gup.c 84.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
13
#include <linux/secretmem.h>
14

15
#include <linux/sched/signal.h>
16
#include <linux/rwsem.h>
17
#include <linux/hugetlb.h>
18 19 20
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
21

22
#include <asm/mmu_context.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32
/*
33
 * Return the folio with ref appropriately incremented,
34
 * or NULL if that failed.
35
 */
36
static inline struct folio *try_get_folio(struct page *page, int refs)
37
{
38
	struct folio *folio;
39

40
retry:
41 42
	folio = page_folio(page);
	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
43
		return NULL;
44
	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
45
		return NULL;
46 47

	/*
48 49 50 51
	 * At this point we have a stable reference to the folio; but it
	 * could be that between calling page_folio() and the refcount
	 * increment, the folio was split, in which case we'd end up
	 * holding a reference on a folio that has nothing to do with the page
52
	 * we were given anymore.
53 54
	 * So now that the folio is stable, recheck that the page still
	 * belongs to this folio.
55
	 */
56 57
	if (unlikely(page_folio(page) != folio)) {
		folio_put_refs(folio, refs);
58
		goto retry;
59 60
	}

61
	return folio;
62 63
}

64
/**
65
 * try_grab_folio() - Attempt to get or pin a folio.
66
 * @page:  pointer to page to be grabbed
67
 * @refs:  the value to (effectively) add to the folio's refcount
68 69
 * @flags: gup flags: these are the FOLL_* flag values.
 *
John Hubbard's avatar
John Hubbard committed
70
 * "grab" names in this file mean, "look at flags to decide whether to use
71
 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
John Hubbard's avatar
John Hubbard committed
72 73 74 75 76
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
77
 *    FOLL_GET: folio's refcount will be incremented by @refs.
78
 *
79 80
 *    FOLL_PIN on large folios: folio's refcount will be incremented by
 *    @refs, and its compound_pincount will be incremented by @refs.
81
 *
82
 *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
83
 *    @refs * GUP_PIN_COUNTING_BIAS.
John Hubbard's avatar
John Hubbard committed
84
 *
85 86 87 88
 * Return: The folio containing @page (with refcount appropriately
 * incremented) for success, or NULL upon failure. If neither FOLL_GET
 * nor FOLL_PIN was set, that's considered failure, and furthermore,
 * a likely bug in the caller, so a warning is also emitted.
John Hubbard's avatar
John Hubbard committed
89
 */
90
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
John Hubbard's avatar
John Hubbard committed
91 92
{
	if (flags & FOLL_GET)
93
		return try_get_folio(page, refs);
John Hubbard's avatar
John Hubbard committed
94
	else if (flags & FOLL_PIN) {
95 96
		struct folio *folio;

97
		/*
98 99 100
		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
		 * right zone, so fail and let the caller fall back to the slow
		 * path.
101
		 */
102 103
		if (unlikely((flags & FOLL_LONGTERM) &&
			     !is_pinnable_page(page)))
104 105
			return NULL;

106 107 108 109
		/*
		 * CAUTION: Don't use compound_head() on the page before this
		 * point, the result won't be stable.
		 */
110 111
		folio = try_get_folio(page, refs);
		if (!folio)
112 113
			return NULL;

114
		/*
115
		 * When pinning a large folio, use an exact count to track it.
116
		 *
117 118
		 * However, be sure to *also* increment the normal folio
		 * refcount field at least once, so that the folio really
119
		 * is pinned.  That's why the refcount from the earlier
120
		 * try_get_folio() is left intact.
121
		 */
122 123
		if (folio_test_large(folio))
			atomic_add(refs, folio_pincount_ptr(folio));
124
		else
125 126 127
			folio_ref_add(folio,
					refs * (GUP_PIN_COUNTING_BIAS - 1));
		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
128

129
		return folio;
John Hubbard's avatar
John Hubbard committed
130 131 132 133 134 135
	}

	WARN_ON_ONCE(1);
	return NULL;
}

136
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
137 138
{
	if (flags & FOLL_PIN) {
139 140 141
		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
		if (folio_test_large(folio))
			atomic_sub(refs, folio_pincount_ptr(folio));
142 143 144 145
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}

146
	folio_put_refs(folio, refs);
147 148
}

John Hubbard's avatar
John Hubbard committed
149 150
/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
151 152
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
John Hubbard's avatar
John Hubbard committed
153 154 155 156 157 158 159
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
160
 * time. Cases: please see the try_grab_folio() documentation, with
161
 * "refs=1".
John Hubbard's avatar
John Hubbard committed
162 163 164 165 166 167 168
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
169 170
	struct folio *folio = page_folio(page);

171
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
172 173
	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
		return false;
John Hubbard's avatar
John Hubbard committed
174

175
	if (flags & FOLL_GET)
176
		folio_ref_inc(folio);
177 178
	else if (flags & FOLL_PIN) {
		/*
179
		 * Similar to try_grab_folio(): be sure to *also*
180 181
		 * increment the normal page refcount field at least once,
		 * so that the page really is pinned.
182
		 */
183 184 185
		if (folio_test_large(folio)) {
			folio_ref_add(folio, 1);
			atomic_add(1, folio_pincount_ptr(folio));
186
		} else {
187
			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
188
		}
189

190
		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
191 192 193
	}

	return true;
John Hubbard's avatar
John Hubbard committed
194 195 196 197 198 199 200 201 202 203 204 205 206
}

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
207
	gup_put_folio(page_folio(page), 1, FOLL_PIN);
John Hubbard's avatar
John Hubbard committed
208 209 210
}
EXPORT_SYMBOL(unpin_user_page);

211
static inline struct folio *gup_folio_range_next(struct page *start,
212
		unsigned long npages, unsigned long i, unsigned int *ntails)
213
{
214 215
	struct page *next = nth_page(start, i);
	struct folio *folio = page_folio(next);
216 217
	unsigned int nr = 1;

218
	if (folio_test_large(folio))
219
		nr = min_t(unsigned int, npages - i,
220
			   folio_nr_pages(folio) - folio_page_idx(folio, next));
221 222

	*ntails = nr;
223
	return folio;
224 225
}

226
static inline struct folio *gup_folio_next(struct page **list,
227
		unsigned long npages, unsigned long i, unsigned int *ntails)
228
{
229
	struct folio *folio = page_folio(list[i]);
230 231 232
	unsigned int nr;

	for (nr = i + 1; nr < npages; nr++) {
233
		if (page_folio(list[nr]) != folio)
234 235 236 237
			break;
	}

	*ntails = nr - i;
238
	return folio;
239 240
}

241
/**
242
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
243
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
244
 * @npages: number of pages in the @pages array.
245
 * @make_dirty: whether to mark the pages dirty
246 247 248 249 250
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
251
 * compound page) dirty, if @make_dirty is true, and if the page was previously
252 253
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
254
 *
255
 * Please see the unpin_user_page() documentation for details.
256
 *
257 258 259
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
260
 * set_page_dirty_lock(), unpin_user_page().
261 262
 *
 */
263 264
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
265
{
266 267 268
	unsigned long i;
	struct folio *folio;
	unsigned int nr;
269 270

	if (!make_dirty) {
271
		unpin_user_pages(pages, npages);
272 273 274
		return;
	}

275 276
	for (i = 0; i < npages; i += nr) {
		folio = gup_folio_next(pages, npages, i, &nr);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
297 298 299 300 301 302
		if (!folio_test_dirty(folio)) {
			folio_lock(folio);
			folio_mark_dirty(folio);
			folio_unlock(folio);
		}
		gup_put_folio(folio, nr, FOLL_PIN);
303
	}
304
}
305
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/**
 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 * gup-pinned page range
 *
 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 * @npages: number of consecutive pages to release.
 * @make_dirty: whether to mark the pages dirty
 *
 * "gup-pinned page range" refers to a range of pages that has had one of the
 * pin_user_pages() variants called on that page.
 *
 * For the page ranges defined by [page .. page+npages], make that range (or
 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 * page range was previously listed as clean.
 *
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
 * set_page_dirty_lock(), unpin_user_page().
 *
 */
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
				      bool make_dirty)
{
331 332 333 334 335 336 337 338 339 340 341 342
	unsigned long i;
	struct folio *folio;
	unsigned int nr;

	for (i = 0; i < npages; i += nr) {
		folio = gup_folio_range_next(page, npages, i, &nr);
		if (make_dirty && !folio_test_dirty(folio)) {
			folio_lock(folio);
			folio_mark_dirty(folio);
			folio_unlock(folio);
		}
		gup_put_folio(folio, nr, FOLL_PIN);
343 344 345 346
	}
}
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);

347
/**
348
 * unpin_user_pages() - release an array of gup-pinned pages.
349 350 351
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
352
 * For each page in the @pages array, release the page using unpin_user_page().
353
 *
354
 * Please see the unpin_user_page() documentation for details.
355
 */
356
void unpin_user_pages(struct page **pages, unsigned long npages)
357
{
358 359 360
	unsigned long i;
	struct folio *folio;
	unsigned int nr;
361

362 363 364 365 366 367 368
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
369

370 371 372
	for (i = 0; i < npages; i += nr) {
		folio = gup_folio_next(pages, npages, i, &nr);
		gup_put_folio(folio, nr, FOLL_PIN);
373
	}
374
}
375
EXPORT_SYMBOL(unpin_user_pages);
376

377 378 379 380 381 382 383 384 385 386 387
/*
 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 * cache bouncing on large SMP machines for concurrent pinned gups.
 */
static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
{
	if (!test_bit(MMF_HAS_PINNED, mm_flags))
		set_bit(MMF_HAS_PINNED, mm_flags);
}

388
#ifdef CONFIG_MMU
389 390
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
391
{
392 393 394 395 396 397 398 399
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
400 401
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
402 403 404
		return ERR_PTR(-EFAULT);
	return NULL;
}
405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

426
/*
427 428
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
429 430 431
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
432 433
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
434 435
}

436
static struct page *follow_page_pte(struct vm_area_struct *vma,
437 438
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
439 440 441 442 443
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
444
	int ret;
445

446 447 448 449
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
450
retry:
451
	if (unlikely(pmd_bad(*pmd)))
452
		return no_page_table(vma, flags);
453 454 455 456 457 458 459 460 461 462 463 464

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
465
		if (pte_none(pte))
466 467 468 469 470 471
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
472
		goto retry;
473
	}
474
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
475
		goto no_page;
476
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
477 478 479
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
480 481

	page = vm_normal_page(vma, address, pte);
John Hubbard's avatar
John Hubbard committed
482
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
483
		/*
John Hubbard's avatar
John Hubbard committed
484 485 486
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
487
		 */
488 489
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
490 491 492 493
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
494 495 496 497 498 499 500 501 502 503 504 505 506
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
507 508
	}

John Hubbard's avatar
John Hubbard committed
509 510 511 512
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
513
	}
514 515 516 517 518 519 520 521 522 523 524 525 526
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
527 528 529 530 531 532 533 534 535 536 537
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
538
out:
539 540 541 542 543
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
544 545 546 547
		return NULL;
	return no_page_table(vma, flags);
}

548 549
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
550 551
				    unsigned int flags,
				    struct follow_page_context *ctx)
552
{
553
	pmd_t *pmd, pmdval;
554 555 556 557
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

558
	pmd = pmd_offset(pudp, address);
559 560 561 562 563 564
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
565
		return no_page_table(vma, flags);
566
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
567 568 569 570
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
571
	}
572
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
573
		page = follow_huge_pd(vma, address,
574
				      __hugepd(pmd_val(pmdval)), flags,
575 576 577 578 579
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
580
retry:
581
	if (!pmd_present(pmdval)) {
582 583 584 585 586 587 588
		/*
		 * Should never reach here, if thp migration is not supported;
		 * Otherwise, it must be a thp migration entry.
		 */
		VM_BUG_ON(!thp_migration_supported() ||
				  !is_pmd_migration_entry(pmdval));

589 590
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
591 592

		pmd_migration_entry_wait(mm, pmd);
593 594 595
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
596
		 * mmap_lock is held in read mode
597 598 599
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
600 601
		goto retry;
	}
602
	if (pmd_devmap(pmdval)) {
603
		ptl = pmd_lock(mm, pmd);
604
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
605 606 607 608
		spin_unlock(ptl);
		if (page)
			return page;
	}
609
	if (likely(!pmd_trans_huge(pmdval)))
610
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
611

612
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
613 614
		return no_page_table(vma, flags);

615
retry_locked:
616
	ptl = pmd_lock(mm, pmd);
617 618 619 620
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
621 622 623 624 625 626 627
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
628 629
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
630
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
631
	}
Yang Shi's avatar
Yang Shi committed
632
	if (flags & FOLL_SPLIT_PMD) {
633 634 635 636 637
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
638
			split_huge_pmd(vma, pmd, address);
639 640
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
Yang Shi's avatar
Yang Shi committed
641
		} else {
Song Liu's avatar
Song Liu committed
642 643 644
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
645 646 647
		}

		return ret ? ERR_PTR(ret) :
648
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
649
	}
650 651
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
652
	ctx->page_mask = HPAGE_PMD_NR - 1;
653
	return page;
654 655
}

656 657
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
658 659
				    unsigned int flags,
				    struct follow_page_context *ctx)
660 661 662 663 664 665 666 667 668
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
669
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
670 671 672 673 674
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
675 676 677 678 679 680 681 682
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
683 684
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
685
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
686 687 688 689 690 691 692
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

693
	return follow_pmd_mask(vma, address, pud, flags, ctx);
694 695 696 697
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
698 699
				    unsigned int flags,
				    struct follow_page_context *ctx)
700 701
{
	p4d_t *p4d;
702
	struct page *page;
703 704 705 706 707 708 709 710

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

711 712 713 714 715 716 717 718
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
719
	return follow_pud_mask(vma, address, p4d, flags, ctx);
720 721 722 723 724 725 726
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
727 728
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
729 730 731
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
732 733 734 735 736 737
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
738 739 740
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
741
static struct page *follow_page_mask(struct vm_area_struct *vma,
742
			      unsigned long address, unsigned int flags,
743
			      struct follow_page_context *ctx)
744 745 746 747 748
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

749
	ctx->page_mask = 0;
750 751 752 753

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
John Hubbard's avatar
John Hubbard committed
754
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
755 756 757 758 759 760 761 762
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

763 764 765 766 767 768
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
769 770 771 772 773 774 775 776
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
777

778 779 780 781 782 783 784 785 786
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

787 788 789
	if (vma_is_secretmem(vma))
		return NULL;

790 791 792 793
	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
794 795
}

796 797 798 799 800
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
801
	p4d_t *p4d;
802 803 804 805 806 807 808 809 810 811 812 813
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
814 815
	if (pgd_none(*pgd))
		return -EFAULT;
816
	p4d = p4d_offset(pgd, address);
817 818
	if (p4d_none(*p4d))
		return -EFAULT;
819
	pud = pud_offset(p4d, address);
820 821
	if (pud_none(*pud))
		return -EFAULT;
822
	pmd = pmd_offset(pud, address);
823
	if (!pmd_present(*pmd))
824 825 826 827 828 829 830 831 832 833 834 835 836 837
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
838
	if (unlikely(!try_grab_page(*page, gup_flags))) {
839 840 841
		ret = -ENOMEM;
		goto unmap;
	}
842 843 844 845 846 847 848
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

849
/*
850 851
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
852
 * is, *@locked will be set to 0 and -EBUSY returned.
853
 */
854
static int faultin_page(struct vm_area_struct *vma,
855
		unsigned long address, unsigned int *flags, int *locked)
856 857
{
	unsigned int fault_flags = 0;
858
	vm_fault_t ret;
859

860 861
	if (*flags & FOLL_NOFAULT)
		return -EFAULT;
862 863
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
864 865
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
866
	if (locked)
867
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
868 869
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
870
	if (*flags & FOLL_TRIED) {
871 872 873 874
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
875 876
		fault_flags |= FAULT_FLAG_TRIED;
	}
877

878
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
879
	if (ret & VM_FAULT_ERROR) {
880 881 882 883
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
884 885 886 887
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
888 889
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
890 891 892 893 894 895 896 897 898 899 900 901 902
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
903
		*flags |= FOLL_COW;
904 905 906
	return 0;
}

907 908 909
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
910 911
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
912 913 914 915

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

916 917 918
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

919 920 921
	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
		return -EOPNOTSUPP;

922 923 924
	if (vma_is_secretmem(vma))
		return -EFAULT;

925
	if (write) {
926 927 928 929 930 931 932 933 934 935 936 937
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
938
			if (!is_cow_mapping(vm_flags))
939 940 941 942 943 944 945 946 947 948 949 950
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
951 952 953 954 955
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
956
		return -EFAULT;
957 958 959
	return 0;
}

960 961 962 963 964 965 966 967 968 969 970
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
971
 * @locked:     whether we're still with the mmap_lock held
972
 *
973 974 975 976 977 978 979
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
980
 * -- 0 return value is possible when the fault would need to be retried.
981 982 983
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
984
 * @vmas are valid only as long as mmap_lock is held.
985
 *
986
 * Must be called with mmap_lock held.  It may be released.  See below.
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1007
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1008 1009
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1010
 *
1011
 * A caller using such a combination of @locked and @gup_flags
1012
 * must therefore hold the mmap_lock for reading only, and recognize
1013 1014
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1015 1016 1017 1018 1019
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1020
static long __get_user_pages(struct mm_struct *mm,
1021 1022
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1023
		struct vm_area_struct **vmas, int *locked)
1024
{
1025
	long ret = 0, i = 0;
1026
	struct vm_area_struct *vma = NULL;
1027
	struct follow_page_context ctx = { NULL };
1028 1029 1030 1031

	if (!nr_pages)
		return 0;

1032 1033
	start = untagged_addr(start);

1034
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1057
					goto out;
1058
				ctx.page_mask = 0;
1059 1060
				goto next_page;
			}
1061

1062
			if (!vma) {
1063 1064 1065
				ret = -EFAULT;
				goto out;
			}
1066 1067 1068 1069
			ret = check_vma_flags(vma, gup_flags);
			if (ret)
				goto out;

1070 1071 1072
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1073
						gup_flags, locked);
1074 1075 1076
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1077
					 * and we've lost mmap_lock.
1078 1079 1080 1081 1082
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					goto out;
				}
1083
				continue;
1084
			}
1085 1086 1087 1088 1089 1090
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1091
		if (fatal_signal_pending(current)) {
1092
			ret = -EINTR;
1093 1094
			goto out;
		}
1095
		cond_resched();
1096 1097

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1098
		if (!page) {
1099
			ret = faultin_page(vma, start, &foll_flags, locked);
1100 1101 1102
			switch (ret) {
			case 0:
				goto retry;
1103 1104
			case -EBUSY:
				ret = 0;
Joe Perches's avatar
Joe Perches committed
1105
				fallthrough;
1106 1107 1108
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1109
				goto out;
1110
			}
1111
			BUG();
1112 1113 1114
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
1115 1116 1117
			 * struct page. If the caller expects **pages to be
			 * filled in, bail out now, because that can't be done
			 * for this page.
1118
			 */
1119 1120 1121 1122 1123
			if (pages) {
				ret = PTR_ERR(page);
				goto out;
			}

1124 1125
			goto next_page;
		} else if (IS_ERR(page)) {
1126 1127
			ret = PTR_ERR(page);
			goto out;
1128
		}
1129 1130 1131 1132
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1133
			ctx.page_mask = 0;
1134 1135
		}
next_page:
1136 1137
		if (vmas) {
			vmas[i] = vma;
1138
			ctx.page_mask = 0;
1139
		}
1140
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1141 1142 1143 1144 1145
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1146
	} while (nr_pages);
1147 1148 1149 1150
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1151 1152
}

1153 1154
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1155
{
1156 1157
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1158
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1159 1160 1161 1162

	if (!(vm_flags & vma->vm_flags))
		return false;

1163 1164
	/*
	 * The architecture might have a hardware protection
1165
	 * mechanism other than read/write that can deny access.
1166 1167 1168
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1169
	 */
1170
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1171 1172
		return false;

1173 1174 1175
	return true;
}

1176
/**
1177 1178 1179 1180
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1181
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1182 1183
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1195
 * get_user_pages() only guarantees to update these in the struct page.
1196 1197 1198 1199 1200 1201
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1202 1203
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1204
 */
1205
int fixup_user_fault(struct mm_struct *mm,
1206 1207
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1208 1209
{
	struct vm_area_struct *vma;
1210
	vm_fault_t ret;
1211

1212 1213
	address = untagged_addr(address);

1214
	if (unlocked)
1215
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1216

1217
retry:
1218 1219 1220 1221
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1222
	if (!vma_permits_fault(vma, fault_flags))
1223 1224
		return -EFAULT;

1225 1226 1227 1228
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1229
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1230
	if (ret & VM_FAULT_ERROR) {
1231 1232 1233 1234
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1235 1236
		BUG();
	}
1237 1238

	if (ret & VM_FAULT_RETRY) {
1239
		mmap_read_lock(mm);
1240 1241 1242
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1243 1244
	}

1245 1246
	return 0;
}
1247
EXPORT_SYMBOL_GPL(fixup_user_fault);
1248

1249 1250 1251 1252
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1253
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1254 1255 1256 1257
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1258
						int *locked,
1259
						unsigned int flags)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

1271 1272
	if (flags & FOLL_PIN)
		mm_set_has_pinned_flag(&mm->flags);
Peter Xu's avatar
Peter Xu committed
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1284 1285 1286 1287 1288
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1289
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1308 1309 1310 1311
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1312 1313 1314 1315
			if (!pages_done)
				pages_done = ret;
			break;
		}
1316 1317 1318 1319 1320 1321
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1322
		start += ret << PAGE_SHIFT;
1323
		lock_dropped = true;
1324

1325
retry:
1326 1327
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1328 1329 1330 1331
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1332
		 */
1333

1334 1335 1336
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1337
			break;
1338
		}
1339

1340
		ret = mmap_read_lock_killable(mm);
1341 1342 1343 1344 1345 1346
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1347

1348
		*locked = 1;
1349
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1350 1351 1352 1353 1354 1355
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1366 1367
		if (likely(pages))
			pages++;
1368 1369
		start += PAGE_SIZE;
	}
1370
	if (lock_dropped && *locked) {
1371 1372 1373 1374
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1375
		mmap_read_unlock(mm);
1376 1377 1378 1379 1380
		*locked = 0;
	}
	return pages_done;
}

1381 1382 1383 1384 1385
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1386
 * @locked: whether the mmap_lock is still held
1387 1388 1389
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1390 1391
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1392
 *
1393
 * vma->vm_mm->mmap_lock must be held.
1394
 *
1395
 * If @locked is NULL, it may be held for read or write and will
1396 1397
 * be unperturbed.
 *
1398 1399
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1400 1401
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1402
		unsigned long start, unsigned long end, int *locked)
1403 1404 1405 1406
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;
1407
	long ret;
1408

1409 1410
	VM_BUG_ON(!PAGE_ALIGNED(start));
	VM_BUG_ON(!PAGE_ALIGNED(end));
1411 1412
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1413
	mmap_assert_locked(mm);
1414

1415 1416 1417 1418
	/*
	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
	 * faultin_page() to break COW, so it has no work to do here.
	 */
1419
	if (vma->vm_flags & VM_LOCKONFAULT)
1420 1421 1422
		return nr_pages;

	gup_flags = FOLL_TOUCH;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1435
	if (vma_is_accessible(vma))
1436 1437 1438 1439 1440 1441
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1442
	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1443
				NULL, NULL, locked);
1444 1445
	lru_add_drain();
	return ret;
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/*
 * faultin_vma_page_range() - populate (prefault) page tables inside the
 *			      given VMA range readable/writable
 *
 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
 *
 * @vma: target vma
 * @start: start address
 * @end: end address
 * @write: whether to prefault readable or writable
 * @locked: whether the mmap_lock is still held
 *
 * Returns either number of processed pages in the vma, or a negative error
 * code on error (see __get_user_pages()).
 *
 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
 * covered by the VMA.
 *
 * If @locked is NULL, it may be held for read or write and will be unperturbed.
 *
 * If @locked is non-NULL, it must held for read only and may be released.  If
 * it's released, *@locked will be set to 0.
 */
long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end, bool write, int *locked)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;
1477
	long ret;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	VM_BUG_ON(!PAGE_ALIGNED(start));
	VM_BUG_ON(!PAGE_ALIGNED(end));
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end > vma->vm_end, vma);
	mmap_assert_locked(mm);

	/*
	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
	 *	       difference with !FOLL_FORCE, because the page is writable
	 *	       in the page table.
	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
	 *		  a poisoned page.
	 * !FOLL_FORCE: Require proper access permissions.
	 */
1494
	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1495 1496 1497 1498
	if (write)
		gup_flags |= FOLL_WRITE;

	/*
1499 1500
	 * We want to report -EINVAL instead of -EFAULT for any permission
	 * problems or incompatible mappings.
1501
	 */
1502 1503 1504
	if (check_vma_flags(vma, gup_flags))
		return -EINVAL;

1505
	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1506
				NULL, NULL, locked);
1507 1508
	lru_add_drain();
	return ret;
1509 1510
}

1511 1512 1513 1514 1515
/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1516
 * mmap_lock must not be held.
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1535
			mmap_read_lock(mm);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1567
		mmap_read_unlock(mm);
1568 1569
	return ret;	/* 0 or negative error code */
}
1570
#else /* CONFIG_MMU */
1571
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1572 1573 1574 1575 1576 1577
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
1578
	long i;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
/**
 * fault_in_writeable - fault in userspace address range for writing
 * @uaddr: start of address range
 * @size: size of address range
 *
 * Returns the number of bytes not faulted in (like copy_to_user() and
 * copy_from_user()).
 */
size_t fault_in_writeable(char __user *uaddr, size_t size)
{
	char __user *start = uaddr, *end;

	if (unlikely(size == 0))
		return 0;
1629 1630
	if (!user_write_access_begin(uaddr, size))
		return size;
1631
	if (!PAGE_ALIGNED(uaddr)) {
1632
		unsafe_put_user(0, uaddr, out);
1633 1634 1635 1636 1637 1638
		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
	}
	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
	if (unlikely(end < start))
		end = NULL;
	while (uaddr != end) {
1639
		unsafe_put_user(0, uaddr, out);
1640 1641 1642 1643
		uaddr += PAGE_SIZE;
	}

out:
1644
	user_write_access_end();
1645 1646 1647 1648 1649 1650
	if (size > uaddr - start)
		return size - (uaddr - start);
	return 0;
}
EXPORT_SYMBOL(fault_in_writeable);

1651 1652 1653 1654 1655
/*
 * fault_in_safe_writeable - fault in an address range for writing
 * @uaddr: start of address range
 * @size: length of address range
 *
1656 1657 1658
 * Faults in an address range for writing.  This is primarily useful when we
 * already know that some or all of the pages in the address range aren't in
 * memory.
1659
 *
1660
 * Unlike fault_in_writeable(), this function is non-destructive.
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
 *
 * Note that we don't pin or otherwise hold the pages referenced that we fault
 * in.  There's no guarantee that they'll stay in memory for any duration of
 * time.
 *
 * Returns the number of bytes not faulted in, like copy_to_user() and
 * copy_from_user().
 */
size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
{
1671
	unsigned long start = (unsigned long)uaddr, end;
1672
	struct mm_struct *mm = current->mm;
1673
	bool unlocked = false;
1674

1675 1676
	if (unlikely(size == 0))
		return 0;
1677
	end = PAGE_ALIGN(start + size);
1678
	if (end < start)
1679 1680
		end = 0;

1681 1682 1683
	mmap_read_lock(mm);
	do {
		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1684
			break;
1685 1686 1687 1688 1689 1690 1691
		start = (start + PAGE_SIZE) & PAGE_MASK;
	} while (start != end);
	mmap_read_unlock(mm);

	if (size > (unsigned long)uaddr - start)
		return size - ((unsigned long)uaddr - start);
	return 0;
1692 1693 1694
}
EXPORT_SYMBOL(fault_in_safe_writeable);

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/**
 * fault_in_readable - fault in userspace address range for reading
 * @uaddr: start of user address range
 * @size: size of user address range
 *
 * Returns the number of bytes not faulted in (like copy_to_user() and
 * copy_from_user()).
 */
size_t fault_in_readable(const char __user *uaddr, size_t size)
{
	const char __user *start = uaddr, *end;
	volatile char c;

	if (unlikely(size == 0))
		return 0;
1710 1711
	if (!user_read_access_begin(uaddr, size))
		return size;
1712
	if (!PAGE_ALIGNED(uaddr)) {
1713
		unsafe_get_user(c, uaddr, out);
1714 1715 1716 1717 1718 1719
		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
	}
	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
	if (unlikely(end < start))
		end = NULL;
	while (uaddr != end) {
1720
		unsafe_get_user(c, uaddr, out);
1721 1722 1723 1724
		uaddr += PAGE_SIZE;
	}

out:
1725
	user_read_access_end();
1726 1727 1728 1729 1730 1731 1732
	(void)c;
	if (size > uaddr - start)
		return size - (uaddr - start);
	return 0;
}
EXPORT_SYMBOL(fault_in_readable);

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
Ingo Molnar's avatar
Ingo Molnar committed
1743
 * allowing a hole to be left in the corefile to save disk space.
1744
 *
1745
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1746 1747 1748 1749
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1750
	struct mm_struct *mm = current->mm;
1751
	struct page *page;
1752 1753
	int locked = 1;
	int ret;
1754

1755
	if (mmap_read_lock_killable(mm))
1756
		return NULL;
1757 1758 1759 1760 1761
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
	return (ret == 1) ? page : NULL;
1762 1763 1764
}
#endif /* CONFIG_ELF_CORE */

1765
#ifdef CONFIG_MIGRATION
1766 1767 1768 1769 1770 1771 1772
/*
 * Check whether all pages are pinnable, if so return number of pages.  If some
 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
 * pages were migrated, or if some pages were not successfully isolated.
 * Return negative error if migration fails.
 */
static long check_and_migrate_movable_pages(unsigned long nr_pages,
1773 1774
					    struct page **pages,
					    unsigned int gup_flags)
1775
{
1776
	unsigned long isolation_error_count = 0, i;
1777
	struct folio *prev_folio = NULL;
1778
	LIST_HEAD(movable_page_list);
1779 1780
	bool drain_allow = true;
	int ret = 0;
1781

1782
	for (i = 0; i < nr_pages; i++) {
1783
		struct folio *folio = page_folio(pages[i]);
1784

1785
		if (folio == prev_folio)
1786
			continue;
1787
		prev_folio = folio;
1788

1789
		if (folio_is_pinnable(folio))
1790 1791
			continue;

1792
		/*
1793
		 * Try to move out any movable page before pinning the range.
1794
		 */
1795 1796 1797
		if (folio_test_hugetlb(folio)) {
			if (!isolate_huge_page(&folio->page,
						&movable_page_list))
1798 1799 1800
				isolation_error_count++;
			continue;
		}
1801

1802
		if (!folio_test_lru(folio) && drain_allow) {
1803 1804 1805 1806
			lru_add_drain_all();
			drain_allow = false;
		}

1807
		if (folio_isolate_lru(folio)) {
1808 1809
			isolation_error_count++;
			continue;
1810
		}
1811 1812 1813 1814
		list_add_tail(&folio->lru, &movable_page_list);
		node_stat_mod_folio(folio,
				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
				    folio_nr_pages(folio));
1815 1816
	}

1817 1818 1819
	if (!list_empty(&movable_page_list) || isolation_error_count)
		goto unpin_pages;

1820 1821 1822 1823
	/*
	 * If list is empty, and no isolation errors, means that all pages are
	 * in the correct zone.
	 */
1824
	return nr_pages;
1825

1826
unpin_pages:
1827 1828 1829 1830 1831 1832
	if (gup_flags & FOLL_PIN) {
		unpin_user_pages(pages, nr_pages);
	} else {
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);
	}
1833

1834
	if (!list_empty(&movable_page_list)) {
1835 1836 1837 1838 1839
		struct migration_target_control mtc = {
			.nid = NUMA_NO_NODE,
			.gfp_mask = GFP_USER | __GFP_NOWARN,
		};

1840
		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1841
				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1842
				    MR_LONGTERM_PIN, NULL);
1843 1844
		if (ret > 0) /* number of pages not migrated */
			ret = -ENOMEM;
1845 1846
	}

1847 1848 1849
	if (ret && !list_empty(&movable_page_list))
		putback_movable_pages(&movable_page_list);
	return ret;
1850 1851
}
#else
1852
static long check_and_migrate_movable_pages(unsigned long nr_pages,
1853 1854
					    struct page **pages,
					    unsigned int gup_flags)
1855 1856 1857
{
	return nr_pages;
}
1858
#endif /* CONFIG_MIGRATION */
1859

1860
/*
1861 1862
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1863
 */
1864
static long __gup_longterm_locked(struct mm_struct *mm,
1865 1866 1867 1868 1869
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1870
{
1871
	unsigned int flags;
1872
	long rc;
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (!(gup_flags & FOLL_LONGTERM))
		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
					       NULL, gup_flags);
	flags = memalloc_pin_save();
	do {
		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
					     NULL, gup_flags);
		if (rc <= 0)
			break;
		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
	} while (!rc);
	memalloc_pin_restore(flags);
1886 1887 1888

	return rc;
}
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

1909
#ifdef CONFIG_MMU
1910
static long __get_user_pages_remote(struct mm_struct *mm,
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1929
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1930 1931 1932 1933
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1934
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1935 1936 1937 1938
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1939
/**
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1964
 * @vmas are valid only as long as mmap_lock is held.
1965
 *
1966
 * Must be called with mmap_lock held for read or write.
1967
 *
1968 1969
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1970 1971 1972 1973
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1974
 * get_user_pages_remote returns, and there may even be a completely different
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1986 1987 1988 1989 1990
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1991 1992 1993
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1994
 * get_user_pages_remote should be phased out in favor of
1995
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1996
 * should use get_user_pages_remote because it cannot pass
1997 1998
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
1999
long get_user_pages_remote(struct mm_struct *mm,
2000 2001 2002 2003
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
2004
	if (!is_valid_gup_flags(gup_flags))
2005 2006
		return -EINVAL;

2007
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2008
				       pages, vmas, locked);
2009 2010 2011
}
EXPORT_SYMBOL(get_user_pages_remote);

2012
#else /* CONFIG_MMU */
2013
long get_user_pages_remote(struct mm_struct *mm,
2014 2015 2016 2017 2018 2019
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
John Hubbard's avatar
John Hubbard committed
2020

2021
static long __get_user_pages_remote(struct mm_struct *mm,
John Hubbard's avatar
John Hubbard committed
2022 2023 2024 2025 2026 2027
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
2028 2029
#endif /* !CONFIG_MMU */

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
2041 2042 2043 2044
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
2045 2046 2047 2048 2049
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
2050
	if (!is_valid_gup_flags(gup_flags))
2051 2052
		return -EINVAL;

2053
	return __gup_longterm_locked(current->mm, start, nr_pages,
2054 2055 2056
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
2057

2058
/*
2059
 * get_user_pages_unlocked() is suitable to replace the form:
2060
 *
2061
 *      mmap_read_lock(mm);
2062
 *      get_user_pages(mm, ..., pages, NULL);
2063
 *      mmap_read_unlock(mm);
2064 2065 2066
 *
 *  with:
 *
2067
 *      get_user_pages_unlocked(mm, ..., pages);
2068 2069 2070 2071
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
2072
 */
2073 2074
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
2075 2076
{
	struct mm_struct *mm = current->mm;
2077 2078
	int locked = 1;
	long ret;
2079

2080 2081 2082 2083 2084 2085 2086 2087
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2088

2089
	mmap_read_lock(mm);
2090
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2091
				      &locked, gup_flags | FOLL_TOUCH);
2092
	if (locked)
2093
		mmap_read_unlock(mm);
2094
	return ret;
2095
}
2096
EXPORT_SYMBOL(get_user_pages_unlocked);
2097 2098

/*
2099
 * Fast GUP
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2120
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2121
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2122 2123 2124 2125 2126 2127 2128 2129 2130
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2131
#ifdef CONFIG_HAVE_FAST_GUP
John Hubbard's avatar
John Hubbard committed
2132

2133
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2134
					    unsigned int flags,
2135
					    struct page **pages)
2136 2137 2138 2139 2140
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
John Hubbard's avatar
John Hubbard committed
2141 2142 2143 2144
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2145 2146 2147
	}
}

2148
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2149
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2150
			 unsigned int flags, struct page **pages, int *nr)
2151
{
2152 2153
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2154 2155 2156 2157
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2158
		pte_t pte = ptep_get_lockless(ptep);
2159 2160
		struct page *page;
		struct folio *folio;
2161 2162 2163

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2164
		 * path using the pte_protnone check.
2165
		 */
2166 2167 2168
		if (pte_protnone(pte))
			goto pte_unmap;

2169
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2170 2171
			goto pte_unmap;

2172
		if (pte_devmap(pte)) {
2173 2174 2175
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2176 2177
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2178
				undo_dev_pagemap(nr, nr_start, flags, pages);
2179 2180 2181
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2182 2183 2184 2185 2186
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

2187 2188
		folio = try_grab_folio(page, 1, flags);
		if (!folio)
2189 2190
			goto pte_unmap;

2191
		if (unlikely(page_is_secretmem(page))) {
2192
			gup_put_folio(folio, 1, flags);
2193 2194 2195
			goto pte_unmap;
		}

2196
		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2197
			gup_put_folio(folio, 1, flags);
2198 2199 2200
			goto pte_unmap;
		}

2201 2202 2203 2204 2205 2206 2207 2208 2209
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
2210
				gup_put_folio(folio, 1, flags);
2211 2212 2213
				goto pte_unmap;
			}
		}
2214
		folio_set_referenced(folio);
2215 2216 2217 2218 2219 2220 2221
		pages[*nr] = page;
		(*nr)++;
	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2222 2223
	if (pgmap)
		put_dev_pagemap(pgmap);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2235
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2236 2237 2238
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2239
			 unsigned int flags, struct page **pages, int *nr)
2240 2241 2242
{
	return 0;
}
2243
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2244

2245
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2246
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2247 2248
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2249 2250 2251 2252 2253 2254 2255 2256 2257
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2258
			undo_dev_pagemap(nr, nr_start, flags, pages);
2259
			break;
2260 2261 2262
		}
		SetPageReferenced(page);
		pages[*nr] = page;
John Hubbard's avatar
John Hubbard committed
2263 2264
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
2265
			break;
John Hubbard's avatar
John Hubbard committed
2266
		}
2267 2268 2269
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2270

2271
	put_dev_pagemap(pgmap);
2272
	return addr == end;
2273 2274
}

2275
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2276 2277
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2278 2279
{
	unsigned long fault_pfn;
2280 2281 2282
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2283
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284
		return 0;
2285

2286
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2287
		undo_dev_pagemap(nr, nr_start, flags, pages);
2288 2289 2290
		return 0;
	}
	return 1;
2291 2292
}

2293
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2294 2295
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2296 2297
{
	unsigned long fault_pfn;
2298 2299 2300
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2301
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2302
		return 0;
2303

2304
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2305
		undo_dev_pagemap(nr, nr_start, flags, pages);
2306 2307 2308
		return 0;
	}
	return 1;
2309 2310
}
#else
2311
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2312 2313
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2314 2315 2316 2317 2318
{
	BUILD_BUG();
	return 0;
}

2319
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2320 2321
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2322 2323 2324 2325 2326 2327
{
	BUILD_BUG();
	return 0;
}
#endif

2328 2329 2330 2331 2332
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

2333 2334
	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
		pages[nr] = nth_page(page, nr);
2335 2336 2337 2338

	return nr;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2348 2349
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2350 2351
{
	unsigned long pte_end;
2352 2353
	struct page *page;
	struct folio *folio;
2354 2355 2356 2357 2358 2359 2360
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2361
	pte = huge_ptep_get(ptep);
2362

2363
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2364 2365 2366 2367 2368
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

2369
	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2370
	refs = record_subpages(page, addr, end, pages + *nr);
2371

2372 2373
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2374 2375 2376
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2377
		gup_put_folio(folio, refs, flags);
2378 2379 2380
		return 0;
	}

2381
	*nr += refs;
2382
	folio_set_referenced(folio);
2383 2384 2385 2386
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387
		unsigned int pdshift, unsigned long end, unsigned int flags,
2388 2389 2390 2391 2392 2393 2394 2395 2396
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2397
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2398 2399 2400 2401 2402 2403 2404
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2405
		unsigned int pdshift, unsigned long end, unsigned int flags,
2406 2407 2408 2409 2410 2411
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2412
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2413 2414
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2415
{
2416 2417
	struct page *page;
	struct folio *folio;
2418 2419
	int refs;

2420
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2421 2422
		return 0;

2423 2424 2425
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2426 2427
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2428
	}
2429

2430
	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2431
	refs = record_subpages(page, addr, end, pages + *nr);
2432

2433 2434
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2435 2436 2437
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2438
		gup_put_folio(folio, refs, flags);
2439 2440 2441
		return 0;
	}

2442
	*nr += refs;
2443
	folio_set_referenced(folio);
2444 2445 2446 2447
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2448 2449
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2450
{
2451 2452
	struct page *page;
	struct folio *folio;
2453 2454
	int refs;

2455
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2456 2457
		return 0;

2458 2459 2460
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2461 2462
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2463
	}
2464

2465
	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2466
	refs = record_subpages(page, addr, end, pages + *nr);
2467

2468 2469
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2470 2471 2472
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2473
		gup_put_folio(folio, refs, flags);
2474 2475 2476
		return 0;
	}

2477
	*nr += refs;
2478
	folio_set_referenced(folio);
2479 2480 2481
	return 1;
}

2482
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2483
			unsigned long end, unsigned int flags,
2484 2485 2486
			struct page **pages, int *nr)
{
	int refs;
2487 2488
	struct page *page;
	struct folio *folio;
2489

2490
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2491 2492
		return 0;

2493
	BUILD_BUG_ON(pgd_devmap(orig));
2494

2495
	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2496
	refs = record_subpages(page, addr, end, pages + *nr);
2497

2498 2499
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2500 2501 2502
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2503
		gup_put_folio(folio, refs, flags);
2504 2505 2506
		return 0;
	}

2507
	*nr += refs;
2508
	folio_set_referenced(folio);
2509 2510 2511
	return 1;
}

2512
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2513
		unsigned int flags, struct page **pages, int *nr)
2514 2515 2516 2517
{
	unsigned long next;
	pmd_t *pmdp;

2518
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2519
	do {
2520
		pmd_t pmd = READ_ONCE(*pmdp);
2521 2522

		next = pmd_addr_end(addr, end);
2523
		if (!pmd_present(pmd))
2524 2525
			return 0;

Yu Zhao's avatar
Yu Zhao committed
2526 2527
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2528 2529 2530 2531 2532
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2533
			if (pmd_protnone(pmd))
2534 2535
				return 0;

2536
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2537 2538 2539
				pages, nr))
				return 0;

2540 2541 2542 2543 2544 2545
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2546
					 PMD_SHIFT, next, flags, pages, nr))
2547
				return 0;
2548
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2549
			return 0;
2550 2551 2552 2553 2554
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2555
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2556
			 unsigned int flags, struct page **pages, int *nr)
2557 2558 2559 2560
{
	unsigned long next;
	pud_t *pudp;

2561
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2562
	do {
2563
		pud_t pud = READ_ONCE(*pudp);
2564 2565

		next = pud_addr_end(addr, end);
Qiujun Huang's avatar
Qiujun Huang committed
2566
		if (unlikely(!pud_present(pud)))
2567
			return 0;
2568
		if (unlikely(pud_huge(pud))) {
2569
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2570 2571 2572 2573
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2574
					 PUD_SHIFT, next, flags, pages, nr))
2575
				return 0;
2576
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2577 2578 2579 2580 2581 2582
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2583
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2584
			 unsigned int flags, struct page **pages, int *nr)
2585 2586 2587 2588
{
	unsigned long next;
	p4d_t *p4dp;

2589
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2590 2591 2592 2593 2594 2595 2596 2597 2598
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2599
					 P4D_SHIFT, next, flags, pages, nr))
2600
				return 0;
2601
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2602 2603 2604 2605 2606 2607
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2608
static void gup_pgd_range(unsigned long addr, unsigned long end,
2609
		unsigned int flags, struct page **pages, int *nr)
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2622
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2623 2624 2625 2626
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2627
					 PGDIR_SHIFT, next, flags, pages, nr))
2628
				return;
2629
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2630 2631 2632
			return;
	} while (pgdp++, addr = next, addr != end);
}
2633 2634 2635 2636 2637 2638
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2639 2640 2641

#ifndef gup_fast_permitted
/*
2642
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2643 2644
 * we need to fall back to the slow version:
 */
2645
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2646
{
2647
	return true;
2648 2649 2650
}
#endif

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2661
		mmap_read_lock(current->mm);
2662
		ret = __gup_longterm_locked(current->mm,
2663 2664
					    start, nr_pages,
					    pages, NULL, gup_flags);
2665
		mmap_read_unlock(current->mm);
2666 2667 2668 2669 2670 2671 2672 2673
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2674 2675 2676 2677 2678 2679 2680
static unsigned long lockless_pages_from_mm(unsigned long start,
					    unsigned long end,
					    unsigned int gup_flags,
					    struct page **pages)
{
	unsigned long flags;
	int nr_pinned = 0;
2681
	unsigned seq;
2682 2683 2684 2685 2686

	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
	    !gup_fast_permitted(start, end))
		return 0;

2687 2688 2689 2690 2691 2692
	if (gup_flags & FOLL_PIN) {
		seq = raw_read_seqcount(&current->mm->write_protect_seq);
		if (seq & 1)
			return 0;
	}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	/*
	 * Disable interrupts. The nested form is used, in order to allow full,
	 * general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being freed
	 * from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
	 * that come from THPs splitting.
	 */
	local_irq_save(flags);
	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
	local_irq_restore(flags);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	/*
	 * When pinning pages for DMA there could be a concurrent write protect
	 * from fork() via copy_page_range(), in this case always fail fast GUP.
	 */
	if (gup_flags & FOLL_PIN) {
		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
			unpin_user_pages(pages, nr_pinned);
			return 0;
		}
	}
2718 2719 2720 2721 2722
	return nr_pinned;
}

static int internal_get_user_pages_fast(unsigned long start,
					unsigned long nr_pages,
2723 2724
					unsigned int gup_flags,
					struct page **pages)
2725
{
2726 2727 2728
	unsigned long len, end;
	unsigned long nr_pinned;
	int ret;
2729

2730
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2731
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2732
				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2733 2734
		return -EINVAL;

2735 2736
	if (gup_flags & FOLL_PIN)
		mm_set_has_pinned_flag(&current->mm->flags);
Peter Xu's avatar
Peter Xu committed
2737

2738
	if (!(gup_flags & FOLL_FAST_ONLY))
2739
		might_lock_read(&current->mm->mmap_lock);
2740

2741
	start = untagged_addr(start) & PAGE_MASK;
2742 2743
	len = nr_pages << PAGE_SHIFT;
	if (check_add_overflow(start, len, &end))
2744
		return 0;
2745
	if (unlikely(!access_ok((void __user *)start, len)))
2746
		return -EFAULT;
2747

2748 2749 2750
	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
		return nr_pinned;
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	/* Slow path: try to get the remaining pages with get_user_pages */
	start += nr_pinned << PAGE_SHIFT;
	pages += nr_pinned;
	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
				      pages);
	if (ret < 0) {
		/*
		 * The caller has to unpin the pages we already pinned so
		 * returning -errno is not an option
		 */
		if (nr_pinned)
			return nr_pinned;
		return ret;
2765
	}
2766
	return ret + nr_pinned;
2767
}
2768

2769 2770 2771 2772 2773 2774 2775 2776
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2789 2790
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2791
{
2792
	int nr_pinned;
2793 2794 2795
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2796 2797 2798
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2799
	 */
2800
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2801

2802 2803
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2804 2805

	/*
2806 2807 2808 2809
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2810
	 */
2811 2812
	if (nr_pinned < 0)
		nr_pinned = 0;
2813 2814 2815

	return nr_pinned;
}
2816
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2817

2818 2819
/**
 * get_user_pages_fast() - pin user pages in memory
John Hubbard's avatar
John Hubbard committed
2820 2821 2822 2823 2824
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2825
 *
2826
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
2837
	if (!is_valid_gup_flags(gup_flags))
2838 2839
		return -EINVAL;

2840 2841 2842 2843 2844 2845 2846
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2847 2848
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2849
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2850 2851 2852 2853

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
John Hubbard's avatar
John Hubbard committed
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2865
 * see Documentation/core-api/pin_user_pages.rst for further details.
2866 2867 2868 2869
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
John Hubbard's avatar
John Hubbard committed
2870 2871 2872 2873 2874 2875
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2876 2877 2878
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2879
/*
2880 2881
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2915
/**
2916
 * pin_user_pages_remote() - pin pages of a remote process
2917
 *
John Hubbard's avatar
John Hubbard committed
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2936
 * see Documentation/core-api/pin_user_pages.rst for details.
2937
 */
2938
long pin_user_pages_remote(struct mm_struct *mm,
2939 2940 2941 2942
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
John Hubbard's avatar
John Hubbard committed
2943 2944 2945 2946 2947
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2948
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
John Hubbard's avatar
John Hubbard committed
2949
				       pages, vmas, locked);
2950 2951 2952 2953 2954 2955
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
John Hubbard's avatar
John Hubbard committed
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2969
 * see Documentation/core-api/pin_user_pages.rst for details.
2970 2971 2972 2973 2974
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
John Hubbard's avatar
John Hubbard committed
2975 2976 2977 2978 2979
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2980
	return __gup_longterm_locked(current->mm, start, nr_pages,
John Hubbard's avatar
John Hubbard committed
2981
				     pages, vmas, gup_flags);
2982 2983
}
EXPORT_SYMBOL(pin_user_pages);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);