xilinx_axienet_main.c 64.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Xilinx Axi Ethernet device driver
 *
 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 9
 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
 * Copyright (c) 2010 - 2011 PetaLogix
10
 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11
 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
 * and Spartan6.
 *
 * TODO:
 *  - Add Axi Fifo support.
 *  - Factor out Axi DMA code into separate driver.
 *  - Test and fix basic multicast filtering.
 *  - Add support for extended multicast filtering.
 *  - Test basic VLAN support.
 *  - Add support for extended VLAN support.
 */

25
#include <linux/clk.h>
26 27 28 29 30
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
31
#include <linux/of_net.h>
32
#include <linux/of_platform.h>
33
#include <linux/of_irq.h>
34 35
#include <linux/of_address.h>
#include <linux/skbuff.h>
36
#include <linux/math64.h>
37 38 39 40 41 42
#include <linux/phy.h>
#include <linux/mii.h>
#include <linux/ethtool.h>

#include "xilinx_axienet.h"

43
/* Descriptors defines for Tx and Rx DMA */
44
#define TX_BD_NUM_DEFAULT		128
45
#define RX_BD_NUM_DEFAULT		1024
46
#define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
47 48
#define TX_BD_NUM_MAX			4096
#define RX_BD_NUM_MAX			4096
49 50 51 52 53 54

/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
#define DRIVER_NAME		"xaxienet"
#define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
#define DRIVER_VERSION		"1.00a"

55
#define AXIENET_REGS_N		40
56 57

/* Match table for of_platform binding */
58
static const struct of_device_id axienet_of_match[] = {
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
	{},
};

MODULE_DEVICE_TABLE(of, axienet_of_match);

/* Option table for setting up Axi Ethernet hardware options */
static struct axienet_option axienet_options[] = {
	/* Turn on jumbo packet support for both Rx and Tx */
	{
		.opt = XAE_OPTION_JUMBO,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_JUM_MASK,
	}, {
		.opt = XAE_OPTION_JUMBO,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_JUM_MASK,
	}, { /* Turn on VLAN packet support for both Rx and Tx */
		.opt = XAE_OPTION_VLAN,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_VLAN_MASK,
	}, {
		.opt = XAE_OPTION_VLAN,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_VLAN_MASK,
	}, { /* Turn on FCS stripping on receive packets */
		.opt = XAE_OPTION_FCS_STRIP,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_FCS_MASK,
	}, { /* Turn on FCS insertion on transmit packets */
		.opt = XAE_OPTION_FCS_INSERT,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_FCS_MASK,
	}, { /* Turn off length/type field checking on receive packets */
		.opt = XAE_OPTION_LENTYPE_ERR,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_LT_DIS_MASK,
	}, { /* Turn on Rx flow control */
		.opt = XAE_OPTION_FLOW_CONTROL,
		.reg = XAE_FCC_OFFSET,
		.m_or = XAE_FCC_FCRX_MASK,
	}, { /* Turn on Tx flow control */
		.opt = XAE_OPTION_FLOW_CONTROL,
		.reg = XAE_FCC_OFFSET,
		.m_or = XAE_FCC_FCTX_MASK,
	}, { /* Turn on promiscuous frame filtering */
		.opt = XAE_OPTION_PROMISC,
		.reg = XAE_FMI_OFFSET,
		.m_or = XAE_FMI_PM_MASK,
	}, { /* Enable transmitter */
		.opt = XAE_OPTION_TXEN,
		.reg = XAE_TC_OFFSET,
		.m_or = XAE_TC_TX_MASK,
	}, { /* Enable receiver */
		.opt = XAE_OPTION_RXEN,
		.reg = XAE_RCW1_OFFSET,
		.m_or = XAE_RCW1_RX_MASK,
	},
	{}
};

/**
 * axienet_dma_in32 - Memory mapped Axi DMA register read
 * @lp:		Pointer to axienet local structure
 * @reg:	Address offset from the base address of the Axi DMA core
 *
127
 * Return: The contents of the Axi DMA register
128 129 130 131 132
 *
 * This function returns the contents of the corresponding Axi DMA register.
 */
static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
{
133
	return ioread32(lp->dma_regs + reg);
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
			       struct axidma_bd *desc)
{
	desc->phys = lower_32_bits(addr);
	if (lp->features & XAE_FEATURE_DMA_64BIT)
		desc->phys_msb = upper_32_bits(addr);
}

static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
				     struct axidma_bd *desc)
{
	dma_addr_t ret = desc->phys;

	if (lp->features & XAE_FEATURE_DMA_64BIT)
		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;

	return ret;
}

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * axienet_dma_bd_release - Release buffer descriptor rings
 * @ndev:	Pointer to the net_device structure
 *
 * This function is used to release the descriptors allocated in
 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 * driver stop api is called.
 */
static void axienet_dma_bd_release(struct net_device *ndev)
{
	int i;
	struct axienet_local *lp = netdev_priv(ndev);

168
	/* If we end up here, tx_bd_v must have been DMA allocated. */
169
	dma_free_coherent(lp->dev,
170 171 172 173 174 175 176
			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
			  lp->tx_bd_v,
			  lp->tx_bd_p);

	if (!lp->rx_bd_v)
		return;

177
	for (i = 0; i < lp->rx_bd_num; i++) {
178 179
		dma_addr_t phys;

180 181 182 183 184 185
		/* A NULL skb means this descriptor has not been initialised
		 * at all.
		 */
		if (!lp->rx_bd_v[i].skb)
			break;

186
		dev_kfree_skb(lp->rx_bd_v[i].skb);
187

188 189 190 191
		/* For each descriptor, we programmed cntrl with the (non-zero)
		 * descriptor size, after it had been successfully allocated.
		 * So a non-zero value in there means we need to unmap it.
		 */
192 193
		if (lp->rx_bd_v[i].cntrl) {
			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
194
			dma_unmap_single(lp->dev, phys,
195
					 lp->max_frm_size, DMA_FROM_DEVICE);
196
		}
197
	}
198

199
	dma_free_coherent(lp->dev,
200 201 202
			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
			  lp->rx_bd_v,
			  lp->rx_bd_p);
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/**
 * axienet_usec_to_timer - Calculate IRQ delay timer value
 * @lp:		Pointer to the axienet_local structure
 * @coalesce_usec: Microseconds to convert into timer value
 */
static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
{
	u32 result;
	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */

	if (lp->axi_clk)
		clk_rate = clk_get_rate(lp->axi_clk);

	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
					 (u64)125000000);
	if (result > 255)
		result = 255;

	return result;
}

227 228 229 230 231 232 233
/**
 * axienet_dma_start - Set up DMA registers and start DMA operation
 * @lp:		Pointer to the axienet_local structure
 */
static void axienet_dma_start(struct axienet_local *lp)
{
	/* Start updating the Rx channel control register */
234 235
	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
236 237 238 239
	/* Only set interrupt delay timer if not generating an interrupt on
	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
	 */
	if (lp->coalesce_count_rx > 1)
240 241
		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
					<< XAXIDMA_DELAY_SHIFT) |
242 243
				 XAXIDMA_IRQ_DELAY_MASK;
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
244 245

	/* Start updating the Tx channel control register */
246 247
	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
248 249 250 251
	/* Only set interrupt delay timer if not generating an interrupt on
	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
	 */
	if (lp->coalesce_count_tx > 1)
252 253 254 255
		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
					<< XAXIDMA_DELAY_SHIFT) |
				 XAXIDMA_IRQ_DELAY_MASK;
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
256 257 258 259 260

	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
	 * halted state. This will make the Rx side ready for reception.
	 */
	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
261 262
	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
263 264 265 266 267 268 269 270
	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));

	/* Write to the RS (Run-stop) bit in the Tx channel control register.
	 * Tx channel is now ready to run. But only after we write to the
	 * tail pointer register that the Tx channel will start transmitting.
	 */
	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
271 272
	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
273 274
}

275 276 277 278
/**
 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 * @ndev:	Pointer to the net_device structure
 *
279
 * Return: 0, on success -ENOMEM, on failure
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
 *
 * This function is called to initialize the Rx and Tx DMA descriptor
 * rings. This initializes the descriptors with required default values
 * and is called when Axi Ethernet driver reset is called.
 */
static int axienet_dma_bd_init(struct net_device *ndev)
{
	int i;
	struct sk_buff *skb;
	struct axienet_local *lp = netdev_priv(ndev);

	/* Reset the indexes which are used for accessing the BDs */
	lp->tx_bd_ci = 0;
	lp->tx_bd_tail = 0;
	lp->rx_bd_ci = 0;

296
	/* Allocate the Tx and Rx buffer descriptors. */
297
	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
298
					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
299
					 &lp->tx_bd_p, GFP_KERNEL);
300
	if (!lp->tx_bd_v)
301
		return -ENOMEM;
302

303
	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
304
					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
305
					 &lp->rx_bd_p, GFP_KERNEL);
306
	if (!lp->rx_bd_v)
307 308
		goto out;

309
	for (i = 0; i < lp->tx_bd_num; i++) {
310 311 312 313 314 315 316
		dma_addr_t addr = lp->tx_bd_p +
				  sizeof(*lp->tx_bd_v) *
				  ((i + 1) % lp->tx_bd_num);

		lp->tx_bd_v[i].next = lower_32_bits(addr);
		if (lp->features & XAE_FEATURE_DMA_64BIT)
			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
317 318
	}

319
	for (i = 0; i < lp->rx_bd_num; i++) {
320 321 322 323 324 325 326
		dma_addr_t addr;

		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
			((i + 1) % lp->rx_bd_num);
		lp->rx_bd_v[i].next = lower_32_bits(addr);
		if (lp->features & XAE_FEATURE_DMA_64BIT)
			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
327 328

		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
329
		if (!skb)
330 331
			goto out;

332
		lp->rx_bd_v[i].skb = skb;
333
		addr = dma_map_single(lp->dev, skb->data,
334
				      lp->max_frm_size, DMA_FROM_DEVICE);
335
		if (dma_mapping_error(lp->dev, addr)) {
336 337 338
			netdev_err(ndev, "DMA mapping error\n");
			goto out;
		}
339
		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
340

341 342 343
		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
	}

344
	axienet_dma_start(lp);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	return 0;
out:
	axienet_dma_bd_release(ndev);
	return -ENOMEM;
}

/**
 * axienet_set_mac_address - Write the MAC address
 * @ndev:	Pointer to the net_device structure
 * @address:	6 byte Address to be written as MAC address
 *
 * This function is called to initialize the MAC address of the Axi Ethernet
 * core. It writes to the UAW0 and UAW1 registers of the core.
 */
360 361
static void axienet_set_mac_address(struct net_device *ndev,
				    const void *address)
362 363 364 365
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (address)
366
		eth_hw_addr_set(ndev, address);
367
	if (!is_valid_ether_addr(ndev->dev_addr))
368
		eth_hw_addr_random(ndev);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	/* Set up unicast MAC address filter set its mac address */
	axienet_iow(lp, XAE_UAW0_OFFSET,
		    (ndev->dev_addr[0]) |
		    (ndev->dev_addr[1] << 8) |
		    (ndev->dev_addr[2] << 16) |
		    (ndev->dev_addr[3] << 24));
	axienet_iow(lp, XAE_UAW1_OFFSET,
		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
		      ~XAE_UAW1_UNICASTADDR_MASK) |
		     (ndev->dev_addr[4] |
		     (ndev->dev_addr[5] << 8))));
}

/**
 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 * @ndev:	Pointer to the net_device structure
 * @p:		6 byte Address to be written as MAC address
 *
388
 * Return: 0 for all conditions. Presently, there is no failure case.
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
 *
 * This function is called to initialize the MAC address of the Axi Ethernet
 * core. It calls the core specific axienet_set_mac_address. This is the
 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 */
static int netdev_set_mac_address(struct net_device *ndev, void *p)
{
	struct sockaddr *addr = p;
	axienet_set_mac_address(ndev, addr->sa_data);
	return 0;
}

/**
 * axienet_set_multicast_list - Prepare the multicast table
 * @ndev:	Pointer to the net_device structure
 *
 * This function is called to initialize the multicast table during
 * initialization. The Axi Ethernet basic multicast support has a four-entry
 * multicast table which is initialized here. Additionally this function
 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 * means whenever the multicast table entries need to be updated this
 * function gets called.
 */
static void axienet_set_multicast_list(struct net_device *ndev)
{
	int i;
	u32 reg, af0reg, af1reg;
	struct axienet_local *lp = netdev_priv(ndev);

	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
		/* We must make the kernel realize we had to move into
		 * promiscuous mode. If it was a promiscuous mode request
422 423
		 * the flag is already set. If not we set it.
		 */
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		ndev->flags |= IFF_PROMISC;
		reg = axienet_ior(lp, XAE_FMI_OFFSET);
		reg |= XAE_FMI_PM_MASK;
		axienet_iow(lp, XAE_FMI_OFFSET, reg);
		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
	} else if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		i = 0;
		netdev_for_each_mc_addr(ha, ndev) {
			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
				break;

			af0reg = (ha->addr[0]);
			af0reg |= (ha->addr[1] << 8);
			af0reg |= (ha->addr[2] << 16);
			af0reg |= (ha->addr[3] << 24);

			af1reg = (ha->addr[4]);
			af1reg |= (ha->addr[5] << 8);

			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
			reg |= i;

			axienet_iow(lp, XAE_FMI_OFFSET, reg);
			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
			i++;
		}
	} else {
		reg = axienet_ior(lp, XAE_FMI_OFFSET);
		reg &= ~XAE_FMI_PM_MASK;

		axienet_iow(lp, XAE_FMI_OFFSET, reg);

		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
			reg |= i;

			axienet_iow(lp, XAE_FMI_OFFSET, reg);
			axienet_iow(lp, XAE_AF0_OFFSET, 0);
			axienet_iow(lp, XAE_AF1_OFFSET, 0);
		}

		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
	}
}

/**
 * axienet_setoptions - Set an Axi Ethernet option
 * @ndev:	Pointer to the net_device structure
 * @options:	Option to be enabled/disabled
 *
 * The Axi Ethernet core has multiple features which can be selectively turned
 * on or off. The typical options could be jumbo frame option, basic VLAN
 * option, promiscuous mode option etc. This function is used to set or clear
 * these options in the Axi Ethernet hardware. This is done through
 * axienet_option structure .
 */
static void axienet_setoptions(struct net_device *ndev, u32 options)
{
	int reg;
	struct axienet_local *lp = netdev_priv(ndev);
	struct axienet_option *tp = &axienet_options[0];

	while (tp->opt) {
		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
		if (options & tp->opt)
			reg |= tp->m_or;
		axienet_iow(lp, tp->reg, reg);
		tp++;
	}

	lp->options |= options;
}

500
static int __axienet_device_reset(struct axienet_local *lp)
501
{
502 503
	u32 value;
	int ret;
504

505 506 507
	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
	 * process of Axi DMA takes a while to complete as all pending
	 * commands/transfers will be flushed or completed during this
508
	 * reset process.
509 510
	 * Note that even though both TX and RX have their own reset register,
	 * they both reset the entire DMA core, so only one needs to be used.
511
	 */
512
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
513 514 515 516 517 518 519
	ret = read_poll_timeout(axienet_dma_in32, value,
				!(value & XAXIDMA_CR_RESET_MASK),
				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
				XAXIDMA_TX_CR_OFFSET);
	if (ret) {
		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
		return ret;
520
	}
521

522 523 524 525 526 527 528 529 530 531
	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
	ret = read_poll_timeout(axienet_ior, value,
				value & XAE_INT_PHYRSTCMPLT_MASK,
				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
				XAE_IS_OFFSET);
	if (ret) {
		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
		return ret;
	}

532
	return 0;
533 534
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/**
 * axienet_dma_stop - Stop DMA operation
 * @lp:		Pointer to the axienet_local structure
 */
static void axienet_dma_stop(struct axienet_local *lp)
{
	int count;
	u32 cr, sr;

	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
	synchronize_irq(lp->rx_irq);

	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
	synchronize_irq(lp->tx_irq);

	/* Give DMAs a chance to halt gracefully */
	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
		msleep(20);
		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	}

	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
		msleep(20);
		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	}

	/* Do a reset to ensure DMA is really stopped */
	axienet_lock_mii(lp);
	__axienet_device_reset(lp);
	axienet_unlock_mii(lp);
}

573 574 575 576 577 578 579
/**
 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 * @ndev:	Pointer to the net_device structure
 *
 * This function is called to reset and initialize the Axi Ethernet core. This
 * is typically called during initialization. It does a reset of the Axi DMA
 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
580
 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
581 582
 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 * core.
583
 * Returns 0 on success or a negative error number otherwise.
584
 */
585
static int axienet_device_reset(struct net_device *ndev)
586 587 588
{
	u32 axienet_status;
	struct axienet_local *lp = netdev_priv(ndev);
589
	int ret;
590

591 592 593
	ret = __axienet_device_reset(lp);
	if (ret)
		return ret;
594 595

	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
596
	lp->options |= XAE_OPTION_VLAN;
597 598 599
	lp->options &= (~XAE_OPTION_JUMBO);

	if ((ndev->mtu > XAE_MTU) &&
600
	    (ndev->mtu <= XAE_JUMBO_MTU)) {
601 602 603 604 605
		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
					XAE_TRL_SIZE;

		if (lp->max_frm_size <= lp->rxmem)
			lp->options |= XAE_OPTION_JUMBO;
606 607
	}

608 609
	ret = axienet_dma_bd_init(ndev);
	if (ret) {
610 611
		netdev_err(ndev, "%s: descriptor allocation failed\n",
			   __func__);
612
		return ret;
613 614 615 616 617 618 619 620 621
	}

	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
	axienet_status &= ~XAE_RCW1_RX_MASK;
	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);

	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
	if (axienet_status & XAE_INT_RXRJECT_MASK)
		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
622 623
	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
		    XAE_INT_RECV_ERROR_MASK : 0);
624 625 626 627

	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);

	/* Sync default options with HW but leave receiver and
628 629
	 * transmitter disabled.
	 */
630 631 632 633 634 635
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	axienet_set_mac_address(ndev, NULL);
	axienet_set_multicast_list(ndev);
	axienet_setoptions(ndev, lp->options);

636
	netif_trans_update(ndev);
637 638

	return 0;
639 640 641
}

/**
642
 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
643
 * @lp:		Pointer to the axienet_local structure
644
 * @first_bd:	Index of first descriptor to clean up
645 646
 * @nr_bds:	Max number of descriptors to clean up
 * @force:	Whether to clean descriptors even if not complete
647
 * @sizep:	Pointer to a u32 filled with the total sum of all bytes
648
 *		in all cleaned-up descriptors. Ignored if NULL.
649
 * @budget:	NAPI budget (use 0 when not called from NAPI poll)
650
 *
651 652 653
 * Would either be called after a successful transmit operation, or after
 * there was an error when setting up the chain.
 * Returns the number of descriptors handled.
654
 */
655 656
static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
				 int nr_bds, bool force, u32 *sizep, int budget)
657 658
{
	struct axidma_bd *cur_p;
659
	unsigned int status;
660
	dma_addr_t phys;
661 662
	int i;

663
	for (i = 0; i < nr_bds; i++) {
664 665 666
		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
		status = cur_p->status;

667 668
		/* If force is not specified, clean up only descriptors
		 * that have been completed by the MAC.
669
		 */
670
		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
671
			break;
672

673 674
		/* Ensure we see complete descriptor update */
		dma_rmb();
675
		phys = desc_get_phys_addr(lp, cur_p);
676
		dma_unmap_single(lp->dev, phys,
677 678
				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
				 DMA_TO_DEVICE);
679 680

		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
681
			napi_consume_skb(cur_p->skb, budget);
682

683 684 685 686
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app4 = 0;
687
		cur_p->skb = NULL;
688 689
		/* ensure our transmit path and device don't prematurely see status cleared */
		wmb();
690
		cur_p->cntrl = 0;
691
		cur_p->status = 0;
692

693 694
		if (sizep)
			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
695 696
	}

697 698 699
	return i;
}

700 701 702 703 704 705 706 707 708 709 710
/**
 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 * @lp:		Pointer to the axienet_local structure
 * @num_frag:	The number of BDs to check for
 *
 * Return: 0, on success
 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 *
 * This function is invoked before BDs are allocated and transmission starts.
 * This function returns 0 if a BD or group of BDs can be allocated for
 * transmission. If the BD or any of the BDs are not free the function
711
 * returns a busy status.
712 713 714 715 716 717
 */
static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
					    int num_frag)
{
	struct axidma_bd *cur_p;

718
	/* Ensure we see all descriptor updates from device or TX polling */
719
	rmb();
720 721
	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
			     lp->tx_bd_num];
722 723 724 725 726
	if (cur_p->cntrl)
		return NETDEV_TX_BUSY;
	return 0;
}

727
/**
728
 * axienet_tx_poll - Invoked once a transmit is completed by the
729
 * Axi DMA Tx channel.
730 731 732 733
 * @napi:	Pointer to NAPI structure.
 * @budget:	Max number of TX packets to process.
 *
 * Return: Number of TX packets processed.
734
 *
735
 * This function is invoked from the NAPI processing to notify the completion
736 737 738 739 740
 * of transmit operation. It clears fields in the corresponding Tx BDs and
 * unmaps the corresponding buffer so that CPU can regain ownership of the
 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 * required.
 */
741
static int axienet_tx_poll(struct napi_struct *napi, int budget)
742
{
743 744
	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
	struct net_device *ndev = lp->ndev;
745
	u32 size = 0;
746
	int packets;
747

748
	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
749

750 751 752 753
	if (packets) {
		lp->tx_bd_ci += packets;
		if (lp->tx_bd_ci >= lp->tx_bd_num)
			lp->tx_bd_ci %= lp->tx_bd_num;
754

755 756 757 758
		u64_stats_update_begin(&lp->tx_stat_sync);
		u64_stats_add(&lp->tx_packets, packets);
		u64_stats_add(&lp->tx_bytes, size);
		u64_stats_update_end(&lp->tx_stat_sync);
759

760 761
		/* Matches barrier in axienet_start_xmit */
		smp_mb();
762

763 764 765 766 767 768 769 770 771 772 773 774
		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
			netif_wake_queue(ndev);
	}

	if (packets < budget && napi_complete_done(napi, packets)) {
		/* Re-enable TX completion interrupts. This should
		 * cause an immediate interrupt if any TX packets are
		 * already pending.
		 */
		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
	}
	return packets;
775 776 777 778 779 780 781
}

/**
 * axienet_start_xmit - Starts the transmission.
 * @skb:	sk_buff pointer that contains data to be Txed.
 * @ndev:	Pointer to net_device structure.
 *
782
 * Return: NETDEV_TX_OK, on success
783 784 785 786 787 788 789
 *	    NETDEV_TX_BUSY, if any of the descriptors are not free
 *
 * This function is invoked from upper layers to initiate transmission. The
 * function uses the next available free BDs and populates their fields to
 * start the transmission. Additionally if checksum offloading is supported,
 * it populates AXI Stream Control fields with appropriate values.
 */
790 791
static netdev_tx_t
axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
792 793 794 795 796 797
{
	u32 ii;
	u32 num_frag;
	u32 csum_start_off;
	u32 csum_index_off;
	skb_frag_t *frag;
798
	dma_addr_t tail_p, phys;
799
	u32 orig_tail_ptr, new_tail_ptr;
800 801
	struct axienet_local *lp = netdev_priv(ndev);
	struct axidma_bd *cur_p;
802 803 804

	orig_tail_ptr = lp->tx_bd_tail;
	new_tail_ptr = orig_tail_ptr;
805 806

	num_frag = skb_shinfo(skb)->nr_frags;
807
	cur_p = &lp->tx_bd_v[orig_tail_ptr];
808

809
	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
810 811 812 813
		/* Should not happen as last start_xmit call should have
		 * checked for sufficient space and queue should only be
		 * woken when sufficient space is available.
		 */
814
		netif_stop_queue(ndev);
815 816 817
		if (net_ratelimit())
			netdev_warn(ndev, "TX ring unexpectedly full\n");
		return NETDEV_TX_BUSY;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	}

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
			/* Tx Full Checksum Offload Enabled */
			cur_p->app0 |= 2;
		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
			csum_start_off = skb_transport_offset(skb);
			csum_index_off = csum_start_off + skb->csum_offset;
			/* Tx Partial Checksum Offload Enabled */
			cur_p->app0 |= 1;
			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
		}
	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
	}

835
	phys = dma_map_single(lp->dev, skb->data,
836
			      skb_headlen(skb), DMA_TO_DEVICE);
837
	if (unlikely(dma_mapping_error(lp->dev, phys))) {
838 839 840 841 842
		if (net_ratelimit())
			netdev_err(ndev, "TX DMA mapping error\n");
		ndev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}
843
	desc_set_phys_addr(lp, phys, cur_p);
844
	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
845 846

	for (ii = 0; ii < num_frag; ii++) {
847 848 849
		if (++new_tail_ptr >= lp->tx_bd_num)
			new_tail_ptr = 0;
		cur_p = &lp->tx_bd_v[new_tail_ptr];
850
		frag = &skb_shinfo(skb)->frags[ii];
851
		phys = dma_map_single(lp->dev,
852 853 854
				      skb_frag_address(frag),
				      skb_frag_size(frag),
				      DMA_TO_DEVICE);
855
		if (unlikely(dma_mapping_error(lp->dev, phys))) {
856 857 858
			if (net_ratelimit())
				netdev_err(ndev, "TX DMA mapping error\n");
			ndev->stats.tx_dropped++;
859 860
			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
					      true, NULL, 0);
861 862
			return NETDEV_TX_OK;
		}
863
		desc_set_phys_addr(lp, phys, cur_p);
864 865 866 867
		cur_p->cntrl = skb_frag_size(frag);
	}

	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
868
	cur_p->skb = skb;
869

870 871 872 873 874
	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
	if (++new_tail_ptr >= lp->tx_bd_num)
		new_tail_ptr = 0;
	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);

875
	/* Start the transfer */
876
	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
877

878 879 880 881
	/* Stop queue if next transmit may not have space */
	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
		netif_stop_queue(ndev);

882
		/* Matches barrier in axienet_tx_poll */
883 884 885 886 887 888 889
		smp_mb();

		/* Space might have just been freed - check again */
		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
			netif_wake_queue(ndev);
	}

890 891 892 893
	return NETDEV_TX_OK;
}

/**
894
 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
895
 * @napi:	Pointer to NAPI structure.
896
 * @budget:	Max number of RX packets to process.
897
 *
898
 * Return: Number of RX packets processed.
899
 */
900
static int axienet_rx_poll(struct napi_struct *napi, int budget)
901 902 903 904
{
	u32 length;
	u32 csumstatus;
	u32 size = 0;
905
	int packets = 0;
906
	dma_addr_t tail_p = 0;
907
	struct axidma_bd *cur_p;
908
	struct sk_buff *skb, *new_skb;
909
	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
910 911 912

	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];

913
	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
914 915
		dma_addr_t phys;

916 917
		/* Ensure we see complete descriptor update */
		dma_rmb();
918

919 920
		skb = cur_p->skb;
		cur_p->skb = NULL;
921 922 923 924 925 926 927 928 929 930

		/* skb could be NULL if a previous pass already received the
		 * packet for this slot in the ring, but failed to refill it
		 * with a newly allocated buffer. In this case, don't try to
		 * receive it again.
		 */
		if (likely(skb)) {
			length = cur_p->app4 & 0x0000FFFF;

			phys = desc_get_phys_addr(lp, cur_p);
931
			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
932 933 934
					 DMA_FROM_DEVICE);

			skb_put(skb, length);
935
			skb->protocol = eth_type_trans(skb, lp->ndev);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
			/*skb_checksum_none_assert(skb);*/
			skb->ip_summed = CHECKSUM_NONE;

			/* if we're doing Rx csum offload, set it up */
			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
				csumstatus = (cur_p->app2 &
					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
					skb->ip_summed = CHECKSUM_UNNECESSARY;
				}
			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
				   skb->protocol == htons(ETH_P_IP) &&
				   skb->len > 64) {
				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
				skb->ip_summed = CHECKSUM_COMPLETE;
952 953
			}

954
			napi_gro_receive(napi, skb);
955

956 957 958
			size += length;
			packets++;
		}
959

960
		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
961
		if (!new_skb)
962
			break;
963

964
		phys = dma_map_single(lp->dev, new_skb->data,
965 966
				      lp->max_frm_size,
				      DMA_FROM_DEVICE);
967
		if (unlikely(dma_mapping_error(lp->dev, phys))) {
968
			if (net_ratelimit())
969
				netdev_err(lp->ndev, "RX DMA mapping error\n");
970
			dev_kfree_skb(new_skb);
971
			break;
972
		}
973
		desc_set_phys_addr(lp, phys, cur_p);
974

975 976
		cur_p->cntrl = lp->max_frm_size;
		cur_p->status = 0;
977
		cur_p->skb = new_skb;
978

979 980 981 982 983
		/* Only update tail_p to mark this slot as usable after it has
		 * been successfully refilled.
		 */
		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;

984 985
		if (++lp->rx_bd_ci >= lp->rx_bd_num)
			lp->rx_bd_ci = 0;
986 987 988
		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
	}

989 990 991 992
	u64_stats_update_begin(&lp->rx_stat_sync);
	u64_stats_add(&lp->rx_packets, packets);
	u64_stats_add(&lp->rx_bytes, size);
	u64_stats_update_end(&lp->rx_stat_sync);
993

994
	if (tail_p)
995
		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
996 997 998 999 1000 1001 1002 1003 1004

	if (packets < budget && napi_complete_done(napi, packets)) {
		/* Re-enable RX completion interrupts. This should
		 * cause an immediate interrupt if any RX packets are
		 * already pending.
		 */
		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
	}
	return packets;
1005 1006 1007 1008 1009 1010 1011
}

/**
 * axienet_tx_irq - Tx Done Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
1012
 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1013
 *
1014 1015
 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
 * TX BD processing.
1016 1017 1018 1019 1020 1021 1022 1023
 */
static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
{
	unsigned int status;
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);

	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1024

1025
	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1026
		return IRQ_NONE;
1027

1028 1029 1030 1031 1032 1033 1034
	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);

	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1035
		schedule_work(&lp->dma_err_task);
1036
	} else {
1037 1038 1039 1040 1041 1042 1043 1044 1045
		/* Disable further TX completion interrupts and schedule
		 * NAPI to handle the completions.
		 */
		u32 cr = lp->tx_dma_cr;

		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);

		napi_schedule(&lp->napi_tx);
1046
	}
1047

1048 1049 1050 1051 1052 1053 1054 1055
	return IRQ_HANDLED;
}

/**
 * axienet_rx_irq - Rx Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
1056
 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1057
 *
1058
 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1059 1060 1061 1062 1063 1064 1065 1066 1067
 * processing.
 */
static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
{
	unsigned int status;
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);

	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1068

1069
	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1070
		return IRQ_NONE;
1071

1072 1073 1074 1075 1076 1077 1078
	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);

	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1079
		schedule_work(&lp->dma_err_task);
1080
	} else {
1081 1082 1083 1084 1085 1086 1087 1088
		/* Disable further RX completion interrupts and schedule
		 * NAPI receive.
		 */
		u32 cr = lp->rx_dma_cr;

		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);

1089
		napi_schedule(&lp->napi_rx);
1090
	}
1091

1092 1093 1094
	return IRQ_HANDLED;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * axienet_eth_irq - Ethernet core Isr.
 * @irq:	irq number
 * @_ndev:	net_device pointer
 *
 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
 *
 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
 */
static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
{
	struct net_device *ndev = _ndev;
	struct axienet_local *lp = netdev_priv(ndev);
	unsigned int pending;

	pending = axienet_ior(lp, XAE_IP_OFFSET);
	if (!pending)
		return IRQ_NONE;

	if (pending & XAE_INT_RXFIFOOVR_MASK)
		ndev->stats.rx_missed_errors++;

	if (pending & XAE_INT_RXRJECT_MASK)
		ndev->stats.rx_frame_errors++;

	axienet_iow(lp, XAE_IS_OFFSET, pending);
	return IRQ_HANDLED;
}

1124
static void axienet_dma_err_handler(struct work_struct *work);
1125

1126 1127 1128 1129
/**
 * axienet_open - Driver open routine.
 * @ndev:	Pointer to net_device structure
 *
1130
 * Return: 0, on success.
1131 1132
 *	    non-zero error value on failure
 *
1133 1134
 * This is the driver open routine. It calls phylink_start to start the
 * PHY device.
1135 1136 1137 1138 1139 1140
 * It also allocates interrupt service routines, enables the interrupt lines
 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
 * descriptors are initialized.
 */
static int axienet_open(struct net_device *ndev)
{
1141
	int ret;
1142 1143 1144 1145
	struct axienet_local *lp = netdev_priv(ndev);

	dev_dbg(&ndev->dev, "axienet_open()\n");

1146 1147
	/* When we do an Axi Ethernet reset, it resets the complete core
	 * including the MDIO. MDIO must be disabled before resetting.
1148
	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1149
	 */
1150
	axienet_lock_mii(lp);
1151
	ret = axienet_device_reset(ndev);
1152
	axienet_unlock_mii(lp);
1153

1154 1155 1156 1157
	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
	if (ret) {
		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
		return ret;
1158 1159
	}

1160 1161
	phylink_start(lp->phylink);

1162 1163
	/* Enable worker thread for Axi DMA error handling */
	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1164

1165 1166
	napi_enable(&lp->napi_rx);
	napi_enable(&lp->napi_tx);
1167

1168
	/* Enable interrupts for Axi DMA Tx */
1169 1170
	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
			  ndev->name, ndev);
1171 1172 1173
	if (ret)
		goto err_tx_irq;
	/* Enable interrupts for Axi DMA Rx */
1174 1175
	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
			  ndev->name, ndev);
1176 1177
	if (ret)
		goto err_rx_irq;
1178 1179 1180 1181 1182 1183 1184
	/* Enable interrupts for Axi Ethernet core (if defined) */
	if (lp->eth_irq > 0) {
		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
				  ndev->name, ndev);
		if (ret)
			goto err_eth_irq;
	}
1185

1186 1187
	return 0;

1188 1189
err_eth_irq:
	free_irq(lp->rx_irq, ndev);
1190 1191 1192
err_rx_irq:
	free_irq(lp->tx_irq, ndev);
err_tx_irq:
1193 1194
	napi_disable(&lp->napi_tx);
	napi_disable(&lp->napi_rx);
1195 1196
	phylink_stop(lp->phylink);
	phylink_disconnect_phy(lp->phylink);
1197
	cancel_work_sync(&lp->dma_err_task);
1198 1199 1200 1201 1202 1203 1204 1205
	dev_err(lp->dev, "request_irq() failed\n");
	return ret;
}

/**
 * axienet_stop - Driver stop routine.
 * @ndev:	Pointer to net_device structure
 *
1206
 * Return: 0, on success.
1207
 *
1208
 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1209 1210 1211 1212 1213 1214 1215 1216 1217
 * device. It also removes the interrupt handlers and disables the interrupts.
 * The Axi DMA Tx/Rx BDs are released.
 */
static int axienet_stop(struct net_device *ndev)
{
	struct axienet_local *lp = netdev_priv(ndev);

	dev_dbg(&ndev->dev, "axienet_close()\n");

1218 1219
	napi_disable(&lp->napi_tx);
	napi_disable(&lp->napi_rx);
1220

1221 1222 1223
	phylink_stop(lp->phylink);
	phylink_disconnect_phy(lp->phylink);

1224 1225 1226
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));

1227
	axienet_dma_stop(lp);
1228 1229 1230

	axienet_iow(lp, XAE_IE_OFFSET, 0);

1231
	cancel_work_sync(&lp->dma_err_task);
1232

1233 1234
	if (lp->eth_irq > 0)
		free_irq(lp->eth_irq, ndev);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	free_irq(lp->tx_irq, ndev);
	free_irq(lp->rx_irq, ndev);

	axienet_dma_bd_release(ndev);
	return 0;
}

/**
 * axienet_change_mtu - Driver change mtu routine.
 * @ndev:	Pointer to net_device structure
 * @new_mtu:	New mtu value to be applied
 *
1247
 * Return: Always returns 0 (success).
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
 *
 * This is the change mtu driver routine. It checks if the Axi Ethernet
 * hardware supports jumbo frames before changing the mtu. This can be
 * called only when the device is not up.
 */
static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (netif_running(ndev))
		return -EBUSY;
1259 1260 1261 1262 1263 1264

	if ((new_mtu + VLAN_ETH_HLEN +
		XAE_TRL_SIZE) > lp->rxmem)
		return -EINVAL;

	ndev->mtu = new_mtu;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/**
 * axienet_poll_controller - Axi Ethernet poll mechanism.
 * @ndev:	Pointer to net_device structure
 *
 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
 * to polling the ISRs and are enabled back after the polling is done.
 */
static void axienet_poll_controller(struct net_device *ndev)
{
	struct axienet_local *lp = netdev_priv(ndev);
	disable_irq(lp->tx_irq);
	disable_irq(lp->rx_irq);
	axienet_rx_irq(lp->tx_irq, ndev);
	axienet_tx_irq(lp->rx_irq, ndev);
	enable_irq(lp->tx_irq);
	enable_irq(lp->rx_irq);
}
#endif

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct axienet_local *lp = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return phylink_mii_ioctl(lp->phylink, rq, cmd);
}

1299 1300 1301 1302 1303 1304 1305 1306 1307
static void
axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
	struct axienet_local *lp = netdev_priv(dev);
	unsigned int start;

	netdev_stats_to_stats64(stats, &dev->stats);

	do {
1308
		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1309 1310
		stats->rx_packets = u64_stats_read(&lp->rx_packets);
		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1311
	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1312 1313

	do {
1314
		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1315 1316
		stats->tx_packets = u64_stats_read(&lp->tx_packets);
		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1317
	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1318 1319
}

1320 1321 1322 1323
static const struct net_device_ops axienet_netdev_ops = {
	.ndo_open = axienet_open,
	.ndo_stop = axienet_stop,
	.ndo_start_xmit = axienet_start_xmit,
1324
	.ndo_get_stats64 = axienet_get_stats64,
1325 1326 1327
	.ndo_change_mtu	= axienet_change_mtu,
	.ndo_set_mac_address = netdev_set_mac_address,
	.ndo_validate_addr = eth_validate_addr,
1328
	.ndo_eth_ioctl = axienet_ioctl,
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	.ndo_set_rx_mode = axienet_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = axienet_poll_controller,
#endif
};

/**
 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
 * @ndev:	Pointer to net_device structure
 * @ed:		Pointer to ethtool_drvinfo structure
 *
 * This implements ethtool command for getting the driver information.
 * Issue "ethtool -i ethX" under linux prompt to execute this function.
 */
static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
					 struct ethtool_drvinfo *ed)
{
1346 1347
	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1348 1349 1350 1351 1352 1353 1354 1355 1356
}

/**
 * axienet_ethtools_get_regs_len - Get the total regs length present in the
 *				   AxiEthernet core.
 * @ndev:	Pointer to net_device structure
 *
 * This implements ethtool command for getting the total register length
 * information.
1357 1358
 *
 * Return: the total regs length
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
 */
static int axienet_ethtools_get_regs_len(struct net_device *ndev)
{
	return sizeof(u32) * AXIENET_REGS_N;
}

/**
 * axienet_ethtools_get_regs - Dump the contents of all registers present
 *			       in AxiEthernet core.
 * @ndev:	Pointer to net_device structure
 * @regs:	Pointer to ethtool_regs structure
 * @ret:	Void pointer used to return the contents of the registers.
 *
 * This implements ethtool command for getting the Axi Ethernet register dump.
 * Issue "ethtool -d ethX" to execute this function.
 */
static void axienet_ethtools_get_regs(struct net_device *ndev,
				      struct ethtool_regs *regs, void *ret)
{
1378
	u32 *data = (u32 *)ret;
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	size_t len = sizeof(u32) * AXIENET_REGS_N;
	struct axienet_local *lp = netdev_priv(ndev);

	regs->version = 0;
	regs->len = len;

	memset(data, 0, len);
	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1414 1415 1416 1417 1418 1419 1420 1421
	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1422 1423
}

1424 1425 1426 1427 1428
static void
axienet_ethtools_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering,
			       struct kernel_ethtool_ringparam *kernel_ering,
			       struct netlink_ext_ack *extack)
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
{
	struct axienet_local *lp = netdev_priv(ndev);

	ering->rx_max_pending = RX_BD_NUM_MAX;
	ering->rx_mini_max_pending = 0;
	ering->rx_jumbo_max_pending = 0;
	ering->tx_max_pending = TX_BD_NUM_MAX;
	ering->rx_pending = lp->rx_bd_num;
	ering->rx_mini_pending = 0;
	ering->rx_jumbo_pending = 0;
	ering->tx_pending = lp->tx_bd_num;
}

1442 1443 1444 1445 1446
static int
axienet_ethtools_set_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering,
			       struct kernel_ethtool_ringparam *kernel_ering,
			       struct netlink_ext_ack *extack)
1447 1448 1449 1450 1451 1452
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (ering->rx_pending > RX_BD_NUM_MAX ||
	    ering->rx_mini_pending ||
	    ering->rx_jumbo_pending ||
1453 1454
	    ering->tx_pending < TX_BD_NUM_MIN ||
	    ering->tx_pending > TX_BD_NUM_MAX)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		return -EINVAL;

	if (netif_running(ndev))
		return -EBUSY;

	lp->rx_bd_num = ering->rx_pending;
	lp->tx_bd_num = ering->tx_pending;
	return 0;
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/**
 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
 *				     Tx and Rx paths.
 * @ndev:	Pointer to net_device structure
 * @epauseparm:	Pointer to ethtool_pauseparam structure.
 *
 * This implements ethtool command for getting axi ethernet pause frame
 * setting. Issue "ethtool -a ethX" to execute this function.
 */
static void
axienet_ethtools_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *epauseparm)
{
	struct axienet_local *lp = netdev_priv(ndev);
1479 1480

	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1481 1482 1483 1484 1485 1486
}

/**
 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
 *				     settings.
 * @ndev:	Pointer to net_device structure
1487
 * @epauseparm:Pointer to ethtool_pauseparam structure
1488 1489 1490 1491
 *
 * This implements ethtool command for enabling flow control on Rx and Tx
 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
 * function.
1492 1493
 *
 * Return: 0 on success, -EFAULT if device is running
1494 1495 1496 1497 1498 1499 1500
 */
static int
axienet_ethtools_set_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *epauseparm)
{
	struct axienet_local *lp = netdev_priv(ndev);

1501
	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1502 1503 1504 1505 1506 1507
}

/**
 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
 * @ndev:	Pointer to net_device structure
 * @ecoalesce:	Pointer to ethtool_coalesce structure
1508 1509
 * @kernel_coal: ethtool CQE mode setting structure
 * @extack:	extack for reporting error messages
1510 1511 1512 1513
 *
 * This implements ethtool command for getting the DMA interrupt coalescing
 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
 * execute this function.
1514 1515
 *
 * Return: 0 always
1516
 */
1517 1518 1519 1520 1521
static int
axienet_ethtools_get_coalesce(struct net_device *ndev,
			      struct ethtool_coalesce *ecoalesce,
			      struct kernel_ethtool_coalesce *kernel_coal,
			      struct netlink_ext_ack *extack)
1522 1523
{
	struct axienet_local *lp = netdev_priv(ndev);
1524 1525 1526 1527 1528

	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1529 1530 1531 1532 1533 1534 1535
	return 0;
}

/**
 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
 * @ndev:	Pointer to net_device structure
 * @ecoalesce:	Pointer to ethtool_coalesce structure
1536 1537
 * @kernel_coal: ethtool CQE mode setting structure
 * @extack:	extack for reporting error messages
1538 1539 1540 1541
 *
 * This implements ethtool command for setting the DMA interrupt coalescing
 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
 * prompt to execute this function.
1542 1543
 *
 * Return: 0, on success, Non-zero error value on failure.
1544
 */
1545 1546 1547 1548 1549
static int
axienet_ethtools_set_coalesce(struct net_device *ndev,
			      struct ethtool_coalesce *ecoalesce,
			      struct kernel_ethtool_coalesce *kernel_coal,
			      struct netlink_ext_ack *extack)
1550 1551 1552 1553
{
	struct axienet_local *lp = netdev_priv(ndev);

	if (netif_running(ndev)) {
1554 1555
		netdev_err(ndev,
			   "Please stop netif before applying configuration\n");
1556 1557 1558 1559 1560
		return -EFAULT;
	}

	if (ecoalesce->rx_max_coalesced_frames)
		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1561 1562
	if (ecoalesce->rx_coalesce_usecs)
		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1563 1564
	if (ecoalesce->tx_max_coalesced_frames)
		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1565 1566
	if (ecoalesce->tx_coalesce_usecs)
		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1567 1568 1569 1570

	return 0;
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static int
axienet_ethtools_get_link_ksettings(struct net_device *ndev,
				    struct ethtool_link_ksettings *cmd)
{
	struct axienet_local *lp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
}

static int
axienet_ethtools_set_link_ksettings(struct net_device *ndev,
				    const struct ethtool_link_ksettings *cmd)
{
	struct axienet_local *lp = netdev_priv(ndev);

	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
}

1589 1590 1591 1592 1593 1594 1595
static int axienet_ethtools_nway_reset(struct net_device *dev)
{
	struct axienet_local *lp = netdev_priv(dev);

	return phylink_ethtool_nway_reset(lp->phylink);
}

1596
static const struct ethtool_ops axienet_ethtool_ops = {
1597 1598
	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
				     ETHTOOL_COALESCE_USECS,
1599 1600 1601 1602
	.get_drvinfo    = axienet_ethtools_get_drvinfo,
	.get_regs_len   = axienet_ethtools_get_regs_len,
	.get_regs       = axienet_ethtools_get_regs,
	.get_link       = ethtool_op_get_link,
1603 1604
	.get_ringparam	= axienet_ethtools_get_ringparam,
	.set_ringparam	= axienet_ethtools_set_ringparam,
1605 1606 1607 1608
	.get_pauseparam = axienet_ethtools_get_pauseparam,
	.set_pauseparam = axienet_ethtools_set_pauseparam,
	.get_coalesce   = axienet_ethtools_get_coalesce,
	.set_coalesce   = axienet_ethtools_set_coalesce,
1609 1610
	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1611
	.nway_reset	= axienet_ethtools_nway_reset,
1612 1613
};

1614
static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1615
{
1616 1617
	return container_of(pcs, struct axienet_local, pcs);
}
1618

1619 1620 1621 1622 1623 1624
static void axienet_pcs_get_state(struct phylink_pcs *pcs,
				  struct phylink_link_state *state)
{
	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;

	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1625 1626
}

1627
static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1628
{
1629
	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1630

1631
	phylink_mii_c22_pcs_an_restart(pcs_phy);
1632 1633
}

1634 1635 1636 1637
static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
			      phy_interface_t interface,
			      const unsigned long *advertising,
			      bool permit_pause_to_mac)
1638
{
1639 1640
	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1641 1642 1643
	struct axienet_local *lp = netdev_priv(ndev);
	int ret;

1644
	if (lp->switch_x_sgmii) {
1645
		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1646
				    interface == PHY_INTERFACE_MODE_SGMII ?
1647
					XLNX_MII_STD_SELECT_SGMII : 0);
1648 1649 1650
		if (ret < 0) {
			netdev_warn(ndev,
				    "Failed to switch PHY interface: %d\n",
1651
				    ret);
1652 1653
			return ret;
		}
1654
	}
1655 1656 1657 1658 1659 1660

	ret = phylink_mii_c22_pcs_config(pcs_phy, mode, interface, advertising);
	if (ret < 0)
		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);

	return ret;
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670
static const struct phylink_pcs_ops axienet_pcs_ops = {
	.pcs_get_state = axienet_pcs_get_state,
	.pcs_config = axienet_pcs_config,
	.pcs_an_restart = axienet_pcs_an_restart,
};

static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
						  phy_interface_t interface)
1671
{
1672 1673 1674
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);

1675 1676 1677
	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
	    interface ==  PHY_INTERFACE_MODE_SGMII)
		return &lp->pcs;
1678

1679 1680 1681 1682 1683 1684 1685
	return NULL;
}

static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
			       const struct phylink_link_state *state)
{
	/* nothing meaningful to do */
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
}

static void axienet_mac_link_down(struct phylink_config *config,
				  unsigned int mode,
				  phy_interface_t interface)
{
	/* nothing meaningful to do */
}

static void axienet_mac_link_up(struct phylink_config *config,
				struct phy_device *phy,
				unsigned int mode, phy_interface_t interface,
				int speed, int duplex,
				bool tx_pause, bool rx_pause)
1700 1701 1702 1703 1704 1705 1706 1707
{
	struct net_device *ndev = to_net_dev(config->dev);
	struct axienet_local *lp = netdev_priv(ndev);
	u32 emmc_reg, fcc_reg;

	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;

1708
	switch (speed) {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	case SPEED_1000:
		emmc_reg |= XAE_EMMC_LINKSPD_1000;
		break;
	case SPEED_100:
		emmc_reg |= XAE_EMMC_LINKSPD_100;
		break;
	case SPEED_10:
		emmc_reg |= XAE_EMMC_LINKSPD_10;
		break;
	default:
		dev_err(&ndev->dev,
			"Speed other than 10, 100 or 1Gbps is not supported\n");
		break;
	}

	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);

	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1727
	if (tx_pause)
1728 1729 1730
		fcc_reg |= XAE_FCC_FCTX_MASK;
	else
		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1731
	if (rx_pause)
1732 1733 1734 1735 1736 1737 1738
		fcc_reg |= XAE_FCC_FCRX_MASK;
	else
		fcc_reg &= ~XAE_FCC_FCRX_MASK;
	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
}

static const struct phylink_mac_ops axienet_phylink_ops = {
1739
	.validate = phylink_generic_validate,
1740
	.mac_select_pcs = axienet_mac_select_pcs,
1741 1742 1743
	.mac_config = axienet_mac_config,
	.mac_link_down = axienet_mac_link_down,
	.mac_link_up = axienet_mac_link_up,
1744 1745 1746
};

/**
1747 1748
 * axienet_dma_err_handler - Work queue task for Axi DMA Error
 * @work:	pointer to work_struct
1749 1750 1751 1752
 *
 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
 * Tx/Rx BDs.
 */
1753
static void axienet_dma_err_handler(struct work_struct *work)
1754
{
1755
	u32 i;
1756
	u32 axienet_status;
1757
	struct axidma_bd *cur_p;
1758 1759
	struct axienet_local *lp = container_of(work, struct axienet_local,
						dma_err_task);
1760 1761
	struct net_device *ndev = lp->ndev;

1762 1763
	napi_disable(&lp->napi_tx);
	napi_disable(&lp->napi_rx);
1764

1765 1766
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1767 1768

	axienet_dma_stop(lp);
1769

1770
	for (i = 0; i < lp->tx_bd_num; i++) {
1771
		cur_p = &lp->tx_bd_v[i];
1772 1773 1774
		if (cur_p->cntrl) {
			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);

1775
			dma_unmap_single(lp->dev, addr,
1776 1777 1778
					 (cur_p->cntrl &
					  XAXIDMA_BD_CTRL_LENGTH_MASK),
					 DMA_TO_DEVICE);
1779
		}
1780 1781
		if (cur_p->skb)
			dev_kfree_skb_irq(cur_p->skb);
1782
		cur_p->phys = 0;
1783
		cur_p->phys_msb = 0;
1784 1785 1786 1787 1788 1789 1790
		cur_p->cntrl = 0;
		cur_p->status = 0;
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app3 = 0;
		cur_p->app4 = 0;
1791
		cur_p->skb = NULL;
1792 1793
	}

1794
	for (i = 0; i < lp->rx_bd_num; i++) {
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		cur_p = &lp->rx_bd_v[i];
		cur_p->status = 0;
		cur_p->app0 = 0;
		cur_p->app1 = 0;
		cur_p->app2 = 0;
		cur_p->app3 = 0;
		cur_p->app4 = 0;
	}

	lp->tx_bd_ci = 0;
	lp->tx_bd_tail = 0;
	lp->rx_bd_ci = 0;

1808
	axienet_dma_start(lp);
1809 1810 1811 1812 1813 1814 1815 1816

	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
	axienet_status &= ~XAE_RCW1_RX_MASK;
	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);

	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
	if (axienet_status & XAE_INT_RXRJECT_MASK)
		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1817 1818
	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
		    XAE_INT_RECV_ERROR_MASK : 0);
1819 1820 1821
	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);

	/* Sync default options with HW but leave receiver and
1822 1823
	 * transmitter disabled.
	 */
1824 1825 1826 1827 1828
	axienet_setoptions(ndev, lp->options &
			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
	axienet_set_mac_address(ndev, NULL);
	axienet_set_multicast_list(ndev);
	axienet_setoptions(ndev, lp->options);
1829 1830
	napi_enable(&lp->napi_rx);
	napi_enable(&lp->napi_tx);
1831 1832 1833
}

/**
1834
 * axienet_probe - Axi Ethernet probe function.
1835
 * @pdev:	Pointer to platform device structure.
1836
 *
1837
 * Return: 0, on success
1838 1839 1840 1841 1842 1843 1844
 *	    Non-zero error value on failure.
 *
 * This is the probe routine for Axi Ethernet driver. This is called before
 * any other driver routines are invoked. It allocates and sets up the Ethernet
 * device. Parses through device tree and populates fields of
 * axienet_local. It registers the Ethernet device.
 */
1845
static int axienet_probe(struct platform_device *pdev)
1846
{
1847
	int ret;
1848 1849 1850
	struct device_node *np;
	struct axienet_local *lp;
	struct net_device *ndev;
1851
	struct resource *ethres;
1852
	u8 mac_addr[ETH_ALEN];
1853
	int addr_width = 32;
1854
	u32 value;
1855 1856

	ndev = alloc_etherdev(sizeof(*lp));
1857
	if (!ndev)
1858 1859
		return -ENOMEM;

1860
	platform_set_drvdata(pdev, ndev);
1861

1862
	SET_NETDEV_DEV(ndev, &pdev->dev);
1863
	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1864
	ndev->features = NETIF_F_SG;
1865 1866 1867
	ndev->netdev_ops = &axienet_netdev_ops;
	ndev->ethtool_ops = &axienet_ethtool_ops;

1868 1869 1870 1871
	/* MTU range: 64 - 9000 */
	ndev->min_mtu = 64;
	ndev->max_mtu = XAE_JUMBO_MTU;

1872 1873
	lp = netdev_priv(ndev);
	lp->ndev = ndev;
1874
	lp->dev = &pdev->dev;
1875
	lp->options = XAE_OPTION_DEFAULTS;
1876 1877
	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1878

1879 1880 1881
	u64_stats_init(&lp->rx_stat_sync);
	u64_stats_init(&lp->tx_stat_sync);

1882 1883
	netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
	netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893
	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
	if (!lp->axi_clk) {
		/* For backward compatibility, if named AXI clock is not present,
		 * treat the first clock specified as the AXI clock.
		 */
		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
	}
	if (IS_ERR(lp->axi_clk)) {
		ret = PTR_ERR(lp->axi_clk);
1894 1895
		goto free_netdev;
	}
1896
	ret = clk_prepare_enable(lp->axi_clk);
1897
	if (ret) {
1898
		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1899 1900 1901
		goto free_netdev;
	}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	lp->misc_clks[0].id = "axis_clk";
	lp->misc_clks[1].id = "ref_clk";
	lp->misc_clks[2].id = "mgt_clk";

	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
	if (ret)
		goto cleanup_clk;

	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
	if (ret)
		goto cleanup_clk;

1914
	/* Map device registers */
1915
	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1916 1917
	if (IS_ERR(lp->regs)) {
		ret = PTR_ERR(lp->regs);
1918
		goto cleanup_clk;
1919
	}
1920
	lp->regs_start = ethres->start;
1921

1922 1923 1924
	/* Setup checksum offload, but default to off if not specified */
	lp->features = 0;

1925 1926 1927
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
	if (!ret) {
		switch (value) {
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		case 1:
			lp->csum_offload_on_tx_path =
				XAE_FEATURE_PARTIAL_TX_CSUM;
			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
			/* Can checksum TCP/UDP over IPv4. */
			ndev->features |= NETIF_F_IP_CSUM;
			break;
		case 2:
			lp->csum_offload_on_tx_path =
				XAE_FEATURE_FULL_TX_CSUM;
			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
			/* Can checksum TCP/UDP over IPv4. */
			ndev->features |= NETIF_F_IP_CSUM;
			break;
		default:
			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
		}
	}
1946 1947 1948
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
	if (!ret) {
		switch (value) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		case 1:
			lp->csum_offload_on_rx_path =
				XAE_FEATURE_PARTIAL_RX_CSUM;
			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
			break;
		case 2:
			lp->csum_offload_on_rx_path =
				XAE_FEATURE_FULL_RX_CSUM;
			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
			break;
		default:
			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
		}
	}
	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1964 1965 1966 1967 1968
	 * a larger Rx/Tx Memory. Typically, the size must be large so that
	 * we can enable jumbo option and start supporting jumbo frames.
	 * Here we check for memory allocated for Rx/Tx in the hardware from
	 * the device-tree and accordingly set flags.
	 */
1969
	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1970

1971 1972 1973
	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
						   "xlnx,switch-x-sgmii");

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	/* Start with the proprietary, and broken phy_type */
	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
	if (!ret) {
		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
		switch (value) {
		case XAE_PHY_TYPE_MII:
			lp->phy_mode = PHY_INTERFACE_MODE_MII;
			break;
		case XAE_PHY_TYPE_GMII:
			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
			break;
		case XAE_PHY_TYPE_RGMII_2_0:
			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
			break;
		case XAE_PHY_TYPE_SGMII:
			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
			break;
		case XAE_PHY_TYPE_1000BASE_X:
			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
			break;
		default:
			ret = -EINVAL;
1996
			goto cleanup_clk;
1997 1998
		}
	} else {
1999 2000
		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
		if (ret)
2001
			goto cleanup_clk;
2002
	}
2003 2004 2005 2006
	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
		ret = -EINVAL;
2007
		goto cleanup_clk;
2008
	}
2009 2010

	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2011
	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2012 2013 2014 2015 2016 2017 2018 2019
	if (np) {
		struct resource dmares;

		ret = of_address_to_resource(np, 0, &dmares);
		if (ret) {
			dev_err(&pdev->dev,
				"unable to get DMA resource\n");
			of_node_put(np);
2020
			goto cleanup_clk;
2021 2022 2023 2024 2025
		}
		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
						     &dmares);
		lp->rx_irq = irq_of_parse_and_map(np, 1);
		lp->tx_irq = irq_of_parse_and_map(np, 0);
2026
		of_node_put(np);
2027
		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2028 2029
	} else {
		/* Check for these resources directly on the Ethernet node. */
2030
		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2031 2032
		lp->rx_irq = platform_get_irq(pdev, 1);
		lp->tx_irq = platform_get_irq(pdev, 0);
2033
		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2034
	}
2035
	if (IS_ERR(lp->dma_regs)) {
2036
		dev_err(&pdev->dev, "could not map DMA regs\n");
2037
		ret = PTR_ERR(lp->dma_regs);
2038
		goto cleanup_clk;
2039
	}
2040
	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2041
		dev_err(&pdev->dev, "could not determine irqs\n");
2042
		ret = -ENOMEM;
2043
		goto cleanup_clk;
2044 2045
	}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	/* Autodetect the need for 64-bit DMA pointers.
	 * When the IP is configured for a bus width bigger than 32 bits,
	 * writing the MSB registers is mandatory, even if they are all 0.
	 * We can detect this case by writing all 1's to one such register
	 * and see if that sticks: when the IP is configured for 32 bits
	 * only, those registers are RES0.
	 * Those MSB registers were introduced in IP v7.1, which we check first.
	 */
	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;

		iowrite32(0x0, desc);
		if (ioread32(desc) == 0) {	/* sanity check */
			iowrite32(0xffffffff, desc);
			if (ioread32(desc) > 0) {
				lp->features |= XAE_FEATURE_DMA_64BIT;
2062
				addr_width = 64;
2063 2064 2065 2066 2067 2068
				dev_info(&pdev->dev,
					 "autodetected 64-bit DMA range\n");
			}
			iowrite32(0x0, desc);
		}
	}
2069 2070
	if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
		dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2071
		ret = -EINVAL;
2072 2073
		goto cleanup_clk;
	}
2074

2075 2076 2077
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
	if (ret) {
		dev_err(&pdev->dev, "No suitable DMA available\n");
2078
		goto cleanup_clk;
2079 2080
	}

2081 2082 2083 2084
	/* Check for Ethernet core IRQ (optional) */
	if (lp->eth_irq <= 0)
		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");

2085
	/* Retrieve the MAC address */
2086 2087 2088 2089 2090 2091 2092
	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
	if (!ret) {
		axienet_set_mac_address(ndev, mac_addr);
	} else {
		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
			 ret);
		axienet_set_mac_address(ndev, NULL);
2093 2094 2095
	}

	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2096
	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2097
	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2098
	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2099

2100 2101 2102 2103 2104
	/* Reset core now that clocks are enabled, prior to accessing MDIO */
	ret = __axienet_device_reset(lp);
	if (ret)
		goto cleanup_clk;

2105 2106 2107 2108 2109
	ret = axienet_mdio_setup(lp);
	if (ret)
		dev_warn(&pdev->dev,
			 "error registering MDIO bus: %d\n", ret);

2110 2111
	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2112
		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2113
		if (!np) {
2114 2115 2116 2117 2118 2119 2120 2121
			/* Deprecated: Always use "pcs-handle" for pcs_phy.
			 * Falling back to "phy-handle" here is only for
			 * backward compatibility with old device trees.
			 */
			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
		}
		if (!np) {
			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2122
			ret = -EINVAL;
2123
			goto cleanup_mdio;
2124
		}
2125
		lp->pcs_phy = of_mdio_find_device(np);
2126 2127
		if (!lp->pcs_phy) {
			ret = -EPROBE_DEFER;
2128
			of_node_put(np);
2129
			goto cleanup_mdio;
2130
		}
2131
		of_node_put(np);
2132 2133
		lp->pcs.ops = &axienet_pcs_ops;
		lp->pcs.poll = true;
2134
	}
2135

2136 2137
	lp->phylink_config.dev = &ndev->dev;
	lp->phylink_config.type = PHYLINK_NETDEV;
2138 2139
	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
		MAC_10FD | MAC_100FD | MAC_1000FD;
2140

2141 2142 2143 2144 2145 2146 2147 2148
	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
	if (lp->switch_x_sgmii) {
		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
			  lp->phylink_config.supported_interfaces);
		__set_bit(PHY_INTERFACE_MODE_SGMII,
			  lp->phylink_config.supported_interfaces);
	}

2149 2150 2151 2152 2153 2154
	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
				     lp->phy_mode,
				     &axienet_phylink_ops);
	if (IS_ERR(lp->phylink)) {
		ret = PTR_ERR(lp->phylink);
		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2155
		goto cleanup_mdio;
2156 2157
	}

2158 2159 2160
	ret = register_netdev(lp->ndev);
	if (ret) {
		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2161
		goto cleanup_phylink;
2162 2163 2164 2165
	}

	return 0;

2166 2167 2168 2169 2170 2171 2172 2173 2174
cleanup_phylink:
	phylink_destroy(lp->phylink);

cleanup_mdio:
	if (lp->pcs_phy)
		put_device(&lp->pcs_phy->dev);
	if (lp->mii_bus)
		axienet_mdio_teardown(lp);
cleanup_clk:
2175 2176
	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
	clk_disable_unprepare(lp->axi_clk);
2177

2178
free_netdev:
2179
	free_netdev(ndev);
2180

2181 2182 2183
	return ret;
}

2184
static int axienet_remove(struct platform_device *pdev)
2185
{
2186
	struct net_device *ndev = platform_get_drvdata(pdev);
2187 2188 2189
	struct axienet_local *lp = netdev_priv(ndev);

	unregister_netdev(ndev);
2190 2191 2192 2193

	if (lp->phylink)
		phylink_destroy(lp->phylink);

2194 2195 2196
	if (lp->pcs_phy)
		put_device(&lp->pcs_phy->dev);

2197
	axienet_mdio_teardown(lp);
2198

2199 2200
	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
	clk_disable_unprepare(lp->axi_clk);
2201

2202 2203 2204 2205 2206
	free_netdev(ndev);

	return 0;
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static void axienet_shutdown(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);

	rtnl_lock();
	netif_device_detach(ndev);

	if (netif_running(ndev))
		dev_close(ndev);

	rtnl_unlock();
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static int axienet_suspend(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);

	if (!netif_running(ndev))
		return 0;

	netif_device_detach(ndev);

	rtnl_lock();
	axienet_stop(ndev);
	rtnl_unlock();

	return 0;
}

static int axienet_resume(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);

	if (!netif_running(ndev))
		return 0;

	rtnl_lock();
	axienet_open(ndev);
	rtnl_unlock();

	netif_device_attach(ndev);

	return 0;
}

static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
				axienet_suspend, axienet_resume);

2255 2256 2257
static struct platform_driver axienet_driver = {
	.probe = axienet_probe,
	.remove = axienet_remove,
2258
	.shutdown = axienet_shutdown,
2259 2260
	.driver = {
		 .name = "xilinx_axienet",
2261
		 .pm = &axienet_pm_ops,
2262 2263 2264 2265
		 .of_match_table = axienet_of_match,
	},
};

2266
module_platform_driver(axienet_driver);
2267 2268 2269 2270

MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
MODULE_AUTHOR("Xilinx");
MODULE_LICENSE("GPL");