Commit ea7962e0 authored by yonghong-song's avatar yonghong-song

Merge pull request #280 from iovisor/bblanco_dev

Reorganize examples into subdirectories
parents 7a31b18f c43e9900
......@@ -70,3 +70,5 @@ Python bindings for BPF Compiler Collection (BCC)
%exclude /usr/share/bcc/examples/*.pyo
%exclude /usr/share/bcc/examples/*/*.pyc
%exclude /usr/share/bcc/examples/*/*.pyo
%exclude /usr/share/bcc/examples/*/*/*.pyc
%exclude /usr/share/bcc/examples/*/*/*.pyo
set(EXAMPLE_FILES hello_world.py task_switch.py task_switch.c simple_tc.py
simulation.py vlan_learning.py vlan_learning.c)
install(FILES ${EXAMPLE_FILES} DESTINATION share/bcc/examples)
set(EXAMPLE_PROGRAMS hello_world.py)
install(PROGRAMS ${EXAMPLE_PROGRAMS} DESTINATION share/bcc/examples)
add_subdirectory(distributed_bridge)
add_subdirectory(networking)
add_subdirectory(tracing)
set(EXAMPLE_FILES main.py simulation.py tunnel_mesh.py tunnel.py
tunnel.c tunnel_mesh.c)
install(FILES ${EXAMPLE_FILES} DESTINATION share/bcc/examples/distributed_bridge)
set(EXAMPLE_FILES simulation.py)
set(EXAMPLE_PROGRAMS simple_tc.py)
install(FILES ${EXAMPLE_FILES} DESTINATION share/bcc/examples/networking)
install(PROGRAMS ${EXAMPLE_PROGRAMS} DESTINATION share/bcc/examples/networking)
add_subdirectory(distributed_bridge)
add_subdirectory(neighbor_sharing)
add_subdirectory(vlan_learning)
set(EXAMPLE_FILES simulation.py tunnel.c tunnel_mesh.c)
set(EXAMPLE_PROGRAMS main.py tunnel_mesh.py tunnel.py)
install(FILES ${EXAMPLE_FILES} DESTINATION share/bcc/examples/networking/distributed_bridge)
install(PROGRAMS ${EXAMPLE_PROGRAMS} DESTINATION share/bcc/examples/networking/distributed_bridge)
set(EXAMPLE_FILES README.txt simulation.py tc_neighbor_sharing.c)
set(EXAMPLE_PROGRAMS tc_neighbor_sharing.py)
install(FILES ${EXAMPLE_FILES} DESTINATION share/bcc/examples/networking/neighbor_sharing)
install(PROGRAMS ${EXAMPLE_PROGRAMS} DESTINATION share/bcc/examples/networking/neighbor_sharing)
This example shows how a combination of BPF programs can be used to perform
per-IP classification and rate limiting. The simulation in this example
shows an example where N+M devices are combined and use 1 WAN. Traffic sent
from/to the "neighbor" devices have their combined bandwidth capped at
128kbit, and the rest of the traffic can use an additional 1Mbit.
This works by sharing a map between various tc ingress filters, each with
a related set of bpf functions attached. The map stores a list of dynamically
learned ip addresses that were seen on the neighbor devices and should be
throttled.
/------------\ |
neigh1 --|->->->->->->->-| | |
neigh2 --|->->->->->->->-| <-128kb-| /------\ |
neigh3 --|->->->->->->->-| | wan0 | wan | |
| ^ | br100 |-<-<-<--| sim | |
| clsfy_neigh() | | ^ \------/ |
lan1 ----|->->->->->->->-| <--1Mb--| | |
lan2 ----|->->->->->->->-| | classify_wan() |
^ \------------/ |
pass() |
To run the example:
$ sudo /path/to/neighbor_sharing/neighbor_sharing.py
Starting netserver with host 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC
Starting netserver with host 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC
Starting netserver with host 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC
Starting netserver with host 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC
Starting netserver with host 'IN(6)ADDR_ANY' port '12865' and family AF_UNSPEC
Network ready. Create a shell in the wan0 namespace and test with netperf
(Neighbors are 172.16.1.100-102, and LAN clients are 172.16.1.150-151)
e.g.: ip netns exec wan0 netperf -H 172.16.1.100 -l 2
Press enter when finished:
In another shell:
$ sudo ip netns exec wan0 netperf -H 172.16.1.100 -l 2
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 172.16.1.100 () port 0 AF_INET : demo
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 16384 4.30 0.18
$ sudo ip netns exec wan0 netperf -H 172.16.1.150 -l 2
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 172.16.1.150 () port 0 AF_INET : demo
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 16384 4.10 1.01
The bandwidth is throttled according to the IP.
......@@ -2,29 +2,6 @@
# Copyright (c) PLUMgrid, Inc.
# Licensed under the Apache License, Version 2.0 (the "License")
# This example shows how a combination of BPF programs can be used to perform
# per-IP classification and rate limiting. The simulation in this example
# shows an example where N+M devices are combined and use 1 WAN. Traffic sent
# from/to the "neighbor" devices have their combined bandwidth capped at
# 128kbit, and the rest of the traffic can use an additional 1Mbit.
# This works by sharing a map between various tc ingress filters, each with
# a related set of bpf functions attached. The map stores a list of dynamically
# learned ip addresses that were seen on the neighbor devices and should be
# throttled.
# /------------\ |
# neigh1 --|->->->->->->->-| | |
# neigh2 --|->->->->->->->-| <-128kb-| /------\ |
# neigh3 --|->->->->->->->-| | wan0 | wan | |
# | ^ | br100 |-<-<-<--| sim | |
# | clsfy_neigh() | | ^ \------/ |
# lan1 ----|->->->->->->->-| <--1Mb--| | |
# lan2 ----|->->->->->->->-| | classify_wan() |
# ^ \------------/ |
# pass() |
from bcc import BPF
from pyroute2 import IPRoute, NetNS, IPDB, NSPopen
from simulation import Simulation
......
#!/usr/bin/env python
#!/usr/bin/python
# Copyright (c) PLUMgrid, Inc.
# Licensed under the Apache License, Version 2.0 (the "License")
......
../simulation.py
\ No newline at end of file
set(EXAMPLE_FILES README.txt simulation.py vlan_learning.c)
set(EXAMPLE_PROGRAMS vlan_learning.py)
install(FILES ${EXAMPLE_FILES} DESTINATION share/bcc/examples/networking/vlan_learning)
install(PROGRAMS ${EXAMPLE_PROGRAMS} DESTINATION share/bcc/examples/networking/vlan_learning)
This example shows a unique way to use a BPF program to demux any ethernet
traffic into a pool of worker veth+namespaces (or any ifindex-based
destination) depending on a configurable mapping of src-mac to ifindex. As
part of the ingress processing, the program will dynamically learn the source
ifindex of the matched source mac.
Simulate a physical network with a vlan aware switch and clients that may
connect to any vlan. The program will detect the known clients and pass the
traffic through to a dedicated namespace for processing. Clients may have
overlapping IP spaces and the traffic will still work.
| bpf program |
cli0 --| | /--|-- worker0 |
cli1 --| trunk | +->--->-handle_p2v(pkt)-> /---|-- worker1 |
cli2 --|=======|=+ /----|-- worker2 |
... --| | +-<---<-handle_v2p(pkt)-<-----|-- ... |
cliN --| | \----|-- workerM |
| | ^ |
phys | veth |
switch | |
To run the example, simply:
sudo /path/to/vlan_learning/vlan_learning.py
Serving HTTP on 0.0.0.0 port 80 ...
Serving HTTP on 0.0.0.0 port 80 ...
Serving HTTP on 0.0.0.0 port 80 ...
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0172.16.1.100 - - [04/Nov/2015 10:54:47] "GET / HTTP/1.1" 200 -
100 574 100 574 0 0 45580 0 --:--:-- --:--:-- --:--:-- 47833
...
Press enter to exit:
mac 020000000000 rx pkts = 95, rx bytes = 7022
tx pkts = 0, tx bytes = 0
mac 020000000001 rx pkts = 95, rx bytes = 7022
tx pkts = 0, tx bytes = 0
mac 020000000002 rx pkts = 97, rx bytes = 7154
tx pkts = 0, tx bytes = 0
../simulation.py
\ No newline at end of file
......@@ -2,27 +2,6 @@
# Copyright (c) PLUMgrid, Inc.
# Licensed under the Apache License, Version 2.0 (the "License")
# This example shows a unique way to use a BPF program to demux any ethernet
# traffic into a pool of worker veth+namespaces (or any ifindex-based
# destination) depending on a configurable mapping of src-mac to ifindex. As
# part of the ingress processing, the program will dynamically learn the source
# ifindex of the matched source mac.
# Simulate a physical network with a vlan aware switch and clients that may
# connect to any vlan. The program will detect the known clients and pass the
# traffic through to a dedicated namespace for processing. Clients may have
# overlapping IP spaces and the traffic will still work.
# | bpf program |
# cli0 --| | /--|-- worker0 |
# cli1 --| trunk | +->--->-handle_p2v(pkt)-> /---|-- worker1 |
# cli2 --|=======|=+ /----|-- worker2 |
# ... --| | +-<---<-handle_v2p(pkt)-<-----|-- ... |
# cliN --| | \----|-- workerM |
# | | ^ |
# phys | veth |
# switch | |
from bcc import BPF
from builtins import input
from pyroute2 import IPRoute, NetNS, IPDB, NSPopen
......
set(EXAMPLE_FILES bitehist.c bitehist_example.txt disksnoop.c
disksnoop_example.txt task_switch.c tcpv4connect tcpv4connect_example.txt
vfsreadlat.c vfsreadlat_example.txt)
set(EXAMPLE_PROGRAMS bitehist.py disksnoop.py task_switch.py trace_fields.py vfsreadlat.py)
install(FILES ${EXAMPLE_FILES} DESTINATION share/bcc/examples/tracing)
install(PROGRAMS ${EXAMPLE_PROGRAMS} DESTINATION share/bcc/examples/tracing)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment