction(&svm->vcpu);
	return 1;
Marcelo Tosatti's avatar
Marcelo Tosatti committed
2866 2867
}

2868
static int emulate_on_interception(struct vcpu_svm *svm)
2869
{
2870
	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2871 2872
}

Avi Kivity's avatar
Avi Kivity committed
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
static int rdpmc_interception(struct vcpu_svm *svm)
{
	int err;

	if (!static_cpu_has(X86_FEATURE_NRIPS))
		return emulate_on_interception(svm);

	err = kvm_rdpmc(&svm->vcpu);
	kvm_complete_insn_gp(&svm->vcpu, err);

	return 1;
}

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
{
	unsigned long cr0 = svm->vcpu.arch.cr0;
	bool ret = false;
	u64 intercept;

	intercept = svm->nested.intercept;

	if (!is_guest_mode(&svm->vcpu) ||
	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
		return false;

	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
	val &= ~SVM_CR0_SELECTIVE_MASK;

	if (cr0 ^ val) {
		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
	}

	return ret;
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
#define CR_VALID (1ULL << 63)

static int cr_interception(struct vcpu_svm *svm)
{
	int reg, cr;
	unsigned long val;
	int err;

	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_on_interception(svm);

	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
		return emulate_on_interception(svm);

	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
	cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;

	err = 0;
	if (cr >= 16) { /* mov to cr */
		cr -= 16;
		val = kvm_register_read(&svm->vcpu, reg);
		switch (cr) {
		case 0:
2932 2933
			if (!check_selective_cr0_intercepted(svm, val))
				err = kvm_set_cr0(&svm->vcpu, val);
2934 2935 2936
			else
				return 1;

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
			break;
		case 3:
			err = kvm_set_cr3(&svm->vcpu, val);
			break;
		case 4:
			err = kvm_set_cr4(&svm->vcpu, val);
			break;
		case 8:
			err = kvm_set_cr8(&svm->vcpu, val);
			break;
		default:
			WARN(1, "unhandled write to CR%d", cr);
			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
			return 1;
		}
	} else { /* mov from cr */
		switch (cr) {
		case 0:
			val = kvm_read_cr0(&svm->vcpu);
			break;
		case 2:
			val = svm->vcpu.arch.cr2;
			break;
		case 3:
2961
			val = kvm_read_cr3(&svm->vcpu);
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
			break;
		case 4:
			val = kvm_read_cr4(&svm->vcpu);
			break;
		case 8:
			val = kvm_get_cr8(&svm->vcpu);
			break;
		default:
			WARN(1, "unhandled read from CR%d", cr);
			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
			return 1;
		}
		kvm_register_write(&svm->vcpu, reg, val);
	}
	kvm_complete_insn_gp(&svm->vcpu, err);

	return 1;
}

2981 2982 2983 2984 2985 2986
static int dr_interception(struct vcpu_svm *svm)
{
	int reg, dr;
	unsigned long val;
	int err;

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	if (svm->vcpu.guest_debug == 0) {
		/*
		 * No more DR vmexits; force a reload of the debug registers
		 * and reenter on this instruction.  The next vmexit will
		 * retrieve the full state of the debug registers.
		 */
		clr_dr_intercepts(svm);
		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
		return 1;
	}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_on_interception(svm);

	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;

	if (dr >= 16) { /* mov to DRn */
		val = kvm_register_read(&svm->vcpu, reg);
		kvm_set_dr(&svm->vcpu, dr - 16, val);
	} else {
		err = kvm_get_dr(&svm->vcpu, dr, &val);
		if (!err)
			kvm_register_write(&svm->vcpu, reg, val);
	}

3013 3014
	skip_emulated_instruction(&svm->vcpu);

3015 3016 3017
	return 1;
}

3018
static int cr8_write_interception(struct vcpu_svm *svm)
3019
{
3020
	struct kvm_run *kvm_run = svm->vcpu.run;
Andre Przywara's avatar
Andre Przywara committed
3021
	int r;
3022

3023 3024
	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
	/* instruction emulation calls kvm_set_cr8() */
3025
	r = cr_interception(svm);
3026
	if (irqchip_in_kernel(svm->vcpu.kvm))
3027
		return r;
3028
	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3029
		return r;
3030 3031 3032 3033
	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
	return 0;
}

3034
u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
Nadav Har'El's avatar
Nadav Har'El committed
3035 3036 3037
{
	struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
	return vmcb->control.tsc_offset +
3038
		svm_scale_tsc(vcpu, host_tsc);
Nadav Har'El's avatar
Nadav Har'El committed
3039 3040
}

3041 3042
static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
{
3043 3044
	struct vcpu_svm *svm = to_svm(vcpu);

3045
	switch (ecx) {
3046
	case MSR_IA32_TSC: {
3047
		*data = svm->vmcb->control.tsc_offset +
3048 3049
			svm_scale_tsc(vcpu, native_read_tsc());

3050 3051
		break;
	}
Brian Gerst's avatar
Brian Gerst committed
3052
	case MSR_STAR:
3053
		*data = svm->vmcb->save.star;
3054
		break;
3055
#ifdef CONFIG_X86_64
3056
	case MSR_LSTAR:
3057
		*data = svm->vmcb->save.lstar;
3058 3059
		break;
	case MSR_CSTAR:
3060
		*data = svm->vmcb->save.cstar;
3061 3062
		break;
	case MSR_KERNEL_GS_BASE:
3063
		*data = svm->vmcb->save.kernel_gs_base;
3064 3065
		break;
	case MSR_SYSCALL_MASK:
3066
		*data = svm->vmcb->save.sfmask;
3067 3068 3069
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
3070
		*data = svm->vmcb->save.sysenter_cs;
3071 3072
		break;
	case MSR_IA32_SYSENTER_EIP:
3073
		*data = svm->sysenter_eip;
3074 3075
		break;
	case MSR_IA32_SYSENTER_ESP:
3076
		*data = svm->sysenter_esp;
3077
		break;
3078 3079 3080 3081 3082
	/*
	 * Nobody will change the following 5 values in the VMCB so we can
	 * safely return them on rdmsr. They will always be 0 until LBRV is
	 * implemented.
	 */
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	case MSR_IA32_DEBUGCTLMSR:
		*data = svm->vmcb->save.dbgctl;
		break;
	case MSR_IA32_LASTBRANCHFROMIP:
		*data = svm->vmcb->save.br_from;
		break;
	case MSR_IA32_LASTBRANCHTOIP:
		*data = svm->vmcb->save.br_to;
		break;
	case MSR_IA32_LASTINTFROMIP:
		*data = svm->vmcb->save.last_excp_from;
		break;
	case MSR_IA32_LASTINTTOIP:
		*data = svm->vmcb->save.last_excp_to;
		break;
Alexander Graf's avatar
Alexander Graf committed
3098
	case MSR_VM_HSAVE_PA:
3099
		*data = svm->nested.hsave_msr;
Alexander Graf's avatar
Alexander Graf committed
3100
		break;
3101
	case MSR_VM_CR:
3102
		*data = svm->nested.vm_cr_msr;
3103
		break;
3104 3105 3106
	case MSR_IA32_UCODE_REV:
		*data = 0x01000065;
		break;
3107
	default:
3108
		return kvm_get_msr_common(vcpu, ecx, data);
3109 3110 3111 3112
	}
	return 0;
}

3113
static int rdmsr_interception(struct vcpu_svm *svm)
3114
{
3115
	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3116 3117
	u64 data;

3118 3119
	if (svm_get_msr(&svm->vcpu, ecx, &data)) {
		trace_kvm_msr_read_ex(ecx);
3120
		kvm_inject_gp(&svm->vcpu, 0);
3121
	} else {
3122
		trace_kvm_msr_read(ecx, data);
3123

3124
		svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3125
		svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3126
		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
Rusty Russell's avatar
Rusty Russell committed
3127
		skip_emulated_instruction(&svm->vcpu);
3128 3129 3130 3131
	}
	return 1;
}

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int svm_dis, chg_mask;

	if (data & ~SVM_VM_CR_VALID_MASK)
		return 1;

	chg_mask = SVM_VM_CR_VALID_MASK;

	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);

	svm->nested.vm_cr_msr &= ~chg_mask;
	svm->nested.vm_cr_msr |= (data & chg_mask);

	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;

	/* check for svm_disable while efer.svme is set */
	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
		return 1;

	return 0;
}

3157
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3158
{
3159 3160
	struct vcpu_svm *svm = to_svm(vcpu);

3161 3162
	u32 ecx = msr->index;
	u64 data = msr->data;
3163
	switch (ecx) {
3164
	case MSR_IA32_TSC:
3165
		kvm_write_tsc(vcpu, msr);
3166
		break;
Brian Gerst's avatar
Brian Gerst committed
3167
	case MSR_STAR:
3168
		svm->vmcb->save.star = data;
3169
		break;
3170
#ifdef CONFIG_X86_64
3171
	case MSR_LSTAR:
3172
		svm->vmcb->save.lstar = data;
3173 3174
		break;
	case MSR_CSTAR:
3175
		svm->vmcb->save.cstar = data;
3176 3177
		break;
	case MSR_KERNEL_GS_BASE:
3178
		svm->vmcb->save.kernel_gs_base = data;
3179 3180
		break;
	case MSR_SYSCALL_MASK:
3181
		svm->vmcb->save.sfmask = data;
3182 3183 3184
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
3185
		svm->vmcb->save.sysenter_cs = data;
3186 3187
		break;
	case MSR_IA32_SYSENTER_EIP:
3188
		svm->sysenter_eip = data;
3189
		svm->vmcb->save.sysenter_eip = data;
3190 3191
		break;
	case MSR_IA32_SYSENTER_ESP:
3192
		svm->sysenter_esp = data;
3193
		svm->vmcb->save.sysenter_esp = data;
3194
		break;
3195
	case MSR_IA32_DEBUGCTLMSR:
3196
		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3197 3198
			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
				    __func__, data);
3199 3200 3201 3202 3203 3204
			break;
		}
		if (data & DEBUGCTL_RESERVED_BITS)
			return 1;

		svm->vmcb->save.dbgctl = data;
3205
		mark_dirty(svm->vmcb, VMCB_LBR);
3206 3207 3208 3209
		if (data & (1ULL<<0))
			svm_enable_lbrv(svm);
		else
			svm_disable_lbrv(svm);
3210
		break;
Alexander Graf's avatar
Alexander Graf committed
3211
	case MSR_VM_HSAVE_PA:
3212
		svm->nested.hsave_msr = data;
3213
		break;
3214
	case MSR_VM_CR:
3215
		return svm_set_vm_cr(vcpu, data);
3216
	case MSR_VM_IGNNE:
3217
		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3218
		break;
3219
	default:
3220
		return kvm_set_msr_common(vcpu, msr);
3221 3222 3223 3224
	}
	return 0;
}

3225
static int wrmsr_interception(struct vcpu_svm *svm)
3226
{
3227
	struct msr_data msr;
3228
	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3229
	u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3230
		| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3231

3232 3233 3234
	msr.data = data;
	msr.index = ecx;
	msr.host_initiated = false;
3235

3236
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3237
	if (svm_set_msr(&svm->vcpu, &msr)) {
3238
		trace_kvm_msr_write_ex(ecx, data);
3239
		kvm_inject_gp(&svm->vcpu, 0);
3240 3241
	} else {
		trace_kvm_msr_write(ecx, data);
Rusty Russell's avatar
Rusty Russell committed
3242
		skip_emulated_instruction(&svm->vcpu);
3243
	}
3244 3245 3246
	return 1;
}

3247
static int msr_interception(struct vcpu_svm *svm)
3248
{
Rusty Russell's avatar
Rusty Russell committed
3249
	if (svm->vmcb->control.exit_info_1)
3250
		return wrmsr_interception(svm);
3251
	else
3252
		return rdmsr_interception(svm);
3253 3254
}

3255
static int interrupt_window_interception(struct vcpu_svm *svm)
3256
{
3257 3258
	struct kvm_run *kvm_run = svm->vcpu.run;

3259
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3260
	svm_clear_vintr(svm);
3261
	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3262
	mark_dirty(svm->vmcb, VMCB_INTR);
3263
	++svm->vcpu.stat.irq_window_exits;
3264 3265 3266 3267
	/*
	 * If the user space waits to inject interrupts, exit as soon as
	 * possible
	 */
3268 3269 3270
	if (!irqchip_in_kernel(svm->vcpu.kvm) &&
	    kvm_run->request_interrupt_window &&
	    !kvm_cpu_has_interrupt(&svm->vcpu)) {
3271 3272 3273 3274 3275 3276 3277
		kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
		return 0;
	}

	return 1;
}

3278 3279 3280 3281 3282 3283
static int pause_interception(struct vcpu_svm *svm)
{
	kvm_vcpu_on_spin(&(svm->vcpu));
	return 1;
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
static int nop_interception(struct vcpu_svm *svm)
{
	skip_emulated_instruction(&(svm->vcpu));
	return 1;
}

static int monitor_interception(struct vcpu_svm *svm)
{
	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
	return nop_interception(svm);
}

static int mwait_interception(struct vcpu_svm *svm)
{
	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
	return nop_interception(svm);
}

3302
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3303 3304 3305 3306
	[SVM_EXIT_READ_CR0]			= cr_interception,
	[SVM_EXIT_READ_CR3]			= cr_interception,
	[SVM_EXIT_READ_CR4]			= cr_interception,
	[SVM_EXIT_READ_CR8]			= cr_interception,
3307
	[SVM_EXIT_CR0_SEL_WRITE]		= emulate_on_interception,
3308
	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3309 3310
	[SVM_EXIT_WRITE_CR3]			= cr_interception,
	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3311
	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	[SVM_EXIT_READ_DR0]			= dr_interception,
	[SVM_EXIT_READ_DR1]			= dr_interception,
	[SVM_EXIT_READ_DR2]			= dr_interception,
	[SVM_EXIT_READ_DR3]			= dr_interception,
	[SVM_EXIT_READ_DR4]			= dr_interception,
	[SVM_EXIT_READ_DR5]			= dr_interception,
	[SVM_EXIT_READ_DR6]			= dr_interception,
	[SVM_EXIT_READ_DR7]			= dr_interception,
	[SVM_EXIT_WRITE_DR0]			= dr_interception,
	[SVM_EXIT_WRITE_DR1]			= dr_interception,
	[SVM_EXIT_WRITE_DR2]			= dr_interception,
	[SVM_EXIT_WRITE_DR3]			= dr_interception,
	[SVM_EXIT_WRITE_DR4]			= dr_interception,
	[SVM_EXIT_WRITE_DR5]			= dr_interception,
	[SVM_EXIT_WRITE_DR6]			= dr_interception,
	[SVM_EXIT_WRITE_DR7]			= dr_interception,
Jan Kiszka's avatar
Jan Kiszka committed
3328 3329
	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3330
	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3331 3332 3333 3334
	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception,
	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
	[SVM_EXIT_INTR]				= intr_interception,
3335
	[SVM_EXIT_NMI]				= nmi_interception,
3336 3337
	[SVM_EXIT_SMI]				= nop_on_interception,
	[SVM_EXIT_INIT]				= nop_on_interception,
3338
	[SVM_EXIT_VINTR]			= interrupt_window_interception,
Avi Kivity's avatar
Avi Kivity committed
3339
	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3340
	[SVM_EXIT_CPUID]			= cpuid_interception,
3341
	[SVM_EXIT_IRET]                         = iret_interception,
3342
	[SVM_EXIT_INVD]                         = emulate_on_interception,
3343
	[SVM_EXIT_PAUSE]			= pause_interception,
3344
	[SVM_EXIT_HLT]				= halt_interception,
Marcelo Tosatti's avatar
Marcelo Tosatti committed
3345
	[SVM_EXIT_INVLPG]			= invlpg_interception,
Alexander Graf's avatar
Alexander Graf committed
3346
	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3347
	[SVM_EXIT_IOIO]				= io_interception,
3348 3349
	[SVM_EXIT_MSR]				= msr_interception,
	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3350
	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
Alexander Graf's avatar
Alexander Graf committed
3351
	[SVM_EXIT_VMRUN]			= vmrun_interception,
3352
	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3353 3354
	[SVM_EXIT_VMLOAD]			= vmload_interception,
	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3355 3356
	[SVM_EXIT_STGI]				= stgi_interception,
	[SVM_EXIT_CLGI]				= clgi_interception,
3357
	[SVM_EXIT_SKINIT]			= skinit_interception,
3358
	[SVM_EXIT_WBINVD]                       = emulate_on_interception,
3359 3360
	[SVM_EXIT_MONITOR]			= monitor_interception,
	[SVM_EXIT_MWAIT]			= mwait_interception,
3361
	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3362
	[SVM_EXIT_NPF]				= pf_interception,
3363 3364
};

3365
static void dump_vmcb(struct kvm_vcpu *vcpu)
3366 3367 3368 3369 3370 3371
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct vmcb_save_area *save = &svm->vmcb->save;

	pr_err("VMCB Control Area:\n");
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
	pr_err("%-20s%d\n", "asid:", control->asid);
	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
	pr_err("%-20s%08x\n", "int_state:", control->int_state);
	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
	pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3398
	pr_err("VMCB State Save Area:\n");
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "es:",
	       save->es.selector, save->es.attrib,
	       save->es.limit, save->es.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "cs:",
	       save->cs.selector, save->cs.attrib,
	       save->cs.limit, save->cs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ss:",
	       save->ss.selector, save->ss.attrib,
	       save->ss.limit, save->ss.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ds:",
	       save->ds.selector, save->ds.attrib,
	       save->ds.limit, save->ds.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "fs:",
	       save->fs.selector, save->fs.attrib,
	       save->fs.limit, save->fs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "gs:",
	       save->gs.selector, save->gs.attrib,
	       save->gs.limit, save->gs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "gdtr:",
	       save->gdtr.selector, save->gdtr.attrib,
	       save->gdtr.limit, save->gdtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ldtr:",
	       save->ldtr.selector, save->ldtr.attrib,
	       save->ldtr.limit, save->ldtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "idtr:",
	       save->idtr.selector, save->idtr.attrib,
	       save->idtr.limit, save->idtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "tr:",
	       save->tr.selector, save->tr.attrib,
	       save->tr.limit, save->tr.base);
3439 3440
	pr_err("cpl:            %d                efer:         %016llx\n",
		save->cpl, save->efer);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cr0:", save->cr0, "cr2:", save->cr2);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cr3:", save->cr3, "cr4:", save->cr4);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "dr6:", save->dr6, "dr7:", save->dr7);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "rip:", save->rip, "rflags:", save->rflags);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "rsp:", save->rsp, "rax:", save->rax);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "star:", save->star, "lstar:", save->lstar);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cstar:", save->cstar, "sfmask:", save->sfmask);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "kernel_gs_base:", save->kernel_gs_base,
	       "sysenter_cs:", save->sysenter_cs);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "sysenter_esp:", save->sysenter_esp,
	       "sysenter_eip:", save->sysenter_eip);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "br_from:", save->br_from, "br_to:", save->br_to);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "excp_from:", save->last_excp_from,
	       "excp_to:", save->last_excp_to);
3468 3469
}

3470 3471 3472 3473 3474 3475 3476 3477
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;

	*info1 = control->exit_info_1;
	*info2 = control->exit_info_2;
}

3478
static int handle_exit(struct kvm_vcpu *vcpu)
3479
{
3480
	struct vcpu_svm *svm = to_svm(vcpu);
3481
	struct kvm_run *kvm_run = vcpu->run;
3482
	u32 exit_code = svm->vmcb->control.exit_code;
3483

3484
	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3485 3486 3487
		vcpu->arch.cr0 = svm->vmcb->save.cr0;
	if (npt_enabled)
		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3488

3489 3490 3491 3492 3493 3494 3495
	if (unlikely(svm->nested.exit_required)) {
		nested_svm_vmexit(svm);
		svm->nested.exit_required = false;

		return 1;
	}

3496
	if (is_guest_mode(vcpu)) {
3497 3498
		int vmexit;

3499 3500 3501 3502
		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
					svm->vmcb->control.exit_info_1,
					svm->vmcb->control.exit_info_2,
					svm->vmcb->control.exit_int_info,
3503 3504
					svm->vmcb->control.exit_int_info_err,
					KVM_ISA_SVM);
3505

3506 3507 3508 3509 3510 3511
		vmexit = nested_svm_exit_special(svm);

		if (vmexit == NESTED_EXIT_CONTINUE)
			vmexit = nested_svm_exit_handled(svm);

		if (vmexit == NESTED_EXIT_DONE)
3512 3513 3514
			return 1;
	}

3515 3516
	svm_complete_interrupts(svm);

3517 3518 3519 3520
	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
		kvm_run->fail_entry.hardware_entry_failure_reason
			= svm->vmcb->control.exit_code;
3521 3522
		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
		dump_vmcb(vcpu);
3523 3524 3525
		return 0;
	}

3526
	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3527
	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3528 3529
	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3530
		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3531
		       "exit_code 0x%x\n",
3532
		       __func__, svm->vmcb->control.exit_int_info,
3533 3534
		       exit_code);

3535
	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3536
	    || !svm_exit_handlers[exit_code]) {
3537
		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3538
		kvm_run->hw.hardware_exit_reason = exit_code;
3539 3540 3541
		return 0;
	}

3542
	return svm_exit_handlers[exit_code](svm);
3543 3544 3545 3546 3547 3548
}

static void reload_tss(struct kvm_vcpu *vcpu)
{
	int cpu = raw_smp_processor_id();

3549 3550
	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3551 3552 3553
	load_TR_desc();
}

Rusty Russell's avatar
Rusty Russell committed
3554
static void pre_svm_run(struct vcpu_svm *svm)
3555 3556 3557
{
	int cpu = raw_smp_processor_id();

3558
	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3559

3560
	/* FIXME: handle wraparound of asid_generation */
3561 3562
	if (svm->asid_generation != sd->asid_generation)
		new_asid(svm, sd);
3563 3564
}

3565 3566 3567 3568 3569 3570
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
	vcpu->arch.hflags |= HF_NMI_MASK;
3571
	set_intercept(svm, INTERCEPT_IRET);
3572 3573
	++vcpu->stat.nmi_injections;
}
3574

3575
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3576 3577 3578
{
	struct vmcb_control_area *control;

Rusty Russell's avatar
Rusty Russell committed
3579
	control = &svm->vmcb->control;
3580
	control->int_vector = irq;
3581 3582 3583
	control->int_ctl &= ~V_INTR_PRIO_MASK;
	control->int_ctl |= V_IRQ_MASK |
		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3584
	mark_dirty(svm->vmcb, VMCB_INTR);
3585 3586
}

3587
static void svm_set_irq(struct kvm_vcpu *vcpu)
Eddie Dong's avatar
Eddie Dong committed
3588 3589 3590
{
	struct vcpu_svm *svm = to_svm(vcpu);

3591
	BUG_ON(!(gif_set(svm)));
3592

3593 3594 3595
	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
	++vcpu->stat.irq_injections;

3596 3597
	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
Eddie Dong's avatar
Eddie Dong committed
3598 3599
}

3600
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3601 3602 3603
{
	struct vcpu_svm *svm = to_svm(vcpu);

3604
	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3605 3606
		return;

3607 3608
	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);

3609
	if (irr == -1)
3610 3611
		return;

3612
	if (tpr >= irr)
3613
		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3614
}
3615

3616 3617 3618 3619 3620
static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
{
	return;
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
static int svm_vm_has_apicv(struct kvm *kvm)
{
	return 0;
}

static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
	return;
}

static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
{
	return;
}

3636 3637 3638 3639 3640
static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
	return;
}

3641 3642 3643 3644
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb;
3645 3646 3647 3648 3649 3650
	int ret;
	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
	ret = ret && gif_set(svm) && nested_svm_nmi(svm);

	return ret;
3651 3652
}

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
}

static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (masked) {
		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3666
		set_intercept(svm, INTERCEPT_IRET);
3667 3668
	} else {
		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3669
		clr_intercept(svm, INTERCEPT_IRET);
3670 3671 3672
	}
}

3673 3674 3675 3676
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb;
3677 3678 3679 3680 3681 3682
	int ret;

	if (!gif_set(svm) ||
	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
		return 0;

3683
	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3684

3685
	if (is_guest_mode(vcpu))
3686 3687 3688
		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);

	return ret;
3689 3690
}

3691
static void enable_irq_window(struct kvm_vcpu *vcpu)
3692
{
3693 3694
	struct vcpu_svm *svm = to_svm(vcpu);

3695 3696 3697 3698 3699 3700
	/*
	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
	 * get that intercept, this function will be called again though and
	 * we'll get the vintr intercept.
	 */
3701
	if (gif_set(svm) && nested_svm_intr(svm)) {
3702 3703 3704
		svm_set_vintr(svm);
		svm_inject_irq(svm, 0x0);
	}
3705 3706
}

3707
static void enable_nmi_window(struct kvm_vcpu *vcpu)
3708
{
3709
	struct vcpu_svm *svm = to_svm(vcpu);
3710

3711 3712
	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
	    == HF_NMI_MASK)
3713
		return; /* IRET will cause a vm exit */
3714

3715 3716 3717 3718
	/*
	 * Something prevents NMI from been injected. Single step over possible
	 * problem (IRET or exception injection or interrupt shadow)
	 */
3719
	svm->nmi_singlestep = true;
3720
	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3721
	update_db_bp_intercept(vcpu);
3722 3723
}

3724 3725 3726 3727 3728
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
	return 0;
}

3729 3730
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
3731 3732 3733 3734 3735 3736
	struct vcpu_svm *svm = to_svm(vcpu);

	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
	else
		svm->asid_generation--;
3737 3738
}

3739 3740 3741 3742
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
{
}

3743 3744 3745 3746
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

3747
	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3748 3749
		return;

3750
	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3751
		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3752
		kvm_set_cr8(vcpu, cr8);
3753 3754 3755
	}
}

3756 3757 3758 3759 3760
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 cr8;

3761
	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3762 3763
		return;

3764 3765 3766 3767 3768
	cr8 = kvm_get_cr8(vcpu);
	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}

3769 3770 3771 3772 3773
static void svm_complete_interrupts(struct vcpu_svm *svm)
{
	u8 vector;
	int type;
	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3774 3775 3776
	unsigned int3_injected = svm->int3_injected;

	svm->int3_injected = 0;
3777

3778 3779 3780 3781 3782 3783
	/*
	 * If we've made progress since setting HF_IRET_MASK, we've
	 * executed an IRET and can allow NMI injection.
	 */
	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3784
		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3785 3786
		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
	}
3787

3788 3789 3790 3791 3792 3793 3794
	svm->vcpu.arch.nmi_injected = false;
	kvm_clear_exception_queue(&svm->vcpu);
	kvm_clear_interrupt_queue(&svm->vcpu);

	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
		return;

3795 3796
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);

3797 3798 3799 3800 3801 3802 3803 3804
	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;

	switch (type) {
	case SVM_EXITINTINFO_TYPE_NMI:
		svm->vcpu.arch.nmi_injected = true;
		break;
	case SVM_EXITINTINFO_TYPE_EXEPT:
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
		/*
		 * In case of software exceptions, do not reinject the vector,
		 * but re-execute the instruction instead. Rewind RIP first
		 * if we emulated INT3 before.
		 */
		if (kvm_exception_is_soft(vector)) {
			if (vector == BP_VECTOR && int3_injected &&
			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
				kvm_rip_write(&svm->vcpu,
					      kvm_rip_read(&svm->vcpu) -
					      int3_injected);
3816
			break;
3817
		}
3818 3819
		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
			u32 err = svm->vmcb->control.exit_int_info_err;
3820
			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3821 3822

		} else
3823
			kvm_requeue_exception(&svm->vcpu, vector);
3824 3825
		break;
	case SVM_EXITINTINFO_TYPE_INTR:
3826
		kvm_queue_interrupt(&svm->vcpu, vector, false);
3827 3828 3829 3830 3831 3832
		break;
	default:
		break;
	}
}

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;

	control->exit_int_info = control->event_inj;
	control->exit_int_info_err = control->event_inj_err;
	control->event_inj = 0;
	svm_complete_interrupts(svm);
}

3844
static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3845
{
3846
	struct vcpu_svm *svm = to_svm(vcpu);
3847

3848 3849 3850 3851
	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];

3852 3853 3854 3855 3856 3857 3858
	/*
	 * A vmexit emulation is required before the vcpu can be executed
	 * again.
	 */
	if (unlikely(svm->nested.exit_required))
		return;

Rusty Russell's avatar
Rusty Russell committed
3859
	pre_svm_run(svm);
3860

3861 3862
	sync_lapic_to_cr8(vcpu);

3863
	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3864

3865 3866 3867
	clgi();

	local_irq_enable();
3868

3869
	asm volatile (
Avi Kivity's avatar
Avi Kivity committed
3870 3871 3872 3873 3874 3875 3876
		"push %%" _ASM_BP "; \n\t"
		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3877
#ifdef CONFIG_X86_64
3878 3879 3880 3881 3882 3883 3884 3885
		"mov %c[r8](%[svm]),  %%r8  \n\t"
		"mov %c[r9](%[svm]),  %%r9  \n\t"
		"mov %c[r10](%[svm]), %%r10 \n\t"
		"mov %c[r11](%[svm]), %%r11 \n\t"
		"mov %c[r12](%[svm]), %%r12 \n\t"
		"mov %c[r13](%[svm]), %%r13 \n\t"
		"mov %c[r14](%[svm]), %%r14 \n\t"
		"mov %c[r15](%[svm]), %%r15 \n\t"
3886 3887 3888
#endif

		/* Enter guest mode */
Avi Kivity's avatar
Avi Kivity committed
3889 3890
		"push %%" _ASM_AX " \n\t"
		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3891 3892 3893
		__ex(SVM_VMLOAD) "\n\t"
		__ex(SVM_VMRUN) "\n\t"
		__ex(SVM_VMSAVE) "\n\t"
Avi Kivity's avatar
Avi Kivity committed
3894
		"pop %%" _ASM_AX " \n\t"
3895 3896

		/* Save guest registers, load host registers */
Avi Kivity's avatar
Avi Kivity committed
3897 3898 3899 3900 3901 3902
		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3903
#ifdef CONFIG_X86_64
3904 3905 3906 3907 3908 3909 3910 3911
		"mov %%r8,  %c[r8](%[svm]) \n\t"
		"mov %%r9,  %c[r9](%[svm]) \n\t"
		"mov %%r10, %c[r10](%[svm]) \n\t"
		"mov %%r11, %c[r11](%[svm]) \n\t"
		"mov %%r12, %c[r12](%[svm]) \n\t"
		"mov %%r13, %c[r13](%[svm]) \n\t"
		"mov %%r14, %c[r14](%[svm]) \n\t"
		"mov %%r15, %c[r15](%[svm]) \n\t"
3912
#endif
Avi Kivity's avatar
Avi Kivity committed
3913
		"pop %%" _ASM_BP
3914
		:
3915
		: [svm]"a"(svm),
3916
		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3917 3918 3919 3920 3921 3922
		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3923
#ifdef CONFIG_X86_64
3924 3925 3926 3927 3928 3929 3930 3931
		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3932
#endif
3933 3934
		: "cc", "memory"
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
3935
		, "rbx", "rcx", "rdx", "rsi", "rdi"
3936
		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
Avi Kivity's avatar
Avi Kivity committed
3937 3938
#else
		, "ebx", "ecx", "edx", "esi", "edi"
3939 3940
#endif
		);
3941

3942 3943 3944
#ifdef CONFIG_X86_64
	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
#else
3945
	loadsegment(fs, svm->host.fs);
3946 3947 3948
#ifndef CONFIG_X86_32_LAZY_GS
	loadsegment(gs, svm->host.gs);
#endif
3949
#endif
3950 3951 3952

	reload_tss(vcpu);

3953 3954
	local_irq_disable();

3955 3956 3957 3958 3959
	vcpu->arch.cr2 = svm->vmcb->save.cr2;
	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;

3960 3961
	trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
		kvm_before_handle_nmi(&svm->vcpu);

	stgi();

	/* Any pending NMI will happen here */

	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
		kvm_after_handle_nmi(&svm->vcpu);

3972 3973
	sync_cr8_to_lapic(vcpu);

3974
	svm->next_rip = 0;
3975

3976 3977
	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;

3978 3979 3980 3981
	/* if exit due to PF check for async PF */
	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
		svm->apf_reason = kvm_read_and_reset_pf_reason();

Avi Kivity's avatar
Avi Kivity committed
3982 3983 3984 3985
	if (npt_enabled) {
		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
	}
3986 3987 3988 3989 3990 3991 3992 3993

	/*
	 * We need to handle MC intercepts here before the vcpu has a chance to
	 * change the physical cpu
	 */
	if (unlikely(svm->vmcb->control.exit_code ==
		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
		svm_handle_mce(svm);
3994 3995

	mark_all_clean(svm->vmcb);
3996 3997 3998 3999
}

static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
4000 4001 4002
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->save.cr3 = root;
4003
	mark_dirty(svm->vmcb, VMCB_CR);
4004
	svm_flush_tlb(vcpu);
4005 4006
}

4007 4008 4009 4010 4011
static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.nested_cr3 = root;
4012
	mark_dirty(svm->vmcb, VMCB_NPT);
4013 4014

	/* Also sync guest cr3 here in case we live migrate */
4015
	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4016
	mark_dirty(svm->vmcb, VMCB_CR);
4017

4018
	svm_flush_tlb(vcpu);
4019 4020
}

4021 4022
static int is_disabled(void)
{
4023 4024 4025 4026 4027 4028
	u64 vm_cr;

	rdmsrl(MSR_VM_CR, vm_cr);
	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
		return 1;

4029 4030 4031
	return 0;
}

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
	/*
	 * Patch in the VMMCALL instruction:
	 */
	hypercall[0] = 0x0f;
	hypercall[1] = 0x01;
	hypercall[2] = 0xd9;
}

4043 4044 4045 4046 4047
static void svm_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}

4048 4049 4050 4051 4052
static bool svm_cpu_has_accelerated_tpr(void)
{
	return false;
}

4053
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
Sheng Yang's avatar
Sheng Yang committed
4054 4055 4056 4057
{
	return 0;
}

4058 4059 4060 4061
static void svm_cpuid_update(struct kvm_vcpu *vcpu)
{
}

4062 4063
static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
4064
	switch (func) {
4065 4066 4067 4068
	case 0x80000001:
		if (nested)
			entry->ecx |= (1 << 2); /* Set SVM bit */
		break;
4069 4070 4071 4072 4073
	case 0x8000000A:
		entry->eax = 1; /* SVM revision 1 */
		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
				   ASID emulation to nested SVM */
		entry->ecx = 0; /* Reserved */
4074 4075 4076 4077
		entry->edx = 0; /* Per default do not support any
				   additional features */

		/* Support next_rip if host supports it */
4078
		if (boot_cpu_has(X86_FEATURE_NRIPS))
4079
			entry->edx |= SVM_FEATURE_NRIP;
4080

4081 4082 4083 4084
		/* Support NPT for the guest if enabled */
		if (npt_enabled)
			entry->edx |= SVM_FEATURE_NPT;

4085 4086
		break;
	}
4087 4088
}

4089
static int svm_get_lpage_level(void)
4090
{
4091
	return PT_PDPE_LEVEL;
4092 4093
}

4094 4095 4096 4097 4098
static bool svm_rdtscp_supported(void)
{
	return false;
}

4099 4100 4101 4102 4103
static bool svm_invpcid_supported(void)
{
	return false;
}

4104 4105 4106 4107 4108
static bool svm_mpx_supported(void)
{
	return false;
}

4109 4110 4111 4112 4113
static bool svm_has_wbinvd_exit(void)
{
	return true;
}

4114 4115 4116 4117
static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

4118
	set_exception_intercept(svm, NM_VECTOR);
4119
	update_cr0_intercept(svm);
4120 4121
}

4122
#define PRE_EX(exit)  { .exit_code = (exit), \
4123
			.stage = X86_ICPT_PRE_EXCEPT, }
4124
#define POST_EX(exit) { .exit_code = (exit), \
4125
			.stage = X86_ICPT_POST_EXCEPT, }
4126
#define POST_MEM(exit) { .exit_code = (exit), \
4127
			.stage = X86_ICPT_POST_MEMACCESS, }
4128

4129
static const struct __x86_intercept {
4130 4131 4132 4133 4134 4135 4136 4137
	u32 exit_code;
	enum x86_intercept_stage stage;
} x86_intercept_map[] = {
	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4138 4139
	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4140 4141 4142 4143 4144 4145 4146 4147
	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4148 4149 4150 4151 4152 4153 4154 4155
	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4156 4157 4158
	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4159 4160 4161 4162 4163 4164 4165 4166 4167
	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4168 4169 4170 4171 4172 4173 4174
	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4175 4176 4177 4178
	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4179 4180
};

4181
#undef PRE_EX
4182
#undef POST_EX
4183
#undef POST_MEM
4184

4185 4186 4187 4188
static int svm_check_intercept(struct kvm_vcpu *vcpu,
			       struct x86_instruction_info *info,
			       enum x86_intercept_stage stage)
{
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	struct vcpu_svm *svm = to_svm(vcpu);
	int vmexit, ret = X86EMUL_CONTINUE;
	struct __x86_intercept icpt_info;
	struct vmcb *vmcb = svm->vmcb;

	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
		goto out;

	icpt_info = x86_intercept_map[info->intercept];

4199
	if (stage != icpt_info.stage)
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
		goto out;

	switch (icpt_info.exit_code) {
	case SVM_EXIT_READ_CR0:
		if (info->intercept == x86_intercept_cr_read)
			icpt_info.exit_code += info->modrm_reg;
		break;
	case SVM_EXIT_WRITE_CR0: {
		unsigned long cr0, val;
		u64 intercept;

		if (info->intercept == x86_intercept_cr_write)
			icpt_info.exit_code += info->modrm_reg;

4214 4215
		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
		    info->intercept == x86_intercept_clts)
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
			break;

		intercept = svm->nested.intercept;

		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
			break;

		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;

		if (info->intercept == x86_intercept_lmsw) {
			cr0 &= 0xfUL;
			val &= 0xfUL;
			/* lmsw can't clear PE - catch this here */
			if (cr0 & X86_CR0_PE)
				val |= X86_CR0_PE;
		}

		if (cr0 ^ val)
			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;

		break;
	}
4239 4240 4241 4242
	case SVM_EXIT_READ_DR0:
	case SVM_EXIT_WRITE_DR0:
		icpt_info.exit_code += info->modrm_reg;
		break;
4243 4244 4245 4246 4247 4248
	case SVM_EXIT_MSR:
		if (info->intercept == x86_intercept_wrmsr)
			vmcb->control.exit_info_1 = 1;
		else
			vmcb->control.exit_info_1 = 0;
		break;
4249 4250 4251 4252 4253 4254 4255
	case SVM_EXIT_PAUSE:
		/*
		 * We get this for NOP only, but pause
		 * is rep not, check this here
		 */
		if (info->rep_prefix != REPE_PREFIX)
			goto out;
4256 4257 4258 4259 4260 4261
	case SVM_EXIT_IOIO: {
		u64 exit_info;
		u32 bytes;

		if (info->intercept == x86_intercept_in ||
		    info->intercept == x86_intercept_ins) {
4262 4263
			exit_info = ((info->src_val & 0xffff) << 16) |
				SVM_IOIO_TYPE_MASK;
4264
			bytes = info->dst_bytes;
4265
		} else {
4266
			exit_info = (info->dst_val & 0xffff) << 16;
4267
			bytes = info->src_bytes;
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
		}

		if (info->intercept == x86_intercept_outs ||
		    info->intercept == x86_intercept_ins)
			exit_info |= SVM_IOIO_STR_MASK;

		if (info->rep_prefix)
			exit_info |= SVM_IOIO_REP_MASK;

		bytes = min(bytes, 4u);

		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;

		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);

		vmcb->control.exit_info_1 = exit_info;
		vmcb->control.exit_info_2 = info->next_rip;

		break;
	}
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	default:
		break;
	}

	vmcb->control.next_rip  = info->next_rip;
	vmcb->control.exit_code = icpt_info.exit_code;
	vmexit = nested_svm_exit_handled(svm);

	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
					   : X86EMUL_CONTINUE;

out:
	return ret;
4301 4302
}

4303 4304 4305 4306 4307
static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
{
	local_irq_enable();
}

4308
static struct kvm_x86_ops svm_x86_ops = {
4309 4310 4311 4312
	.cpu_has_kvm_support = has_svm,
	.disabled_by_bios = is_disabled,
	.hardware_setup = svm_hardware_setup,
	.hardware_unsetup = svm_hardware_unsetup,
4313
	.check_processor_compatibility = svm_check_processor_compat,
4314 4315
	.hardware_enable = svm_hardware_enable,
	.hardware_disable = svm_hardware_disable,
4316
	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4317 4318 4319

	.vcpu_create = svm_create_vcpu,
	.vcpu_free = svm_free_vcpu,
4320
	.vcpu_reset = svm_vcpu_reset,
4321

4322
	.prepare_guest_switch = svm_prepare_guest_switch,
4323 4324 4325
	.vcpu_load = svm_vcpu_load,
	.vcpu_put = svm_vcpu_put,

4326
	.update_db_bp_intercept = update_db_bp_intercept,
4327 4328 4329 4330 4331
	.get_msr = svm_get_msr,
	.set_msr = svm_set_msr,
	.get_segment_base = svm_get_segment_base,
	.get_segment = svm_get_segment,
	.set_segment = svm_set_segment,
4332
	.get_cpl = svm_get_cpl,
4333
	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4334
	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4335
	.decache_cr3 = svm_decache_cr3,
4336
	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4337 4338 4339 4340 4341 4342 4343 4344
	.set_cr0 = svm_set_cr0,
	.set_cr3 = svm_set_cr3,
	.set_cr4 = svm_set_cr4,
	.set_efer = svm_set_efer,
	.get_idt = svm_get_idt,
	.set_idt = svm_set_idt,
	.get_gdt = svm_get_gdt,
	.set_gdt = svm_set_gdt,
Jan Kiszka's avatar
Jan Kiszka committed
4345 4346
	.get_dr6 = svm_get_dr6,
	.set_dr6 = svm_set_dr6,
4347
	.set_dr7 = svm_set_dr7,
4348
	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
Avi Kivity's avatar
Avi Kivity committed
4349
	.cache_reg = svm_cache_reg,
4350 4351
	.get_rflags = svm_get_rflags,
	.set_rflags = svm_set_rflags,
4352
	.fpu_deactivate = svm_fpu_deactivate,
4353 4354 4355 4356

	.tlb_flush = svm_flush_tlb,

	.run = svm_vcpu_run,
4357
	.handle_exit = handle_exit,
4358
	.skip_emulated_instruction = skip_emulated_instruction,
4359 4360
	.set_interrupt_shadow = svm_set_interrupt_shadow,
	.get_interrupt_shadow = svm_get_interrupt_shadow,
4361
	.patch_hypercall = svm_patch_hypercall,
Eddie Dong's avatar
Eddie Dong committed
4362
	.set_irq = svm_set_irq,
4363
	.set_nmi = svm_inject_nmi,
4364
	.queue_exception = svm_queue_exception,
4365
	.cancel_injection = svm_cancel_injection,
4366
	.interrupt_allowed = svm_interrupt_allowed,
4367
	.nmi_allowed = svm_nmi_allowed,
4368 4369
	.get_nmi_mask = svm_get_nmi_mask,
	.set_nmi_mask = svm_set_nmi_mask,
4370 4371 4372
	.enable_nmi_window = enable_nmi_window,
	.enable_irq_window = enable_irq_window,
	.update_cr8_intercept = update_cr8_intercept,
4373
	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4374 4375 4376
	.vm_has_apicv = svm_vm_has_apicv,
	.load_eoi_exitmap = svm_load_eoi_exitmap,
	.hwapic_isr_update = svm_hwapic_isr_update,
4377
	.sync_pir_to_irr = svm_sync_pir_to_irr,
4378 4379

	.set_tss_addr = svm_set_tss_addr,
4380
	.get_tdp_level = get_npt_level,
4381
	.get_mt_mask = svm_get_mt_mask,
4382

4383 4384
	.get_exit_info = svm_get_exit_info,

4385
	.get_lpage_level = svm_get_lpage_level,
4386 4387

	.cpuid_update = svm_cpuid_update,
4388 4389

	.rdtscp_supported = svm_rdtscp_supported,
4390
	.invpcid_supported = svm_invpcid_supported,
4391
	.mpx_supported = svm_mpx_supported,
4392 4393

	.set_supported_cpuid = svm_set_supported_cpuid,
4394 4395

	.has_wbinvd_exit = svm_has_wbinvd_exit,
4396

4397
	.set_tsc_khz = svm_set_tsc_khz,
4398
	.read_tsc_offset = svm_read_tsc_offset,
4399
	.write_tsc_offset = svm_write_tsc_offset,
Zachary Amsden's avatar
Zachary Amsden committed
4400
	.adjust_tsc_offset = svm_adjust_tsc_offset,
4401
	.compute_tsc_offset = svm_compute_tsc_offset,
Nadav Har'El's avatar
Nadav Har'El committed
4402
	.read_l1_tsc = svm_read_l1_tsc,
4403 4404

	.set_tdp_cr3 = set_tdp_cr3,
4405 4406

	.check_intercept = svm_check_intercept,
4407
	.handle_external_intr = svm_handle_external_intr,
4408 4409 4410 4411
};

static int __init svm_init(void)
{
4412
	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4413
			__alignof__(struct vcpu_svm), THIS_MODULE);
4414 4415 4416 4417
}

static void __exit svm_exit(void)
{
4418
	kvm_exit();
4419 4420 4421 4422
}

module_init(svm_init)
module_exit(svm_exit)