regexp.go 34.8 KB
Newer Older
1
// Copyright 2009 The Go Authors. All rights reserved.
2 3 4
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

Russ Cox's avatar
Russ Cox committed
5
// Package regexp implements regular expression search.
6
//
7 8 9
// The syntax of the regular expressions accepted is the same
// general syntax used by Perl, Python, and other languages.
// More precisely, it is the syntax accepted by RE2 and described at
10
// https://golang.org/s/re2syntax, except for \C.
11
// For an overview of the syntax, run
Rob Pike's avatar
Rob Pike committed
12
//   go doc regexp/syntax
13
//
14 15 16 17 18 19 20 21
// The regexp implementation provided by this package is
// guaranteed to run in time linear in the size of the input.
// (This is a property not guaranteed by most open source
// implementations of regular expressions.) For more information
// about this property, see
//	http://swtch.com/~rsc/regexp/regexp1.html
// or any book about automata theory.
//
22
// All characters are UTF-8-encoded code points.
23 24
//
// There are 16 methods of Regexp that match a regular expression and identify
25
// the matched text. Their names are matched by this regular expression:
26 27 28 29
//
//	Find(All)?(String)?(Submatch)?(Index)?
//
// If 'All' is present, the routine matches successive non-overlapping
30 31 32
// matches of the entire expression. Empty matches abutting a preceding
// match are ignored. The return value is a slice containing the successive
// return values of the corresponding non-'All' routine. These routines take
33 34 35 36 37 38 39
// an extra integer argument, n; if n >= 0, the function returns at most n
// matches/submatches.
//
// If 'String' is present, the argument is a string; otherwise it is a slice
// of bytes; return values are adjusted as appropriate.
//
// If 'Submatch' is present, the return value is a slice identifying the
40 41 42 43 44
// successive submatches of the expression. Submatches are matches of
// parenthesized subexpressions (also known as capturing groups) within the
// regular expression, numbered from left to right in order of opening
// parenthesis. Submatch 0 is the match of the entire expression, submatch 1
// the match of the first parenthesized subexpression, and so on.
45 46 47
//
// If 'Index' is present, matches and submatches are identified by byte index
// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
48 49 50
// the nth submatch. The pair for n==0 identifies the match of the entire
// expression. If 'Index' is not present, the match is identified by the
// text of the match/submatch. If an index is negative, it means that
51 52
// subexpression did not match any string in the input.
//
53 54 55 56 57
// There is also a subset of the methods that can be applied to text read
// from a RuneReader:
//
//	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
//
58
// This set may grow. Note that regular expression matches may need to
59 60 61 62
// examine text beyond the text returned by a match, so the methods that
// match text from a RuneReader may read arbitrarily far into the input
// before returning.
//
63
// (There are a few other methods that do not match this pattern.)
64
//
65 66
package regexp

Rob Pike's avatar
Rob Pike committed
67
import (
68 69
	"bytes"
	"io"
70 71
	"regexp/syntax"
	"strconv"
72
	"strings"
73
	"sync"
74
	"unicode"
75
	"unicode/utf8"
Rob Pike's avatar
Rob Pike committed
76 77
)

78
// Regexp is the representation of a compiled regular expression.
79 80
// A Regexp is safe for concurrent use by multiple goroutines,
// except for configuration methods, such as Longest.
81
type Regexp struct {
82
	// read-only after Compile
83 84 85 86 87 88 89 90
	regexpRO

	// cache of machines for running regexp
	mu      sync.Mutex
	machine []*machine
}

type regexpRO struct {
91 92
	expr           string         // as passed to Compile
	prog           *syntax.Prog   // compiled program
93
	onepass        *onePassProg   // onepass program or nil
94 95 96
	prefix         string         // required prefix in unanchored matches
	prefixBytes    []byte         // prefix, as a []byte
	prefixComplete bool           // prefix is the entire regexp
Russ Cox's avatar
Russ Cox committed
97
	prefixRune     rune           // first rune in prefix
98
	prefixEnd      uint32         // pc for last rune in prefix
99 100
	cond           syntax.EmptyOp // empty-width conditions required at start of match
	numSubexp      int
Russ Cox's avatar
Russ Cox committed
101
	subexpNames    []string
102
	longest        bool
Rob Pike's avatar
Rob Pike committed
103 104
}

105 106
// String returns the source text used to compile the regular expression.
func (re *Regexp) String() string {
107 108 109
	return re.expr
}

110 111 112 113 114
// Copy returns a new Regexp object copied from re.
//
// When using a Regexp in multiple goroutines, giving each goroutine
// its own copy helps to avoid lock contention.
func (re *Regexp) Copy() *Regexp {
115 116 117 118 119
	// It is not safe to copy Regexp by value
	// since it contains a sync.Mutex.
	return &Regexp{
		regexpRO: re.regexpRO,
	}
120 121
}

122 123 124 125 126 127 128 129 130 131
// Compile parses a regular expression and returns, if successful,
// a Regexp object that can be used to match against text.
//
// When matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses the one that a backtracking search would have found first.
// This so-called leftmost-first matching is the same semantics
// that Perl, Python, and other implementations use, although this
// package implements it without the expense of backtracking.
// For POSIX leftmost-longest matching, see CompilePOSIX.
132
func Compile(expr string) (*Regexp, error) {
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	return compile(expr, syntax.Perl, false)
}

// CompilePOSIX is like Compile but restricts the regular expression
// to POSIX ERE (egrep) syntax and changes the match semantics to
// leftmost-longest.
//
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
// This so-called leftmost-longest matching is the same semantics
// that early regular expression implementations used and that POSIX
// specifies.
//
// However, there can be multiple leftmost-longest matches, with different
// submatch choices, and here this package diverges from POSIX.
// Among the possible leftmost-longest matches, this package chooses
// the one that a backtracking search would have found first, while POSIX
// specifies that the match be chosen to maximize the length of the first
// subexpression, then the second, and so on from left to right.
// The POSIX rule is computationally prohibitive and not even well-defined.
// See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
155
func CompilePOSIX(expr string) (*Regexp, error) {
156 157 158
	return compile(expr, syntax.POSIX, true)
}

159
// Longest makes future searches prefer the leftmost-longest match.
Andrew Gerrand's avatar
Andrew Gerrand committed
160 161 162
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
163 164
// This method modifies the Regexp and may not be called concurrently
// with any other methods.
Andrew Gerrand's avatar
Andrew Gerrand committed
165 166 167 168
func (re *Regexp) Longest() {
	re.longest = true
}

169
func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
170 171 172 173 174
	re, err := syntax.Parse(expr, mode)
	if err != nil {
		return nil, err
	}
	maxCap := re.MaxCap()
Russ Cox's avatar
Russ Cox committed
175 176
	capNames := re.CapNames()

177 178 179 180 181 182
	re = re.Simplify()
	prog, err := syntax.Compile(re)
	if err != nil {
		return nil, err
	}
	regexp := &Regexp{
183 184 185 186 187 188 189 190 191
		regexpRO: regexpRO{
			expr:        expr,
			prog:        prog,
			onepass:     compileOnePass(prog),
			numSubexp:   maxCap,
			subexpNames: capNames,
			cond:        prog.StartCond(),
			longest:     longest,
		},
192
	}
193
	if regexp.onepass == notOnePass {
194 195
		regexp.prefix, regexp.prefixComplete = prog.Prefix()
	} else {
196
		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
197
	}
198 199 200 201 202 203 204 205 206 207 208 209 210
	if regexp.prefix != "" {
		// TODO(rsc): Remove this allocation by adding
		// IndexString to package bytes.
		regexp.prefixBytes = []byte(regexp.prefix)
		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
	}
	return regexp, nil
}

// get returns a machine to use for matching re.
// It uses the re's machine cache if possible, to avoid
// unnecessary allocation.
func (re *Regexp) get() *machine {
211 212 213 214 215 216
	re.mu.Lock()
	if n := len(re.machine); n > 0 {
		z := re.machine[n-1]
		re.machine = re.machine[:n-1]
		re.mu.Unlock()
		return z
217
	}
218
	re.mu.Unlock()
219
	z := progMachine(re.prog, re.onepass)
220 221 222 223 224 225 226 227 228
	z.re = re
	return z
}

// put returns a machine to the re's machine cache.
// There is no attempt to limit the size of the cache, so it will
// grow to the maximum number of simultaneous matches
// run using re.  (The cache empties when re gets garbage collected.)
func (re *Regexp) put(z *machine) {
229 230 231
	re.mu.Lock()
	re.machine = append(re.machine, z)
	re.mu.Unlock()
232 233 234 235 236 237
}

// MustCompile is like Compile but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompile(str string) *Regexp {
238
	regexp, error := Compile(str)
239
	if error != nil {
240
		panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
241
	}
242
	return regexp
243
}
Rob Pike's avatar
Rob Pike committed
244

245 246 247 248 249 250
// MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompilePOSIX(str string) *Regexp {
	regexp, error := CompilePOSIX(str)
	if error != nil {
251
		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
252
	}
253
	return regexp
254 255
}

256 257 258
func quote(s string) string {
	if strconv.CanBackquote(s) {
		return "`" + s + "`"
259
	}
260
	return strconv.Quote(s)
261 262
}

263 264 265
// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
func (re *Regexp) NumSubexp() int {
	return re.numSubexp
Rob Pike's avatar
Rob Pike committed
266 267
}

Russ Cox's avatar
Russ Cox committed
268
// SubexpNames returns the names of the parenthesized subexpressions
269
// in this Regexp. The name for the first sub-expression is names[1],
Russ Cox's avatar
Russ Cox committed
270 271
// so that if m is a match slice, the name for m[i] is SubexpNames()[i].
// Since the Regexp as a whole cannot be named, names[0] is always
272
// the empty string. The slice should not be modified.
Russ Cox's avatar
Russ Cox committed
273 274 275 276
func (re *Regexp) SubexpNames() []string {
	return re.subexpNames
}

Russ Cox's avatar
Russ Cox committed
277
const endOfText rune = -1
Rob Pike's avatar
Rob Pike committed
278

279 280 281
// input abstracts different representations of the input text. It provides
// one-character lookahead.
type input interface {
Russ Cox's avatar
Russ Cox committed
282 283
	step(pos int) (r rune, width int) // advance one rune
	canCheckPrefix() bool             // can we look ahead without losing info?
284 285
	hasPrefix(re *Regexp) bool
	index(re *Regexp, pos int) int
286
	context(pos int) syntax.EmptyOp
287 288 289 290 291 292 293
}

// inputString scans a string.
type inputString struct {
	str string
}

Russ Cox's avatar
Russ Cox committed
294
func (i *inputString) step(pos int) (rune, int) {
295
	if pos < len(i.str) {
Russ Cox's avatar
Russ Cox committed
296 297
		c := i.str[pos]
		if c < utf8.RuneSelf {
Russ Cox's avatar
Russ Cox committed
298
			return rune(c), 1
Russ Cox's avatar
Russ Cox committed
299 300
		}
		return utf8.DecodeRuneInString(i.str[pos:])
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	}
	return endOfText, 0
}

func (i *inputString) canCheckPrefix() bool {
	return true
}

func (i *inputString) hasPrefix(re *Regexp) bool {
	return strings.HasPrefix(i.str, re.prefix)
}

func (i *inputString) index(re *Regexp, pos int) int {
	return strings.Index(i.str[pos:], re.prefix)
}

317
func (i *inputString) context(pos int) syntax.EmptyOp {
Russ Cox's avatar
Russ Cox committed
318
	r1, r2 := endOfText, endOfText
319 320 321 322 323 324
	// 0 < pos && pos <= len(i.str)
	if uint(pos-1) < uint(len(i.str)) {
		r1 = rune(i.str[pos-1])
		if r1 >= utf8.RuneSelf {
			r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
		}
325
	}
326 327 328 329 330 331
	// 0 <= pos && pos < len(i.str)
	if uint(pos) < uint(len(i.str)) {
		r2 = rune(i.str[pos])
		if r2 >= utf8.RuneSelf {
			r2, _ = utf8.DecodeRuneInString(i.str[pos:])
		}
332 333 334 335
	}
	return syntax.EmptyOpContext(r1, r2)
}

336 337 338 339 340
// inputBytes scans a byte slice.
type inputBytes struct {
	str []byte
}

Russ Cox's avatar
Russ Cox committed
341
func (i *inputBytes) step(pos int) (rune, int) {
342
	if pos < len(i.str) {
Russ Cox's avatar
Russ Cox committed
343 344
		c := i.str[pos]
		if c < utf8.RuneSelf {
Russ Cox's avatar
Russ Cox committed
345
			return rune(c), 1
Russ Cox's avatar
Russ Cox committed
346 347
		}
		return utf8.DecodeRune(i.str[pos:])
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	}
	return endOfText, 0
}

func (i *inputBytes) canCheckPrefix() bool {
	return true
}

func (i *inputBytes) hasPrefix(re *Regexp) bool {
	return bytes.HasPrefix(i.str, re.prefixBytes)
}

func (i *inputBytes) index(re *Regexp, pos int) int {
	return bytes.Index(i.str[pos:], re.prefixBytes)
}

364
func (i *inputBytes) context(pos int) syntax.EmptyOp {
Russ Cox's avatar
Russ Cox committed
365
	r1, r2 := endOfText, endOfText
366 367 368 369 370 371
	// 0 < pos && pos <= len(i.str)
	if uint(pos-1) < uint(len(i.str)) {
		r1 = rune(i.str[pos-1])
		if r1 >= utf8.RuneSelf {
			r1, _ = utf8.DecodeLastRune(i.str[:pos])
		}
372
	}
373 374 375 376 377 378
	// 0 <= pos && pos < len(i.str)
	if uint(pos) < uint(len(i.str)) {
		r2 = rune(i.str[pos])
		if r2 >= utf8.RuneSelf {
			r2, _ = utf8.DecodeRune(i.str[pos:])
		}
379 380 381 382
	}
	return syntax.EmptyOpContext(r1, r2)
}

383 384 385 386 387 388 389
// inputReader scans a RuneReader.
type inputReader struct {
	r     io.RuneReader
	atEOT bool
	pos   int
}

Russ Cox's avatar
Russ Cox committed
390
func (i *inputReader) step(pos int) (rune, int) {
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	if !i.atEOT && pos != i.pos {
		return endOfText, 0

	}
	r, w, err := i.r.ReadRune()
	if err != nil {
		i.atEOT = true
		return endOfText, 0
	}
	i.pos += w
	return r, w
}

func (i *inputReader) canCheckPrefix() bool {
	return false
}

func (i *inputReader) hasPrefix(re *Regexp) bool {
	return false
}

func (i *inputReader) index(re *Regexp, pos int) int {
	return -1
}

416 417
func (i *inputReader) context(pos int) syntax.EmptyOp {
	return 0
Rob Pike's avatar
Rob Pike committed
418 419
}

420
// LiteralPrefix returns a literal string that must begin any match
421
// of the regular expression re. It returns the boolean true if the
422 423
// literal string comprises the entire regular expression.
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
424
	return re.prefix, re.prefixComplete
425 426
}

427 428
// MatchReader reports whether the Regexp matches the text read by the
// RuneReader.
429
func (re *Regexp) MatchReader(r io.RuneReader) bool {
430
	return re.doMatch(r, nil, "")
431 432
}

433
// MatchString reports whether the Regexp matches the string s.
434
func (re *Regexp) MatchString(s string) bool {
435
	return re.doMatch(nil, nil, s)
436
}
437

438
// Match reports whether the Regexp matches the byte slice b.
439
func (re *Regexp) Match(b []byte) bool {
440
	return re.doMatch(nil, b, "")
441
}
442

443
// MatchReader checks whether a textual regular expression matches the text
444
// read by the RuneReader. More complicated queries need to use Compile and
445
// the full Regexp interface.
Brad Fitzpatrick's avatar
Brad Fitzpatrick committed
446
func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
447 448 449 450 451 452
	re, err := Compile(pattern)
	if err != nil {
		return false, err
	}
	return re.MatchReader(r), nil
}
453

454
// MatchString checks whether a textual regular expression
455
// matches a string. More complicated queries need
456
// to use Compile and the full Regexp interface.
Brad Fitzpatrick's avatar
Brad Fitzpatrick committed
457
func MatchString(pattern string, s string) (matched bool, err error) {
458
	re, err := Compile(pattern)
459
	if err != nil {
460
		return false, err
461
	}
462
	return re.MatchString(s), nil
463 464
}

465
// Match checks whether a textual regular expression
466
// matches a byte slice. More complicated queries need
467
// to use Compile and the full Regexp interface.
Brad Fitzpatrick's avatar
Brad Fitzpatrick committed
468
func Match(pattern string, b []byte) (matched bool, err error) {
469
	re, err := Compile(pattern)
470
	if err != nil {
471
		return false, err
472
	}
473
	return re.Match(b), nil
474
}
475

476
// ReplaceAllString returns a copy of src, replacing matches of the Regexp
477
// with the replacement string repl. Inside repl, $ signs are interpreted as
478
// in Expand, so for instance $1 represents the text of the first submatch.
479
func (re *Regexp) ReplaceAllString(src, repl string) string {
480
	n := 2
481
	if strings.Contains(repl, "$") {
482 483 484 485 486 487 488 489
		n = 2 * (re.numSubexp + 1)
	}
	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
		return re.expand(dst, repl, nil, src, match)
	})
	return string(b)
}

490
// ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
491
// with the replacement string repl. The replacement repl is substituted directly,
492 493 494 495 496
// without using Expand.
func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
		return append(dst, repl...)
	}))
497 498
}

499
// ReplaceAllStringFunc returns a copy of src in which all matches of the
500
// Regexp have been replaced by the return value of function repl applied
501
// to the matched substring. The replacement returned by repl is substituted
502
// directly, without using Expand.
503
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
504 505 506 507 508 509 510
	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
		return append(dst, repl(src[match[0]:match[1]])...)
	})
	return string(b)
}

func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
511 512
	lastMatchEnd := 0 // end position of the most recent match
	searchPos := 0    // position where we next look for a match
513 514 515 516 517 518 519
	var buf []byte
	var endPos int
	if bsrc != nil {
		endPos = len(bsrc)
	} else {
		endPos = len(src)
	}
520 521 522 523
	if nmatch > re.prog.NumCap {
		nmatch = re.prog.NumCap
	}

524
	var dstCap [2]int
525
	for searchPos <= endPos {
526
		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
527
		if len(a) == 0 {
528
			break // no more matches
529 530 531
		}

		// Copy the unmatched characters before this match.
532 533 534 535 536
		if bsrc != nil {
			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
		} else {
			buf = append(buf, src[lastMatchEnd:a[0]]...)
		}
537 538 539 540 541 542

		// Now insert a copy of the replacement string, but not for a
		// match of the empty string immediately after another match.
		// (Otherwise, we get double replacement for patterns that
		// match both empty and nonempty strings.)
		if a[1] > lastMatchEnd || a[0] == 0 {
543
			buf = repl(buf, a)
544
		}
545
		lastMatchEnd = a[1]
546 547

		// Advance past this match; always advance at least one character.
548 549 550 551 552 553
		var width int
		if bsrc != nil {
			_, width = utf8.DecodeRune(bsrc[searchPos:])
		} else {
			_, width = utf8.DecodeRuneInString(src[searchPos:])
		}
554
		if searchPos+width > a[1] {
555
			searchPos += width
556
		} else if searchPos+1 > a[1] {
557
			// This clause is only needed at the end of the input
558
			// string. In that case, DecodeRuneInString returns width=0.
559
			searchPos++
560
		} else {
561
			searchPos = a[1]
562 563 564 565
		}
	}

	// Copy the unmatched characters after the last match.
566 567 568 569 570
	if bsrc != nil {
		buf = append(buf, bsrc[lastMatchEnd:]...)
	} else {
		buf = append(buf, src[lastMatchEnd:]...)
	}
571

572
	return buf
573 574
}

575
// ReplaceAll returns a copy of src, replacing matches of the Regexp
576
// with the replacement text repl. Inside repl, $ signs are interpreted as
577
// in Expand, so for instance $1 represents the text of the first submatch.
578
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
579 580 581 582 583 584 585 586
	n := 2
	if bytes.IndexByte(repl, '$') >= 0 {
		n = 2 * (re.numSubexp + 1)
	}
	srepl := ""
	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
		if len(srepl) != len(repl) {
			srepl = string(repl)
587
		}
588 589 590 591
		return re.expand(dst, srepl, src, "", match)
	})
	return b
}
592

593
// ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
594
// with the replacement bytes repl. The replacement repl is substituted directly,
595 596 597 598 599 600
// without using Expand.
func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
		return append(dst, repl...)
	})
}
601

602
// ReplaceAllFunc returns a copy of src in which all matches of the
603
// Regexp have been replaced by the return value of function repl applied
604
// to the matched byte slice. The replacement returned by repl is substituted
605 606 607 608 609
// directly, without using Expand.
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
		return append(dst, repl(src[match[0]:match[1]])...)
	})
610 611
}

612 613
// Bitmap used by func special to check whether a character needs to be escaped.
var specialBytes [16]byte
614

615
// special reports whether byte b needs to be escaped by QuoteMeta.
616
func special(b byte) bool {
617 618 619 620 621 622 623
	return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
}

func init() {
	for _, b := range []byte(`\.+*?()|[]{}^$`) {
		specialBytes[b%16] |= 1 << (b / 16)
	}
624 625
}

626 627
// QuoteMeta returns a string that quotes all regular expression metacharacters
// inside the argument text; the returned string is a regular expression matching
628
// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
629 630
func QuoteMeta(s string) string {
	// A byte loop is correct because all metacharacters are ASCII.
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	var i int
	for i = 0; i < len(s); i++ {
		if special(s[i]) {
			break
		}
	}
	// No meta characters found, so return original string.
	if i >= len(s) {
		return s
	}

	b := make([]byte, 2*len(s)-i)
	copy(b, s[:i])
	j := i
	for ; i < len(s); i++ {
646
		if special(s[i]) {
647 648
			b[j] = '\\'
			j++
649
		}
650 651
		b[j] = s[i]
		j++
652
	}
653
	return string(b[:j])
654 655
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
// The number of capture values in the program may correspond
// to fewer capturing expressions than are in the regexp.
// For example, "(a){0}" turns into an empty program, so the
// maximum capture in the program is 0 but we need to return
// an expression for \1.  Pad appends -1s to the slice a as needed.
func (re *Regexp) pad(a []int) []int {
	if a == nil {
		// No match.
		return nil
	}
	n := (1 + re.numSubexp) * 2
	for len(a) < n {
		a = append(a, -1)
	}
	return a
}

673
// Find matches in slice b if b is non-nil, otherwise find matches in string s.
674
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
675
	var end int
676
	if b == nil {
677
		end = len(s)
678
	} else {
679
		end = len(b)
680 681 682
	}

	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
683
		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
684
		if len(matches) == 0 {
685
			break
686 687
		}

688
		accept := true
689 690 691 692 693
		if matches[1] == pos {
			// We've found an empty match.
			if matches[0] == prevMatchEnd {
				// We don't allow an empty match right
				// after a previous match, so ignore it.
694
				accept = false
695
			}
696
			var width int
697
			// TODO: use step()
698
			if b == nil {
699
				_, width = utf8.DecodeRuneInString(s[pos:end])
700
			} else {
701
				_, width = utf8.DecodeRune(b[pos:end])
702 703
			}
			if width > 0 {
704
				pos += width
705
			} else {
706
				pos = end + 1
707 708
			}
		} else {
709
			pos = matches[1]
710
		}
711
		prevMatchEnd = matches[1]
712 713

		if accept {
714
			deliver(re.pad(matches))
715
			i++
716 717 718 719
		}
	}
}

720 721 722
// Find returns a slice holding the text of the leftmost match in b of the regular expression.
// A return value of nil indicates no match.
func (re *Regexp) Find(b []byte) []byte {
723 724
	var dstCap [2]int
	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
725 726 727 728 729 730 731
	if a == nil {
		return nil
	}
	return b[a[0]:a[1]]
}

// FindIndex returns a two-element slice of integers defining the location of
732
// the leftmost match in b of the regular expression. The match itself is at
733 734 735
// b[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindIndex(b []byte) (loc []int) {
736
	a := re.doExecute(nil, b, "", 0, 2, nil)
737 738 739 740 741 742 743
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindString returns a string holding the text of the leftmost match in s of the regular
744
// expression. If there is no match, the return value is an empty string,
745
// but it will also be empty if the regular expression successfully matches
746
// an empty string. Use FindStringIndex or FindStringSubmatch if it is
747 748
// necessary to distinguish these cases.
func (re *Regexp) FindString(s string) string {
749 750
	var dstCap [2]int
	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
751 752 753 754 755 756 757
	if a == nil {
		return ""
	}
	return s[a[0]:a[1]]
}

// FindStringIndex returns a two-element slice of integers defining the
758
// location of the leftmost match in s of the regular expression. The match
759 760
// itself is at s[loc[0]:loc[1]].
// A return value of nil indicates no match.
761
func (re *Regexp) FindStringIndex(s string) (loc []int) {
762
	a := re.doExecute(nil, nil, s, 0, 2, nil)
763 764 765 766 767 768 769 770
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindReaderIndex returns a two-element slice of integers defining the
// location of the leftmost match of the regular expression in text read from
771
// the RuneReader. The match text was found in the input stream at
772 773
// byte offset loc[0] through loc[1]-1.
// A return value of nil indicates no match.
774
func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
775
	a := re.doExecute(r, nil, "", 0, 2, nil)
776 777 778 779 780 781 782 783 784 785 786 787
	if a == nil {
		return nil
	}
	return a[0:2]
}

// FindSubmatch returns a slice of slices holding the text of the leftmost
// match of the regular expression in b and the matches, if any, of its
// subexpressions, as defined by the 'Submatch' descriptions in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
788 789
	var dstCap [4]int
	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
790 791 792
	if a == nil {
		return nil
	}
793
	ret := make([][]byte, 1+re.numSubexp)
794
	for i := range ret {
795
		if 2*i < len(a) && a[2*i] >= 0 {
796 797 798 799 800 801
			ret[i] = b[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

802 803
// Expand appends template to dst and returns the result; during the
// append, Expand replaces variables in the template with corresponding
804
// matches drawn from src. The match slice should have been returned by
805
// FindSubmatchIndex.
806
//
807 808
// In the template, a variable is denoted by a substring of the form
// $name or ${name}, where name is a non-empty sequence of letters,
809
// digits, and underscores. A purely numeric name like $1 refers to
810
// the submatch with the corresponding index; other names refer to
811
// capturing parentheses named with the (?P<name>...) syntax. A
812
// reference to an out of range or unmatched index or a name that is not
813
// present in the regular expression is replaced with an empty slice.
814
//
815 816
// In the $name form, name is taken to be as long as possible: $1x is
// equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
817
//
818 819 820 821 822 823 824
// To insert a literal $ in the output, use $$ in the template.
func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
	return re.expand(dst, string(template), src, "", match)
}

// ExpandString is like Expand but the template and source are strings.
// It appends to and returns a byte slice in order to give the calling
Russ Cox's avatar
Russ Cox committed
825
// code control over allocation.
826 827 828 829 830 831
func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
	return re.expand(dst, template, nil, src, match)
}

func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
	for len(template) > 0 {
832
		i := strings.Index(template, "$")
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
		if i < 0 {
			break
		}
		dst = append(dst, template[:i]...)
		template = template[i:]
		if len(template) > 1 && template[1] == '$' {
			// Treat $$ as $.
			dst = append(dst, '$')
			template = template[2:]
			continue
		}
		name, num, rest, ok := extract(template)
		if !ok {
			// Malformed; treat $ as raw text.
			dst = append(dst, '$')
			template = template[1:]
			continue
		}
		template = rest
		if num >= 0 {
853
			if 2*num+1 < len(match) && match[2*num] >= 0 {
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
				if bsrc != nil {
					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
				} else {
					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
				}
			}
		} else {
			for i, namei := range re.subexpNames {
				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
					if bsrc != nil {
						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
					} else {
						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
					}
					break
				}
			}
		}
	}
	dst = append(dst, template...)
	return dst
}

// extract returns the name from a leading "$name" or "${name}" in str.
// If it is a number, extract returns num set to that number; otherwise num = -1.
func extract(str string) (name string, num int, rest string, ok bool) {
	if len(str) < 2 || str[0] != '$' {
		return
	}
	brace := false
	if str[1] == '{' {
		brace = true
		str = str[2:]
	} else {
		str = str[1:]
	}
	i := 0
	for i < len(str) {
		rune, size := utf8.DecodeRuneInString(str[i:])
		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
			break
		}
		i += size
	}
	if i == 0 {
		// empty name is not okay
		return
	}
	name = str[:i]
	if brace {
		if i >= len(str) || str[i] != '}' {
			// missing closing brace
			return
		}
		i++
	}

	// Parse number.
	num = 0
	for i := 0; i < len(name); i++ {
		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
			num = -1
			break
		}
		num = num*10 + int(name[i]) - '0'
	}
	// Disallow leading zeros.
	if name[0] == '0' && len(name) > 1 {
		num = -1
	}

	rest = str[i:]
	ok = true
	return
}

930 931 932 933 934 935
// FindSubmatchIndex returns a slice holding the index pairs identifying the
// leftmost match of the regular expression in b and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
936
	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
937 938 939 940 941 942 943 944
}

// FindStringSubmatch returns a slice of strings holding the text of the
// leftmost match of the regular expression in s and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatch(s string) []string {
945 946
	var dstCap [4]int
	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
947 948 949
	if a == nil {
		return nil
	}
950
	ret := make([]string, 1+re.numSubexp)
951
	for i := range ret {
952
		if 2*i < len(a) && a[2*i] >= 0 {
953 954 955 956 957 958 959 960 961 962 963 964
			ret[i] = s[a[2*i]:a[2*i+1]]
		}
	}
	return ret
}

// FindStringSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression in s and the
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
// 'Index' descriptions in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
965
	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
966 967 968 969 970
}

// FindReaderSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression of text read by
// the RuneReader, and the matches, if any, of its subexpressions, as defined
971
// by the 'Submatch' and 'Index' descriptions in the package comment. A
972 973
// return value of nil indicates no match.
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
974
	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
975 976
}

977
const startSize = 10 // The size at which to start a slice in the 'All' routines.
978

979 980 981 982 983 984 985 986
// FindAll is the 'All' version of Find; it returns a slice of all successive
// matches of the expression, as defined by the 'All' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
	if n < 0 {
		n = len(b) + 1
	}
987
	var result [][]byte
988
	re.allMatches("", b, n, func(match []int) {
989 990 991
		if result == nil {
			result = make([][]byte, 0, startSize)
		}
Russ Cox's avatar
Russ Cox committed
992
		result = append(result, b[match[0]:match[1]])
993
	})
Russ Cox's avatar
Russ Cox committed
994
	return result
995 996 997 998 999 1000 1001 1002 1003 1004
}

// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
1005
	var result [][]int
1006
	re.allMatches("", b, n, func(match []int) {
1007 1008 1009
		if result == nil {
			result = make([][]int, 0, startSize)
		}
Russ Cox's avatar
Russ Cox committed
1010
		result = append(result, match[0:2])
1011
	})
Russ Cox's avatar
Russ Cox committed
1012
	return result
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
}

// FindAllString is the 'All' version of FindString; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllString(s string, n int) []string {
	if n < 0 {
		n = len(s) + 1
	}
1023
	var result []string
1024
	re.allMatches(s, nil, n, func(match []int) {
1025 1026 1027
		if result == nil {
			result = make([]string, 0, startSize)
		}
Russ Cox's avatar
Russ Cox committed
1028
		result = append(result, s[match[0]:match[1]])
1029
	})
Russ Cox's avatar
Russ Cox committed
1030
	return result
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
}

// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
// slice of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
1041
	var result [][]int
1042
	re.allMatches(s, nil, n, func(match []int) {
1043 1044 1045
		if result == nil {
			result = make([][]int, 0, startSize)
		}
Russ Cox's avatar
Russ Cox committed
1046
		result = append(result, match[0:2])
1047
	})
Russ Cox's avatar
Russ Cox committed
1048
	return result
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
}

// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
// of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
	if n < 0 {
		n = len(b) + 1
	}
1059
	var result [][][]byte
1060
	re.allMatches("", b, n, func(match []int) {
1061 1062 1063
		if result == nil {
			result = make([][][]byte, 0, startSize)
		}
1064 1065 1066 1067 1068 1069
		slice := make([][]byte, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = b[match[2*j]:match[2*j+1]]
			}
		}
Russ Cox's avatar
Russ Cox committed
1070
		result = append(result, slice)
1071
	})
Russ Cox's avatar
Russ Cox committed
1072
	return result
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
// a slice of all successive matches of the expression, as defined by the
// 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
	if n < 0 {
		n = len(b) + 1
	}
1083
	var result [][]int
1084
	re.allMatches("", b, n, func(match []int) {
1085 1086 1087
		if result == nil {
			result = make([][]int, 0, startSize)
		}
Russ Cox's avatar
Russ Cox committed
1088
		result = append(result, match)
1089
	})
Russ Cox's avatar
Russ Cox committed
1090
	return result
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}

// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
// returns a slice of all successive matches of the expression, as defined by
// the 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
	if n < 0 {
		n = len(s) + 1
	}
1101
	var result [][]string
1102
	re.allMatches(s, nil, n, func(match []int) {
1103 1104 1105
		if result == nil {
			result = make([][]string, 0, startSize)
		}
1106 1107 1108 1109 1110 1111
		slice := make([]string, len(match)/2)
		for j := range slice {
			if match[2*j] >= 0 {
				slice[j] = s[match[2*j]:match[2*j+1]]
			}
		}
Russ Cox's avatar
Russ Cox committed
1112
		result = append(result, slice)
1113
	})
Russ Cox's avatar
Russ Cox committed
1114
	return result
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

// FindAllStringSubmatchIndex is the 'All' version of
// FindStringSubmatchIndex; it returns a slice of all successive matches of
// the expression, as defined by the 'All' description in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
	if n < 0 {
		n = len(s) + 1
	}
1126
	var result [][]int
1127
	re.allMatches(s, nil, n, func(match []int) {
1128 1129 1130
		if result == nil {
			result = make([][]int, 0, startSize)
		}
Russ Cox's avatar
Russ Cox committed
1131
		result = append(result, match)
1132
	})
Russ Cox's avatar
Russ Cox committed
1133
	return result
1134
}
Rick Arnold's avatar
Rick Arnold committed
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

// Split slices s into substrings separated by the expression and returns a slice of
// the substrings between those expression matches.
//
// The slice returned by this method consists of all the substrings of s
// not contained in the slice returned by FindAllString. When called on an expression
// that contains no metacharacters, it is equivalent to strings.SplitN.
//
// Example:
//   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
//   // s: ["", "b", "b", "c", "cadaaae"]
//
// The count determines the number of substrings to return:
//   n > 0: at most n substrings; the last substring will be the unsplit remainder.
//   n == 0: the result is nil (zero substrings)
//   n < 0: all substrings
func (re *Regexp) Split(s string, n int) []string {

	if n == 0 {
		return nil
	}

	if len(re.expr) > 0 && len(s) == 0 {
		return []string{""}
	}

	matches := re.FindAllStringIndex(s, n)
	strings := make([]string, 0, len(matches))

	beg := 0
	end := 0
	for _, match := range matches {
		if n > 0 && len(strings) >= n-1 {
			break
		}

		end = match[0]
		if match[1] != 0 {
			strings = append(strings, s[beg:end])
		}
		beg = match[1]
	}

	if end != len(s) {
		strings = append(strings, s[beg:])
	}

	return strings
}