stmmac_main.c 196 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

6
	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 8 9 10 11 12 13 14 15 16


  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

17
#include <linux/clk.h>
18 19 20 21 22 23 24 25 26
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
27
#include <linux/if.h>
28 29
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
30
#include <linux/slab.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/prefetch.h>
33
#include <linux/pinctrl/consumer.h>
34
#ifdef CONFIG_DEBUG_FS
35 36
#include <linux/debugfs.h>
#include <linux/seq_file.h>
37
#endif /* CONFIG_DEBUG_FS */
38
#include <linux/net_tstamp.h>
39
#include <linux/phylink.h>
40
#include <linux/udp.h>
41
#include <linux/bpf_trace.h>
42
#include <net/pkt_cls.h>
43
#include <net/xdp_sock_drv.h>
44
#include "stmmac_ptp.h"
45
#include "stmmac.h"
46
#include "stmmac_xdp.h"
47
#include <linux/reset.h>
48
#include <linux/of_mdio.h>
49
#include "dwmac1000.h"
50
#include "dwxgmac2.h"
51
#include "hwif.h"
52

53
#define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
Alexandre TORGUE's avatar
Alexandre TORGUE committed
54
#define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
55 56

/* Module parameters */
57
#define TX_TIMEO	5000
58
static int watchdog = TX_TIMEO;
59
module_param(watchdog, int, 0644);
60
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61

62
static int debug = -1;
63
module_param(debug, int, 0644);
64
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65

66
static int phyaddr = -1;
67
module_param(phyaddr, int, 0444);
68 69
MODULE_PARM_DESC(phyaddr, "Physical device address");

70 71
#define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
#define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
72

73 74 75
/* Limit to make sure XDP TX and slow path can coexist */
#define STMMAC_XSK_TX_BUDGET_MAX	256
#define STMMAC_TX_XSK_AVAIL		16
76 77
#define STMMAC_RX_FILL_BATCH		16

78 79
#define STMMAC_XDP_PASS		0
#define STMMAC_XDP_CONSUMED	BIT(0)
80
#define STMMAC_XDP_TX		BIT(1)
81
#define STMMAC_XDP_REDIRECT	BIT(2)
82

83
static int flow_ctrl = FLOW_AUTO;
84
module_param(flow_ctrl, int, 0644);
85 86 87
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
88
module_param(pause, int, 0644);
89 90 91 92
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
93
module_param(tc, int, 0644);
94 95
MODULE_PARM_DESC(tc, "DMA threshold control value");

96 97
#define	DEFAULT_BUFSIZE	1536
static int buf_sz = DEFAULT_BUFSIZE;
98
module_param(buf_sz, int, 0644);
99 100
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

101 102
#define	STMMAC_RX_COPYBREAK	256

103 104 105 106
static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

107 108
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109
module_param(eee_timer, int, 0644);
110
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111
#define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112

113 114
/* By default the driver will use the ring mode to manage tx and rx descriptors,
 * but allow user to force to use the chain instead of the ring
115 116
 */
static unsigned int chain_mode;
117
module_param(chain_mode, int, 0444);
118 119
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");

120
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 122 123 124 125
/* For MSI interrupts handling */
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 127
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128

129
#ifdef CONFIG_DEBUG_FS
130
static const struct net_device_ops stmmac_netdev_ops;
131
static void stmmac_init_fs(struct net_device *dev);
132
static void stmmac_exit_fs(struct net_device *dev);
133 134
#endif

135
#define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136

137 138 139 140 141 142 143 144 145 146 147 148 149
int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
{
	int ret = 0;

	if (enabled) {
		ret = clk_prepare_enable(priv->plat->stmmac_clk);
		if (ret)
			return ret;
		ret = clk_prepare_enable(priv->plat->pclk);
		if (ret) {
			clk_disable_unprepare(priv->plat->stmmac_clk);
			return ret;
		}
150 151 152 153 154 155 156 157
		if (priv->plat->clks_config) {
			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
			if (ret) {
				clk_disable_unprepare(priv->plat->stmmac_clk);
				clk_disable_unprepare(priv->plat->pclk);
				return ret;
			}
		}
158 159 160
	} else {
		clk_disable_unprepare(priv->plat->stmmac_clk);
		clk_disable_unprepare(priv->plat->pclk);
161 162
		if (priv->plat->clks_config)
			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163 164 165 166 167 168
	}

	return ret;
}
EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);

169 170
/**
 * stmmac_verify_args - verify the driver parameters.
171 172
 * Description: it checks the driver parameters and set a default in case of
 * errors.
173 174 175 176 177
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
178 179
	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DEFAULT_BUFSIZE;
180 181 182 183 184 185
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
186 187
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 189
}

190
static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 192
{
	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193 194
	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195 196
	u32 queue;

197 198
	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];
199

200 201 202 203 204 205
		if (stmmac_xdp_is_enabled(priv) &&
		    test_bit(queue, priv->af_xdp_zc_qps)) {
			napi_disable(&ch->rxtx_napi);
			continue;
		}

206 207 208 209
		if (queue < rx_queues_cnt)
			napi_disable(&ch->rx_napi);
		if (queue < tx_queues_cnt)
			napi_disable(&ch->tx_napi);
210 211 212
	}
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/**
 * stmmac_disable_all_queues - Disable all queues
 * @priv: driver private structure
 */
static void stmmac_disable_all_queues(struct stmmac_priv *priv)
{
	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
	struct stmmac_rx_queue *rx_q;
	u32 queue;

	/* synchronize_rcu() needed for pending XDP buffers to drain */
	for (queue = 0; queue < rx_queues_cnt; queue++) {
		rx_q = &priv->rx_queue[queue];
		if (rx_q->xsk_pool) {
			synchronize_rcu();
			break;
		}
	}

	__stmmac_disable_all_queues(priv);
}

235 236 237 238 239 240 241
/**
 * stmmac_enable_all_queues - Enable all queues
 * @priv: driver private structure
 */
static void stmmac_enable_all_queues(struct stmmac_priv *priv)
{
	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242 243
	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244 245
	u32 queue;

246 247
	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];
248

249 250 251 252 253 254
		if (stmmac_xdp_is_enabled(priv) &&
		    test_bit(queue, priv->af_xdp_zc_qps)) {
			napi_enable(&ch->rxtx_napi);
			continue;
		}

255 256 257 258
		if (queue < rx_queues_cnt)
			napi_enable(&ch->rx_napi);
		if (queue < tx_queues_cnt)
			napi_enable(&ch->tx_napi);
259 260 261
	}
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275
static void stmmac_service_event_schedule(struct stmmac_priv *priv)
{
	if (!test_bit(STMMAC_DOWN, &priv->state) &&
	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
		queue_work(priv->wq, &priv->service_task);
}

static void stmmac_global_err(struct stmmac_priv *priv)
{
	netif_carrier_off(priv->dev);
	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
	stmmac_service_event_schedule(priv);
}

276 277 278 279 280 281 282 283 284 285 286 287
/**
 * stmmac_clk_csr_set - dynamically set the MDC clock
 * @priv: driver private structure
 * Description: this is to dynamically set the MDC clock according to the csr
 * clock input.
 * Note:
 *	If a specific clk_csr value is passed from the platform
 *	this means that the CSR Clock Range selection cannot be
 *	changed at run-time and it is fixed (as reported in the driver
 *	documentation). Viceversa the driver will try to set the MDC
 *	clock dynamically according to the actual clock input.
 */
288 289 290 291
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

292
	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293 294

	/* Platform provided default clk_csr would be assumed valid
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
295 296 297 298 299 300
	 * for all other cases except for the below mentioned ones.
	 * For values higher than the IEEE 802.3 specified frequency
	 * we can not estimate the proper divider as it is not known
	 * the frequency of clk_csr_i. So we do not change the default
	 * divider.
	 */
301 302 303 304 305 306 307 308 309 310 311
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
312
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
313
			priv->clk_csr = STMMAC_CSR_250_300M;
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
314
	}
315 316 317 318 319 320 321 322 323 324 325

	if (priv->plat->has_sun8i) {
		if (clk_rate > 160000000)
			priv->clk_csr = 0x03;
		else if (clk_rate > 80000000)
			priv->clk_csr = 0x02;
		else if (clk_rate > 40000000)
			priv->clk_csr = 0x01;
		else
			priv->clk_csr = 0;
	}
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

	if (priv->plat->has_xgmac) {
		if (clk_rate > 400000000)
			priv->clk_csr = 0x5;
		else if (clk_rate > 350000000)
			priv->clk_csr = 0x4;
		else if (clk_rate > 300000000)
			priv->clk_csr = 0x3;
		else if (clk_rate > 250000000)
			priv->clk_csr = 0x2;
		else if (clk_rate > 150000000)
			priv->clk_csr = 0x1;
		else
			priv->clk_csr = 0x0;
	}
341 342
}

343 344
static void print_pkt(unsigned char *buf, int len)
{
345 346
	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 348
}

349
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350
{
351
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352
	u32 avail;
353

354 355
	if (tx_q->dirty_tx > tx_q->cur_tx)
		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356
	else
357
		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358 359 360 361

	return avail;
}

362 363 364 365 366 367
/**
 * stmmac_rx_dirty - Get RX queue dirty
 * @priv: driver private structure
 * @queue: RX queue index
 */
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368
{
369
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370
	u32 dirty;
371

372 373
	if (rx_q->dirty_rx <= rx_q->cur_rx)
		dirty = rx_q->cur_rx - rx_q->dirty_rx;
374
	else
375
		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376 377

	return dirty;
378 379
}

380 381 382 383 384 385 386 387 388 389
static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
{
	int tx_lpi_timer;

	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
	priv->eee_sw_timer_en = en ? 0 : 1;
	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
}

390
/**
391
 * stmmac_enable_eee_mode - check and enter in LPI mode
392
 * @priv: driver private structure
393 394
 * Description: this function is to verify and enter in LPI mode in case of
 * EEE.
395
 */
396 397
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
398 399 400 401 402 403 404 405 406 407 408
	u32 tx_cnt = priv->plat->tx_queues_to_use;
	u32 queue;

	/* check if all TX queues have the work finished */
	for (queue = 0; queue < tx_cnt; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

		if (tx_q->dirty_tx != tx_q->cur_tx)
			return; /* still unfinished work */
	}

409
	/* Check and enter in LPI mode */
410
	if (!priv->tx_path_in_lpi_mode)
411 412
		stmmac_set_eee_mode(priv, priv->hw,
				priv->plat->en_tx_lpi_clockgating);
413 414
}

415
/**
416
 * stmmac_disable_eee_mode - disable and exit from LPI mode
417 418 419 420
 * @priv: driver private structure
 * Description: this function is to exit and disable EEE in case of
 * LPI state is true. This is called by the xmit.
 */
421 422
void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
423 424 425 426 427
	if (!priv->eee_sw_timer_en) {
		stmmac_lpi_entry_timer_config(priv, 0);
		return;
	}

428
	stmmac_reset_eee_mode(priv, priv->hw);
429 430 431 432 433
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
434
 * stmmac_eee_ctrl_timer - EEE TX SW timer.
435
 * @t:  timer_list struct containing private info
436
 * Description:
437
 *  if there is no data transfer and if we are not in LPI state,
438 439
 *  then MAC Transmitter can be moved to LPI state.
 */
440
static void stmmac_eee_ctrl_timer(struct timer_list *t)
441
{
442
	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443 444

	stmmac_enable_eee_mode(priv);
445
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 447 448
}

/**
449
 * stmmac_eee_init - init EEE
450
 * @priv: driver private structure
451
 * Description:
452 453 454
 *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
 *  can also manage EEE, this function enable the LPI state and start related
 *  timer.
455 456 457
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
458
	int eee_tw_timer = priv->eee_tw_timer;
459

Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
460 461 462
	/* Using PCS we cannot dial with the phy registers at this stage
	 * so we do not support extra feature like EEE.
	 */
463 464
	if (priv->hw->pcs == STMMAC_PCS_TBI ||
	    priv->hw->pcs == STMMAC_PCS_RTBI)
465
		return false;
466

467 468 469 470 471
	/* Check if MAC core supports the EEE feature. */
	if (!priv->dma_cap.eee)
		return false;

	mutex_lock(&priv->lock);
472

473
	/* Check if it needs to be deactivated */
474 475 476
	if (!priv->eee_active) {
		if (priv->eee_enabled) {
			netdev_dbg(priv->dev, "disable EEE\n");
477
			stmmac_lpi_entry_timer_config(priv, 0);
478
			del_timer_sync(&priv->eee_ctrl_timer);
479
			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480
		}
481
		mutex_unlock(&priv->lock);
482
		return false;
483
	}
484 485 486 487

	if (priv->eee_active && !priv->eee_enabled) {
		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
488
				     eee_tw_timer);
489 490
	}

491 492 493 494 495 496 497 498 499
	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
		del_timer_sync(&priv->eee_ctrl_timer);
		priv->tx_path_in_lpi_mode = false;
		stmmac_lpi_entry_timer_config(priv, 1);
	} else {
		stmmac_lpi_entry_timer_config(priv, 0);
		mod_timer(&priv->eee_ctrl_timer,
			  STMMAC_LPI_T(priv->tx_lpi_timer));
	}
500

501 502 503
	mutex_unlock(&priv->lock);
	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
	return true;
504 505
}

506
/* stmmac_get_tx_hwtstamp - get HW TX timestamps
507
 * @priv: driver private structure
508
 * @p : descriptor pointer
509 510 511 512 513 514
 * @skb : the socket buffer
 * Description :
 * This function will read timestamp from the descriptor & pass it to stack.
 * and also perform some sanity checks.
 */
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
515
				   struct dma_desc *p, struct sk_buff *skb)
516 517
{
	struct skb_shared_hwtstamps shhwtstamp;
518
	bool found = false;
519
	s64 adjust = 0;
520
	u64 ns = 0;
521 522 523 524

	if (!priv->hwts_tx_en)
		return;

Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
525
	/* exit if skb doesn't support hw tstamp */
526
	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
527 528 529
		return;

	/* check tx tstamp status */
530 531
	if (stmmac_get_tx_timestamp_status(priv, p)) {
		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
532 533 534 535
		found = true;
	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
		found = true;
	}
536

537
	if (found) {
538 539 540 541 542 543 544
		/* Correct the clk domain crossing(CDC) error */
		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
			adjust += -(2 * (NSEC_PER_SEC /
					 priv->plat->clk_ptp_rate));
			ns += adjust;
		}

545 546
		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
		shhwtstamp.hwtstamp = ns_to_ktime(ns);
547

548
		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
549 550 551
		/* pass tstamp to stack */
		skb_tstamp_tx(skb, &shhwtstamp);
	}
552 553
}

554
/* stmmac_get_rx_hwtstamp - get HW RX timestamps
555
 * @priv: driver private structure
556 557
 * @p : descriptor pointer
 * @np : next descriptor pointer
558 559 560 561 562
 * @skb : the socket buffer
 * Description :
 * This function will read received packet's timestamp from the descriptor
 * and pass it to stack. It also perform some sanity checks.
 */
563 564
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
				   struct dma_desc *np, struct sk_buff *skb)
565 566
{
	struct skb_shared_hwtstamps *shhwtstamp = NULL;
567
	struct dma_desc *desc = p;
568
	u64 adjust = 0;
569
	u64 ns = 0;
570 571 572

	if (!priv->hwts_rx_en)
		return;
573
	/* For GMAC4, the valid timestamp is from CTX next desc. */
574
	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
575
		desc = np;
576

577
	/* Check if timestamp is available */
578 579
	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
580 581 582 583 584 585 586

		/* Correct the clk domain crossing(CDC) error */
		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
			adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
			ns -= adjust;
		}

587
		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
588 589 590 591
		shhwtstamp = skb_hwtstamps(skb);
		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
		shhwtstamp->hwtstamp = ns_to_ktime(ns);
	} else  {
592
		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
593
	}
594 595 596
}

/**
597
 *  stmmac_hwtstamp_set - control hardware timestamping.
598
 *  @dev: device pointer.
599
 *  @ifr: An IOCTL specific structure, that can contain a pointer to
600 601 602 603 604 605 606
 *  a proprietary structure used to pass information to the driver.
 *  Description:
 *  This function configures the MAC to enable/disable both outgoing(TX)
 *  and incoming(RX) packets time stamping based on user input.
 *  Return Value:
 *  0 on success and an appropriate -ve integer on failure.
 */
607
static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
608 609 610
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct hwtstamp_config config;
611
	struct timespec64 now;
612 613 614 615 616 617 618 619 620
	u64 temp = 0;
	u32 ptp_v2 = 0;
	u32 tstamp_all = 0;
	u32 ptp_over_ipv4_udp = 0;
	u32 ptp_over_ipv6_udp = 0;
	u32 ptp_over_ethernet = 0;
	u32 snap_type_sel = 0;
	u32 ts_master_en = 0;
	u32 ts_event_en = 0;
621
	u32 sec_inc = 0;
622
	u32 value = 0;
623 624 625
	bool xmac;

	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
626 627 628 629 630 631 632 633 634 635

	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
		netdev_alert(priv->dev, "No support for HW time stamping\n");
		priv->hwts_tx_en = 0;
		priv->hwts_rx_en = 0;

		return -EOPNOTSUPP;
	}

	if (copy_from_user(&config, ifr->ifr_data,
636
			   sizeof(config)))
637 638
		return -EFAULT;

639 640
	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
		   __func__, config.flags, config.tx_type, config.rx_filter);
641 642 643 644 645

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

646 647
	if (config.tx_type != HWTSTAMP_TX_OFF &&
	    config.tx_type != HWTSTAMP_TX_ON)
648 649 650 651 652
		return -ERANGE;

	if (priv->adv_ts) {
		switch (config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
653
			/* time stamp no incoming packet at all */
654 655 656 657
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;

		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
658
			/* PTP v1, UDP, any kind of event packet */
659
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 661 662 663 664 665 666
			/* 'xmac' hardware can support Sync, Pdelay_Req and
			 * Pdelay_resp by setting bit14 and bits17/16 to 01
			 * This leaves Delay_Req timestamps out.
			 * Enable all events *and* general purpose message
			 * timestamping
			 */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 668 669 670 671
			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
672
			/* PTP v1, UDP, Sync packet */
673 674 675 676 677 678 679 680 681
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
682
			/* PTP v1, UDP, Delay_req packet */
683 684 685 686 687 688 689 690 691 692
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
693
			/* PTP v2, UDP, any kind of event packet */
694 695 696
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for all event messages */
697
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 699 700 701 702 703

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
704
			/* PTP v2, UDP, Sync packet */
705 706 707 708 709 710 711 712 713 714
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
715
			/* PTP v2, UDP, Delay_req packet */
716 717 718 719 720 721 722 723 724 725 726
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_EVENT:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
727
			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 729
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
730
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 732
			if (priv->synopsys_id != DWMAC_CORE_5_10)
				ts_event_en = PTP_TCR_TSEVNTENA;
733 734 735 736 737 738
			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_SYNC:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
739
			/* PTP v2/802.AS1, any layer, Sync packet */
740 741 742 743 744 745 746 747 748 749 750
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
751
			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 753 754 755 756 757 758 759 760 761 762
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

763
		case HWTSTAMP_FILTER_NTP_ALL:
764
		case HWTSTAMP_FILTER_ALL:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
765
			/* time stamp any incoming packet */
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
			config.rx_filter = HWTSTAMP_FILTER_ALL;
			tstamp_all = PTP_TCR_TSENALL;
			break;

		default:
			return -ERANGE;
		}
	} else {
		switch (config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;
		default:
			/* PTP v1, UDP, any kind of event packet */
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
			break;
		}
	}
	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785
	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 787

	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
788
		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
789 790
	else {
		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
791 792 793
			 tstamp_all | ptp_v2 | ptp_over_ethernet |
			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
			 ts_master_en | snap_type_sel);
794
		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
795 796

		/* program Sub Second Increment reg */
797 798
		stmmac_config_sub_second_increment(priv,
				priv->ptpaddr, priv->plat->clk_ptp_rate,
799
				xmac, &sec_inc);
800
		temp = div_u64(1000000000ULL, sec_inc);
801

802 803 804 805
		/* Store sub second increment and flags for later use */
		priv->sub_second_inc = sec_inc;
		priv->systime_flags = value;

806 807 808
		/* calculate default added value:
		 * formula is :
		 * addend = (2^32)/freq_div_ratio;
809
		 * where, freq_div_ratio = 1e9ns/sec_inc
810
		 */
811
		temp = (u64)(temp << 32);
812
		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
813
		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
814 815

		/* initialize system time */
816 817 818
		ktime_get_real_ts64(&now);

		/* lower 32 bits of tv_sec are safe until y2106 */
819 820
		stmmac_init_systime(priv, priv->ptpaddr,
				(u32)now.tv_sec, now.tv_nsec);
821 822
	}

823 824
	memcpy(&priv->tstamp_config, &config, sizeof(config));

825
	return copy_to_user(ifr->ifr_data, &config,
826 827 828 829 830 831 832 833 834 835
			    sizeof(config)) ? -EFAULT : 0;
}

/**
 *  stmmac_hwtstamp_get - read hardware timestamping.
 *  @dev: device pointer.
 *  @ifr: An IOCTL specific structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  Description:
 *  This function obtain the current hardware timestamping settings
836
 *  as requested.
837 838 839 840 841 842 843 844 845 846 847
 */
static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct hwtstamp_config *config = &priv->tstamp_config;

	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
		return -EOPNOTSUPP;

	return copy_to_user(ifr->ifr_data, config,
			    sizeof(*config)) ? -EFAULT : 0;
848 849
}

850
/**
851
 * stmmac_init_ptp - init PTP
852
 * @priv: driver private structure
853
 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
854
 * This is done by looking at the HW cap. register.
855
 * This function also registers the ptp driver.
856
 */
857
static int stmmac_init_ptp(struct stmmac_priv *priv)
858
{
859 860
	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;

861 862 863
	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
		return -EOPNOTSUPP;

864
	priv->adv_ts = 0;
865 866
	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
	if (xmac && priv->dma_cap.atime_stamp)
867 868 869
		priv->adv_ts = 1;
	/* Dwmac 3.x core with extend_desc can support adv_ts */
	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
870 871
		priv->adv_ts = 1;

872 873
	if (priv->dma_cap.time_stamp)
		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
874

875 876 877
	if (priv->adv_ts)
		netdev_info(priv->dev,
			    "IEEE 1588-2008 Advanced Timestamp supported\n");
878 879 880

	priv->hwts_tx_en = 0;
	priv->hwts_rx_en = 0;
881

882 883 884
	stmmac_ptp_register(priv);

	return 0;
885 886 887 888
}

static void stmmac_release_ptp(struct stmmac_priv *priv)
{
889
	clk_disable_unprepare(priv->plat->clk_ptp_ref);
890
	stmmac_ptp_unregister(priv);
891 892
}

893 894 895
/**
 *  stmmac_mac_flow_ctrl - Configure flow control in all queues
 *  @priv: driver private structure
896
 *  @duplex: duplex passed to the next function
897 898 899 900 901 902
 *  Description: It is used for configuring the flow control in all queues
 */
static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
{
	u32 tx_cnt = priv->plat->tx_queues_to_use;

903 904
	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
			priv->pause, tx_cnt);
905 906
}

907 908 909 910 911
static void stmmac_validate(struct phylink_config *config,
			    unsigned long *supported,
			    struct phylink_link_state *state)
{
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
912
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
913 914 915 916
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
	int tx_cnt = priv->plat->tx_queues_to_use;
	int max_speed = priv->plat->max_speed;

917 918 919 920
	phylink_set(mac_supported, 10baseT_Half);
	phylink_set(mac_supported, 10baseT_Full);
	phylink_set(mac_supported, 100baseT_Half);
	phylink_set(mac_supported, 100baseT_Full);
921 922 923
	phylink_set(mac_supported, 1000baseT_Half);
	phylink_set(mac_supported, 1000baseT_Full);
	phylink_set(mac_supported, 1000baseKX_Full);
924 925 926 927 928 929

	phylink_set(mac_supported, Autoneg);
	phylink_set(mac_supported, Pause);
	phylink_set(mac_supported, Asym_Pause);
	phylink_set_port_modes(mac_supported);

930 931 932 933
	/* Cut down 1G if asked to */
	if ((max_speed > 0) && (max_speed < 1000)) {
		phylink_set(mask, 1000baseT_Full);
		phylink_set(mask, 1000baseX_Full);
934
	} else if (priv->plat->has_xgmac) {
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
		if (!max_speed || (max_speed >= 2500)) {
			phylink_set(mac_supported, 2500baseT_Full);
			phylink_set(mac_supported, 2500baseX_Full);
		}
		if (!max_speed || (max_speed >= 5000)) {
			phylink_set(mac_supported, 5000baseT_Full);
		}
		if (!max_speed || (max_speed >= 10000)) {
			phylink_set(mac_supported, 10000baseSR_Full);
			phylink_set(mac_supported, 10000baseLR_Full);
			phylink_set(mac_supported, 10000baseER_Full);
			phylink_set(mac_supported, 10000baseLRM_Full);
			phylink_set(mac_supported, 10000baseT_Full);
			phylink_set(mac_supported, 10000baseKX4_Full);
			phylink_set(mac_supported, 10000baseKR_Full);
		}
Jose Abreu's avatar
Jose Abreu committed
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
		if (!max_speed || (max_speed >= 25000)) {
			phylink_set(mac_supported, 25000baseCR_Full);
			phylink_set(mac_supported, 25000baseKR_Full);
			phylink_set(mac_supported, 25000baseSR_Full);
		}
		if (!max_speed || (max_speed >= 40000)) {
			phylink_set(mac_supported, 40000baseKR4_Full);
			phylink_set(mac_supported, 40000baseCR4_Full);
			phylink_set(mac_supported, 40000baseSR4_Full);
			phylink_set(mac_supported, 40000baseLR4_Full);
		}
		if (!max_speed || (max_speed >= 50000)) {
			phylink_set(mac_supported, 50000baseCR2_Full);
			phylink_set(mac_supported, 50000baseKR2_Full);
			phylink_set(mac_supported, 50000baseSR2_Full);
			phylink_set(mac_supported, 50000baseKR_Full);
			phylink_set(mac_supported, 50000baseSR_Full);
			phylink_set(mac_supported, 50000baseCR_Full);
			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
			phylink_set(mac_supported, 50000baseDR_Full);
		}
		if (!max_speed || (max_speed >= 100000)) {
			phylink_set(mac_supported, 100000baseKR4_Full);
			phylink_set(mac_supported, 100000baseSR4_Full);
			phylink_set(mac_supported, 100000baseCR4_Full);
			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
			phylink_set(mac_supported, 100000baseKR2_Full);
			phylink_set(mac_supported, 100000baseSR2_Full);
			phylink_set(mac_supported, 100000baseCR2_Full);
			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
			phylink_set(mac_supported, 100000baseDR2_Full);
		}
983 984 985 986 987 988 989 990 991
	}

	/* Half-Duplex can only work with single queue */
	if (tx_cnt > 1) {
		phylink_set(mask, 10baseT_Half);
		phylink_set(mask, 100baseT_Half);
		phylink_set(mask, 1000baseT_Half);
	}

992 993 994 995 996
	linkmode_and(supported, supported, mac_supported);
	linkmode_andnot(supported, supported, mask);

	linkmode_and(state->advertising, state->advertising, mac_supported);
	linkmode_andnot(state->advertising, state->advertising, mask);
997 998 999

	/* If PCS is supported, check which modes it supports. */
	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
1000 1001
}

1002 1003
static void stmmac_mac_pcs_get_state(struct phylink_config *config,
				     struct phylink_link_state *state)
1004
{
1005 1006
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));

1007
	state->link = 0;
1008
	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
1009 1010
}

1011 1012
static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
			      const struct phylink_link_state *state)
1013
{
1014 1015 1016
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));

	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
1017 1018 1019 1020 1021 1022 1023
}

static void stmmac_mac_an_restart(struct phylink_config *config)
{
	/* Not Supported */
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
{
	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
	bool *hs_enable = &fpe_cfg->hs_enable;

	if (is_up && *hs_enable) {
		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
	} else {
		*lo_state = FPE_EVENT_UNKNOWN;
		*lp_state = FPE_EVENT_UNKNOWN;
	}
}

1039 1040 1041 1042 1043 1044 1045
static void stmmac_mac_link_down(struct phylink_config *config,
				 unsigned int mode, phy_interface_t interface)
{
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));

	stmmac_mac_set(priv, priv->ioaddr, false);
	priv->eee_active = false;
1046
	priv->tx_lpi_enabled = false;
1047 1048
	stmmac_eee_init(priv);
	stmmac_set_eee_pls(priv, priv->hw, false);
1049

1050 1051
	if (priv->dma_cap.fpesel)
		stmmac_fpe_link_state_handle(priv, false);
1052 1053 1054 1055 1056 1057 1058
}

static void stmmac_mac_link_up(struct phylink_config *config,
			       struct phy_device *phy,
			       unsigned int mode, phy_interface_t interface,
			       int speed, int duplex,
			       bool tx_pause, bool rx_pause)
1059
{
1060
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1061 1062
	u32 ctrl;

1063 1064
	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);

1065
	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1066
	ctrl &= ~priv->hw->link.speed_mask;
1067

1068 1069
	if (interface == PHY_INTERFACE_MODE_USXGMII) {
		switch (speed) {
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		case SPEED_10000:
			ctrl |= priv->hw->link.xgmii.speed10000;
			break;
		case SPEED_5000:
			ctrl |= priv->hw->link.xgmii.speed5000;
			break;
		case SPEED_2500:
			ctrl |= priv->hw->link.xgmii.speed2500;
			break;
		default:
			return;
		}
Jose Abreu's avatar
Jose Abreu committed
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
		switch (speed) {
		case SPEED_100000:
			ctrl |= priv->hw->link.xlgmii.speed100000;
			break;
		case SPEED_50000:
			ctrl |= priv->hw->link.xlgmii.speed50000;
			break;
		case SPEED_40000:
			ctrl |= priv->hw->link.xlgmii.speed40000;
			break;
		case SPEED_25000:
			ctrl |= priv->hw->link.xlgmii.speed25000;
			break;
		case SPEED_10000:
			ctrl |= priv->hw->link.xgmii.speed10000;
			break;
		case SPEED_2500:
			ctrl |= priv->hw->link.speed2500;
			break;
		case SPEED_1000:
			ctrl |= priv->hw->link.speed1000;
			break;
		default:
			return;
		}
1108
	} else {
1109
		switch (speed) {
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		case SPEED_2500:
			ctrl |= priv->hw->link.speed2500;
			break;
		case SPEED_1000:
			ctrl |= priv->hw->link.speed1000;
			break;
		case SPEED_100:
			ctrl |= priv->hw->link.speed100;
			break;
		case SPEED_10:
			ctrl |= priv->hw->link.speed10;
			break;
		default:
			return;
		}
1125 1126
	}

1127
	priv->speed = speed;
1128

1129
	if (priv->plat->fix_mac_speed)
1130
		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1131

1132
	if (!duplex)
1133 1134 1135
		ctrl &= ~priv->hw->link.duplex;
	else
		ctrl |= priv->hw->link.duplex;
1136 1137

	/* Flow Control operation */
1138 1139
	if (tx_pause && rx_pause)
		stmmac_mac_flow_ctrl(priv, duplex);
1140 1141 1142 1143

	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);

	stmmac_mac_set(priv, priv->ioaddr, true);
1144
	if (phy && priv->dma_cap.eee) {
1145 1146
		priv->eee_active = phy_init_eee(phy, 1) >= 0;
		priv->eee_enabled = stmmac_eee_init(priv);
1147
		priv->tx_lpi_enabled = priv->eee_enabled;
1148 1149
		stmmac_set_eee_pls(priv, priv->hw, true);
	}
1150

1151 1152
	if (priv->dma_cap.fpesel)
		stmmac_fpe_link_state_handle(priv, true);
1153 1154
}

1155
static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1156
	.validate = stmmac_validate,
1157
	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1158
	.mac_config = stmmac_mac_config,
1159
	.mac_an_restart = stmmac_mac_an_restart,
1160 1161
	.mac_link_down = stmmac_mac_link_down,
	.mac_link_up = stmmac_mac_link_up,
1162 1163
};

1164
/**
1165
 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1166 1167 1168 1169 1170
 * @priv: driver private structure
 * Description: this is to verify if the HW supports the PCS.
 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
 * configured for the TBI, RTBI, or SGMII PHY interface.
 */
1171 1172 1173 1174 1175
static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
{
	int interface = priv->plat->interface;

	if (priv->dma_cap.pcs) {
Byungho An's avatar
Byungho An committed
1176 1177 1178 1179
		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1180
			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1181
			priv->hw->pcs = STMMAC_PCS_RGMII;
Byungho An's avatar
Byungho An committed
1182
		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1183
			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1184
			priv->hw->pcs = STMMAC_PCS_SGMII;
1185 1186 1187 1188
		}
	}
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1200 1201
	struct device_node *node;
	int ret;
1202

1203
	node = priv->plat->phylink_node;
1204

1205
	if (node)
1206
		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1207 1208 1209 1210 1211

	/* Some DT bindings do not set-up the PHY handle. Let's try to
	 * manually parse it
	 */
	if (!node || ret) {
1212 1213
		int addr = priv->plat->phy_addr;
		struct phy_device *phydev;
1214

1215 1216 1217
		phydev = mdiobus_get_phy(priv->mii, addr);
		if (!phydev) {
			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1218
			return -ENODEV;
1219
		}
1220

1221
		ret = phylink_connect_phy(priv->phylink, phydev);
1222 1223
	}

1224 1225 1226 1227 1228 1229
	if (!priv->plat->pmt) {
		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };

		phylink_ethtool_get_wol(priv->phylink, &wol);
		device_set_wakeup_capable(priv->device, !!wol.supported);
	}
1230

1231 1232
	return ret;
}
1233

1234 1235
static int stmmac_phy_setup(struct stmmac_priv *priv)
{
1236
	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1237
	int mode = priv->plat->phy_interface;
1238
	struct phylink *phylink;
1239

1240 1241
	priv->phylink_config.dev = &priv->dev->dev;
	priv->phylink_config.type = PHYLINK_NETDEV;
1242
	priv->phylink_config.pcs_poll = true;
1243 1244
	priv->phylink_config.ovr_an_inband =
		priv->plat->mdio_bus_data->xpcs_an_inband;
1245

1246 1247 1248
	if (!fwnode)
		fwnode = dev_fwnode(priv->device);

1249
	phylink = phylink_create(&priv->phylink_config, fwnode,
1250 1251 1252
				 mode, &stmmac_phylink_mac_ops);
	if (IS_ERR(phylink))
		return PTR_ERR(phylink);
1253

1254
	priv->phylink = phylink;
1255 1256 1257
	return 0;
}

1258
static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1259
{
1260
	u32 rx_cnt = priv->plat->rx_queues_to_use;
1261
	unsigned int desc_size;
1262
	void *head_rx;
1263
	u32 queue;
1264

1265 1266 1267
	/* Display RX rings */
	for (queue = 0; queue < rx_cnt; queue++) {
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1268

1269 1270
		pr_info("\tRX Queue %u rings\n", queue);

1271
		if (priv->extend_desc) {
1272
			head_rx = (void *)rx_q->dma_erx;
1273 1274
			desc_size = sizeof(struct dma_extended_desc);
		} else {
1275
			head_rx = (void *)rx_q->dma_rx;
1276 1277
			desc_size = sizeof(struct dma_desc);
		}
1278 1279

		/* Display RX ring */
1280 1281
		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
				    rx_q->dma_rx_phy, desc_size);
1282
	}
1283 1284 1285 1286
}

static void stmmac_display_tx_rings(struct stmmac_priv *priv)
{
1287
	u32 tx_cnt = priv->plat->tx_queues_to_use;
1288
	unsigned int desc_size;
1289
	void *head_tx;
1290
	u32 queue;
1291

1292 1293 1294
	/* Display TX rings */
	for (queue = 0; queue < tx_cnt; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1295

1296 1297
		pr_info("\tTX Queue %d rings\n", queue);

1298
		if (priv->extend_desc) {
1299
			head_tx = (void *)tx_q->dma_etx;
1300 1301
			desc_size = sizeof(struct dma_extended_desc);
		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1302
			head_tx = (void *)tx_q->dma_entx;
1303 1304
			desc_size = sizeof(struct dma_edesc);
		} else {
1305
			head_tx = (void *)tx_q->dma_tx;
1306 1307
			desc_size = sizeof(struct dma_desc);
		}
1308

1309 1310
		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
				    tx_q->dma_tx_phy, desc_size);
1311
	}
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321 1322
static void stmmac_display_rings(struct stmmac_priv *priv)
{
	/* Display RX ring */
	stmmac_display_rx_rings(priv);

	/* Display TX ring */
	stmmac_display_tx_rings(priv);
}

1323 1324 1325 1326
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

1327 1328 1329
	if (mtu >= BUF_SIZE_8KiB)
		ret = BUF_SIZE_16KiB;
	else if (mtu >= BUF_SIZE_4KiB)
1330 1331 1332
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
1333
	else if (mtu > DEFAULT_BUFSIZE)
1334 1335
		ret = BUF_SIZE_2KiB;
	else
1336
		ret = DEFAULT_BUFSIZE;
1337 1338 1339 1340

	return ret;
}

1341
/**
1342
 * stmmac_clear_rx_descriptors - clear RX descriptors
1343
 * @priv: driver private structure
1344
 * @queue: RX queue index
1345
 * Description: this function is called to clear the RX descriptors
1346 1347
 * in case of both basic and extended descriptors are used.
 */
1348
static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1349
{
1350
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1351
	int i;
1352

1353
	/* Clear the RX descriptors */
1354
	for (i = 0; i < priv->dma_rx_size; i++)
1355
		if (priv->extend_desc)
1356 1357
			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
					priv->use_riwt, priv->mode,
1358
					(i == priv->dma_rx_size - 1),
1359
					priv->dma_buf_sz);
1360
		else
1361 1362
			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
					priv->use_riwt, priv->mode,
1363
					(i == priv->dma_rx_size - 1),
1364
					priv->dma_buf_sz);
1365 1366 1367 1368 1369
}

/**
 * stmmac_clear_tx_descriptors - clear tx descriptors
 * @priv: driver private structure
1370
 * @queue: TX queue index.
1371 1372 1373
 * Description: this function is called to clear the TX descriptors
 * in case of both basic and extended descriptors are used.
 */
1374
static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1375
{
1376
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1377 1378 1379
	int i;

	/* Clear the TX descriptors */
1380 1381
	for (i = 0; i < priv->dma_tx_size; i++) {
		int last = (i == (priv->dma_tx_size - 1));
1382 1383
		struct dma_desc *p;

1384
		if (priv->extend_desc)
1385 1386 1387
			p = &tx_q->dma_etx[i].basic;
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			p = &tx_q->dma_entx[i].basic;
1388
		else
1389 1390 1391 1392
			p = &tx_q->dma_tx[i];

		stmmac_init_tx_desc(priv, p, priv->mode, last);
	}
1393 1394
}

1395 1396 1397 1398 1399 1400 1401 1402
/**
 * stmmac_clear_descriptors - clear descriptors
 * @priv: driver private structure
 * Description: this function is called to clear the TX and RX descriptors
 * in case of both basic and extended descriptors are used.
 */
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
1403
	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1404
	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1405 1406
	u32 queue;

1407
	/* Clear the RX descriptors */
1408 1409
	for (queue = 0; queue < rx_queue_cnt; queue++)
		stmmac_clear_rx_descriptors(priv, queue);
1410 1411

	/* Clear the TX descriptors */
1412 1413
	for (queue = 0; queue < tx_queue_cnt; queue++)
		stmmac_clear_tx_descriptors(priv, queue);
1414 1415
}

1416 1417 1418 1419 1420
/**
 * stmmac_init_rx_buffers - init the RX descriptor buffer.
 * @priv: driver private structure
 * @p: descriptor pointer
 * @i: descriptor index
1421 1422
 * @flags: gfp flag
 * @queue: RX queue index
1423 1424 1425
 * Description: this function is called to allocate a receive buffer, perform
 * the DMA mapping and init the descriptor.
 */
1426
static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1427
				  int i, gfp_t flags, u32 queue)
1428
{
1429
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1430
	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1431

1432 1433 1434 1435 1436 1437
	if (!buf->page) {
		buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
		if (!buf->page)
			return -ENOMEM;
		buf->page_offset = stmmac_rx_offset(priv);
	}
1438

1439
	if (priv->sph && !buf->sec_page) {
1440 1441 1442 1443 1444
		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
		if (!buf->sec_page)
			return -ENOMEM;

		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1445
		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1446 1447
	} else {
		buf->sec_page = NULL;
1448
		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1449 1450
	}

1451 1452
	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;

1453
	stmmac_set_desc_addr(priv, p, buf->addr);
1454 1455
	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
		stmmac_init_desc3(priv, p);
1456 1457 1458 1459

	return 0;
}

1460 1461 1462
/**
 * stmmac_free_rx_buffer - free RX dma buffers
 * @priv: private structure
1463
 * @queue: RX queue index
1464 1465
 * @i: buffer index.
 */
1466
static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1467
{
1468
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1469
	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1470

1471
	if (buf->page)
1472
		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1473
	buf->page = NULL;
1474 1475

	if (buf->sec_page)
1476
		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1477
	buf->sec_page = NULL;
1478 1479 1480
}

/**
1481 1482
 * stmmac_free_tx_buffer - free RX dma buffers
 * @priv: private structure
1483
 * @queue: RX queue index
1484 1485
 * @i: buffer index.
 */
1486
static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1487
{
1488 1489
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

1490 1491
	if (tx_q->tx_skbuff_dma[i].buf &&
	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1492
		if (tx_q->tx_skbuff_dma[i].map_as_page)
1493
			dma_unmap_page(priv->device,
1494 1495
				       tx_q->tx_skbuff_dma[i].buf,
				       tx_q->tx_skbuff_dma[i].len,
1496 1497 1498
				       DMA_TO_DEVICE);
		else
			dma_unmap_single(priv->device,
1499 1500
					 tx_q->tx_skbuff_dma[i].buf,
					 tx_q->tx_skbuff_dma[i].len,
1501 1502 1503
					 DMA_TO_DEVICE);
	}

1504
	if (tx_q->xdpf[i] &&
1505 1506
	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1507 1508 1509 1510
		xdp_return_frame(tx_q->xdpf[i]);
		tx_q->xdpf[i] = NULL;
	}

1511 1512 1513
	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
		tx_q->xsk_frames_done++;

1514 1515
	if (tx_q->tx_skbuff[i] &&
	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1516 1517
		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
		tx_q->tx_skbuff[i] = NULL;
1518
	}
1519 1520 1521

	tx_q->tx_skbuff_dma[i].buf = 0;
	tx_q->tx_skbuff_dma[i].map_as_page = false;
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/**
 * dma_free_rx_skbufs - free RX dma buffers
 * @priv: private structure
 * @queue: RX queue index
 */
static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++)
		stmmac_free_rx_buffer(priv, queue, i);
}

static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
				   gfp_t flags)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct dma_desc *p;
		int ret;

		if (priv->extend_desc)
			p = &((rx_q->dma_erx + i)->basic);
		else
			p = rx_q->dma_rx + i;

		ret = stmmac_init_rx_buffers(priv, p, i, flags,
					     queue);
		if (ret)
			return ret;
1556 1557

		rx_q->buf_alloc_num++;
1558 1559 1560 1561 1562
	}

	return 0;
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/**
 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
 * @priv: private structure
 * @queue: RX queue index
 */
static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];

		if (!buf->xdp)
			continue;

		xsk_buff_free(buf->xdp);
		buf->xdp = NULL;
	}
}

static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct stmmac_rx_buffer *buf;
		dma_addr_t dma_addr;
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *)(rx_q->dma_erx + i);
		else
			p = rx_q->dma_rx + i;

		buf = &rx_q->buf_pool[i];

		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
		if (!buf->xdp)
			return -ENOMEM;

		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
		stmmac_set_desc_addr(priv, p, dma_addr);
		rx_q->buf_alloc_num++;
	}

	return 0;
}

static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
{
	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
		return NULL;

	return xsk_get_pool_from_qid(priv->dev, queue);
}

1621
/**
1622 1623 1624
 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
 * @priv: driver private structure
 * @queue: RX queue index
1625
 * @flags: gfp flag.
1626
 * Description: this function initializes the DMA RX descriptors
1627
 * and allocates the socket buffers. It supports the chained and ring
1628
 * modes.
1629
 */
1630
static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1631
{
1632 1633
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int ret;
1634

1635
	netif_dbg(priv, probe, priv->dev,
1636 1637
		  "(%s) dma_rx_phy=0x%08x\n", __func__,
		  (u32)rx_q->dma_rx_phy);
1638

1639
	stmmac_clear_rx_descriptors(priv, queue);
1640

1641
	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1642

1643
	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
1644

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	if (rx_q->xsk_pool) {
		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
						   MEM_TYPE_XSK_BUFF_POOL,
						   NULL));
		netdev_info(priv->dev,
			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
			    rx_q->queue_index);
		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
	} else {
		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
						   MEM_TYPE_PAGE_POOL,
						   rx_q->page_pool));
		netdev_info(priv->dev,
			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
			    rx_q->queue_index);
	}

	if (rx_q->xsk_pool) {
		/* RX XDP ZC buffer pool may not be populated, e.g.
		 * xdpsock TX-only.
		 */
		stmmac_alloc_rx_buffers_zc(priv, queue);
	} else {
		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
		if (ret < 0)
			return -ENOMEM;
	}
1672

1673 1674
	rx_q->cur_rx = 0;
	rx_q->dirty_rx = 0;
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	/* Setup the chained descriptor addresses */
	if (priv->mode == STMMAC_CHAIN_MODE) {
		if (priv->extend_desc)
			stmmac_mode_init(priv, rx_q->dma_erx,
					 rx_q->dma_rx_phy,
					 priv->dma_rx_size, 1);
		else
			stmmac_mode_init(priv, rx_q->dma_rx,
					 rx_q->dma_rx_phy,
					 priv->dma_rx_size, 0);
	}
1687

1688 1689
	return 0;
}
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 rx_count = priv->plat->rx_queues_to_use;
	u32 queue;
	int ret;

	/* RX INITIALIZATION */
	netif_dbg(priv, probe, priv->dev,
		  "SKB addresses:\nskb\t\tskb data\tdma data\n");

	for (queue = 0; queue < rx_count; queue++) {
		ret = __init_dma_rx_desc_rings(priv, queue, flags);
		if (ret)
			goto err_init_rx_buffers;
1706 1707 1708
	}

	return 0;
1709

1710
err_init_rx_buffers:
1711
	while (queue >= 0) {
1712 1713 1714 1715 1716 1717 1718 1719 1720
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

		if (rx_q->xsk_pool)
			dma_free_rx_xskbufs(priv, queue);
		else
			dma_free_rx_skbufs(priv, queue);

		rx_q->buf_alloc_num = 0;
		rx_q->xsk_pool = NULL;
1721 1722 1723 1724 1725 1726 1727

		if (queue == 0)
			break;

		queue--;
	}

1728 1729 1730 1731
	return ret;
}

/**
1732 1733 1734
 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
 * @priv: driver private structure
 * @queue : TX queue index
1735 1736 1737 1738
 * Description: this function initializes the DMA TX descriptors
 * and allocates the socket buffers. It supports the chained and ring
 * modes.
 */
1739
static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1740
{
1741
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1742 1743
	int i;

1744 1745 1746
	netif_dbg(priv, probe, priv->dev,
		  "(%s) dma_tx_phy=0x%08x\n", __func__,
		  (u32)tx_q->dma_tx_phy);
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/* Setup the chained descriptor addresses */
	if (priv->mode == STMMAC_CHAIN_MODE) {
		if (priv->extend_desc)
			stmmac_mode_init(priv, tx_q->dma_etx,
					 tx_q->dma_tx_phy,
					 priv->dma_tx_size, 1);
		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
			stmmac_mode_init(priv, tx_q->dma_tx,
					 tx_q->dma_tx_phy,
					 priv->dma_tx_size, 0);
	}
1759

1760 1761
	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);

1762 1763 1764 1765 1766 1767 1768 1769 1770
	for (i = 0; i < priv->dma_tx_size; i++) {
		struct dma_desc *p;

		if (priv->extend_desc)
			p = &((tx_q->dma_etx + i)->basic);
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			p = &((tx_q->dma_entx + i)->basic);
		else
			p = tx_q->dma_tx + i;
1771

1772
		stmmac_clear_desc(priv, p);
1773

1774 1775 1776 1777 1778
		tx_q->tx_skbuff_dma[i].buf = 0;
		tx_q->tx_skbuff_dma[i].map_as_page = false;
		tx_q->tx_skbuff_dma[i].len = 0;
		tx_q->tx_skbuff_dma[i].last_segment = false;
		tx_q->tx_skbuff[i] = NULL;
1779
	}
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	tx_q->dirty_tx = 0;
	tx_q->cur_tx = 0;
	tx_q->mss = 0;

	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));

	return 0;
}

static int init_dma_tx_desc_rings(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 tx_queue_cnt;
	u32 queue;

	tx_queue_cnt = priv->plat->tx_queues_to_use;

	for (queue = 0; queue < tx_queue_cnt; queue++)
		__init_dma_tx_desc_rings(priv, queue);

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	return 0;
}

/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * @flags: gfp flag.
 * Description: this function initializes the DMA RX/TX descriptors
 * and allocates the socket buffers. It supports the chained and ring
 * modes.
 */
static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

	ret = init_dma_rx_desc_rings(dev, flags);
	if (ret)
		return ret;

	ret = init_dma_tx_desc_rings(dev);

1823
	stmmac_clear_descriptors(priv);
1824

1825 1826
	if (netif_msg_hw(priv))
		stmmac_display_rings(priv);
1827 1828

	return ret;
1829 1830
}

1831 1832 1833
/**
 * dma_free_tx_skbufs - free TX dma buffers
 * @priv: private structure
1834
 * @queue: TX queue index
1835
 */
1836
static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1837
{
1838
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1839 1840
	int i;

1841 1842
	tx_q->xsk_frames_done = 0;

1843
	for (i = 0; i < priv->dma_tx_size; i++)
1844
		stmmac_free_tx_buffer(priv, queue, i);
1845 1846 1847 1848 1849 1850

	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
		tx_q->xsk_frames_done = 0;
		tx_q->xsk_pool = NULL;
	}
1851 1852
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/**
 * stmmac_free_tx_skbufs - free TX skb buffers
 * @priv: private structure
 */
static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
{
	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
	u32 queue;

	for (queue = 0; queue < tx_queue_cnt; queue++)
		dma_free_tx_skbufs(priv, queue);
}

1866
/**
1867
 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1868
 * @priv: private structure
1869
 * @queue: RX queue index
1870
 */
1871 1872 1873 1874 1875
static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

	/* Release the DMA RX socket buffers */
1876 1877 1878 1879 1880 1881 1882
	if (rx_q->xsk_pool)
		dma_free_rx_xskbufs(priv, queue);
	else
		dma_free_rx_skbufs(priv, queue);

	rx_q->buf_alloc_num = 0;
	rx_q->xsk_pool = NULL;
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

	/* Free DMA regions of consistent memory previously allocated */
	if (!priv->extend_desc)
		dma_free_coherent(priv->device, priv->dma_rx_size *
				  sizeof(struct dma_desc),
				  rx_q->dma_rx, rx_q->dma_rx_phy);
	else
		dma_free_coherent(priv->device, priv->dma_rx_size *
				  sizeof(struct dma_extended_desc),
				  rx_q->dma_erx, rx_q->dma_rx_phy);

	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
		xdp_rxq_info_unreg(&rx_q->xdp_rxq);

	kfree(rx_q->buf_pool);
	if (rx_q->page_pool)
		page_pool_destroy(rx_q->page_pool);
}

1902 1903 1904 1905 1906 1907
static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
{
	u32 rx_count = priv->plat->rx_queues_to_use;
	u32 queue;

	/* Free RX queue resources */
1908 1909 1910
	for (queue = 0; queue < rx_count; queue++)
		__free_dma_rx_desc_resources(priv, queue);
}
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/**
 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
 * @priv: private structure
 * @queue: TX queue index
 */
static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	size_t size;
	void *addr;

	/* Release the DMA TX socket buffers */
	dma_free_tx_skbufs(priv, queue);

	if (priv->extend_desc) {
		size = sizeof(struct dma_extended_desc);
		addr = tx_q->dma_etx;
	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
		size = sizeof(struct dma_edesc);
		addr = tx_q->dma_entx;
	} else {
		size = sizeof(struct dma_desc);
		addr = tx_q->dma_tx;
	}
1936

1937
	size *= priv->dma_tx_size;
1938

1939
	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1940

1941 1942
	kfree(tx_q->tx_skbuff_dma);
	kfree(tx_q->tx_skbuff);
1943 1944
}

1945 1946 1947
static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
{
	u32 tx_count = priv->plat->tx_queues_to_use;
1948
	u32 queue;
1949 1950

	/* Free TX queue resources */
1951 1952
	for (queue = 0; queue < tx_count; queue++)
		__free_dma_tx_desc_resources(priv, queue);
1953 1954
}

1955
/**
1956
 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1957
 * @priv: private structure
1958
 * @queue: RX queue index
1959
 * Description: according to which descriptor can be used (extend or basic)
1960 1961 1962
 * this function allocates the resources for TX and RX paths. In case of
 * reception, for example, it pre-allocated the RX socket buffer in order to
 * allow zero-copy mechanism.
1963
 */
1964
static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1965
{
1966 1967
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	struct stmmac_channel *ch = &priv->channel[queue];
1968
	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1969 1970
	struct page_pool_params pp_params = { 0 };
	unsigned int num_pages;
1971
	unsigned int napi_id;
1972
	int ret;
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	rx_q->queue_index = queue;
	rx_q->priv_data = priv;

	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
	pp_params.pool_size = priv->dma_rx_size;
	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
	pp_params.order = ilog2(num_pages);
	pp_params.nid = dev_to_node(priv->device);
	pp_params.dev = priv->device;
	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
	pp_params.offset = stmmac_rx_offset(priv);
	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);

	rx_q->page_pool = page_pool_create(&pp_params);
	if (IS_ERR(rx_q->page_pool)) {
		ret = PTR_ERR(rx_q->page_pool);
		rx_q->page_pool = NULL;
		return ret;
	}
1993

1994 1995 1996 1997 1998
	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
				 sizeof(*rx_q->buf_pool),
				 GFP_KERNEL);
	if (!rx_q->buf_pool)
		return -ENOMEM;
1999

2000 2001 2002 2003 2004 2005 2006 2007
	if (priv->extend_desc) {
		rx_q->dma_erx = dma_alloc_coherent(priv->device,
						   priv->dma_rx_size *
						   sizeof(struct dma_extended_desc),
						   &rx_q->dma_rx_phy,
						   GFP_KERNEL);
		if (!rx_q->dma_erx)
			return -ENOMEM;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017
	} else {
		rx_q->dma_rx = dma_alloc_coherent(priv->device,
						  priv->dma_rx_size *
						  sizeof(struct dma_desc),
						  &rx_q->dma_rx_phy,
						  GFP_KERNEL);
		if (!rx_q->dma_rx)
			return -ENOMEM;
	}
2018

2019 2020 2021 2022 2023 2024
	if (stmmac_xdp_is_enabled(priv) &&
	    test_bit(queue, priv->af_xdp_zc_qps))
		napi_id = ch->rxtx_napi.napi_id;
	else
		napi_id = ch->rx_napi.napi_id;

2025 2026
	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
			       rx_q->queue_index,
2027
			       napi_id);
2028 2029 2030 2031
	if (ret) {
		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
		return -EINVAL;
	}
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	return 0;
}

static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
{
	u32 rx_count = priv->plat->rx_queues_to_use;
	u32 queue;
	int ret;

	/* RX queues buffers and DMA */
	for (queue = 0; queue < rx_count; queue++) {
		ret = __alloc_dma_rx_desc_resources(priv, queue);
		if (ret)
2046
			goto err_dma;
2047 2048 2049 2050 2051
	}

	return 0;

err_dma:
2052 2053
	free_dma_rx_desc_resources(priv);

2054 2055 2056 2057
	return ret;
}

/**
2058
 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2059
 * @priv: private structure
2060
 * @queue: TX queue index
2061 2062 2063 2064 2065
 * Description: according to which descriptor can be used (extend or basic)
 * this function allocates the resources for TX and RX paths. In case of
 * reception, for example, it pre-allocated the RX socket buffer in order to
 * allow zero-copy mechanism.
 */
2066
static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2067
{
2068 2069 2070
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	size_t size;
	void *addr;
2071

2072 2073
	tx_q->queue_index = queue;
	tx_q->priv_data = priv;
2074

2075 2076 2077 2078 2079
	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
				      sizeof(*tx_q->tx_skbuff_dma),
				      GFP_KERNEL);
	if (!tx_q->tx_skbuff_dma)
		return -ENOMEM;
2080

2081 2082 2083 2084 2085
	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
				  sizeof(struct sk_buff *),
				  GFP_KERNEL);
	if (!tx_q->tx_skbuff)
		return -ENOMEM;
2086

2087 2088 2089 2090 2091 2092
	if (priv->extend_desc)
		size = sizeof(struct dma_extended_desc);
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		size = sizeof(struct dma_edesc);
	else
		size = sizeof(struct dma_desc);
2093

2094
	size *= priv->dma_tx_size;
2095

2096 2097 2098 2099
	addr = dma_alloc_coherent(priv->device, size,
				  &tx_q->dma_tx_phy, GFP_KERNEL);
	if (!addr)
		return -ENOMEM;
2100

2101 2102 2103 2104 2105 2106
	if (priv->extend_desc)
		tx_q->dma_etx = addr;
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		tx_q->dma_entx = addr;
	else
		tx_q->dma_tx = addr;
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	return 0;
}

static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
{
	u32 tx_count = priv->plat->tx_queues_to_use;
	u32 queue;
	int ret;

	/* TX queues buffers and DMA */
	for (queue = 0; queue < tx_count; queue++) {
		ret = __alloc_dma_tx_desc_resources(priv, queue);
		if (ret)
			goto err_dma;
2122 2123 2124 2125
	}

	return 0;

2126
err_dma:
2127
	free_dma_tx_desc_resources(priv);
2128 2129 2130
	return ret;
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/**
 * alloc_dma_desc_resources - alloc TX/RX resources.
 * @priv: private structure
 * Description: according to which descriptor can be used (extend or basic)
 * this function allocates the resources for TX and RX paths. In case of
 * reception, for example, it pre-allocated the RX socket buffer in order to
 * allow zero-copy mechanism.
 */
static int alloc_dma_desc_resources(struct stmmac_priv *priv)
{
2141
	/* RX Allocation */
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	int ret = alloc_dma_rx_desc_resources(priv);

	if (ret)
		return ret;

	ret = alloc_dma_tx_desc_resources(priv);

	return ret;
}

/**
 * free_dma_desc_resources - free dma desc resources
 * @priv: private structure
 */
static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX socket buffers */
	free_dma_tx_desc_resources(priv);
2160 2161 2162 2163 2164

	/* Release the DMA RX socket buffers later
	 * to ensure all pending XDP_TX buffers are returned.
	 */
	free_dma_rx_desc_resources(priv);
2165 2166
}

jpinto's avatar
jpinto committed
2167 2168 2169 2170 2171 2172 2173
/**
 *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
 *  @priv: driver private structure
 *  Description: It is used for enabling the rx queues in the MAC
 */
static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
{
2174 2175 2176
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	int queue;
	u8 mode;
jpinto's avatar
jpinto committed
2177

2178 2179
	for (queue = 0; queue < rx_queues_count; queue++) {
		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2180
		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2181
	}
jpinto's avatar
jpinto committed
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
/**
 * stmmac_start_rx_dma - start RX DMA channel
 * @priv: driver private structure
 * @chan: RX channel index
 * Description:
 * This starts a RX DMA channel
 */
static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2194
	stmmac_start_rx(priv, priv->ioaddr, chan);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
}

/**
 * stmmac_start_tx_dma - start TX DMA channel
 * @priv: driver private structure
 * @chan: TX channel index
 * Description:
 * This starts a TX DMA channel
 */
static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2207
	stmmac_start_tx(priv, priv->ioaddr, chan);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
}

/**
 * stmmac_stop_rx_dma - stop RX DMA channel
 * @priv: driver private structure
 * @chan: RX channel index
 * Description:
 * This stops a RX DMA channel
 */
static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2220
	stmmac_stop_rx(priv, priv->ioaddr, chan);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
}

/**
 * stmmac_stop_tx_dma - stop TX DMA channel
 * @priv: driver private structure
 * @chan: TX channel index
 * Description:
 * This stops a TX DMA channel
 */
static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2233
	stmmac_stop_tx(priv, priv->ioaddr, chan);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
}

/**
 * stmmac_start_all_dma - start all RX and TX DMA channels
 * @priv: driver private structure
 * Description:
 * This starts all the RX and TX DMA channels
 */
static void stmmac_start_all_dma(struct stmmac_priv *priv)
{
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
	u32 chan = 0;

	for (chan = 0; chan < rx_channels_count; chan++)
		stmmac_start_rx_dma(priv, chan);

	for (chan = 0; chan < tx_channels_count; chan++)
		stmmac_start_tx_dma(priv, chan);
}

/**
 * stmmac_stop_all_dma - stop all RX and TX DMA channels
 * @priv: driver private structure
 * Description:
 * This stops the RX and TX DMA channels
 */
static void stmmac_stop_all_dma(struct stmmac_priv *priv)
{
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
	u32 chan = 0;

	for (chan = 0; chan < rx_channels_count; chan++)
		stmmac_stop_rx_dma(priv, chan);

	for (chan = 0; chan < tx_channels_count; chan++)
		stmmac_stop_tx_dma(priv, chan);
}

2274 2275
/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
2276
 *  @priv: driver private structure
2277 2278
 *  Description: it is used for configuring the DMA operation mode register in
 *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2279 2280 2281
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
2282 2283
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2284
	int rxfifosz = priv->plat->rx_fifo_size;
2285
	int txfifosz = priv->plat->tx_fifo_size;
2286 2287 2288
	u32 txmode = 0;
	u32 rxmode = 0;
	u32 chan = 0;
2289
	u8 qmode = 0;
2290

2291 2292
	if (rxfifosz == 0)
		rxfifosz = priv->dma_cap.rx_fifo_size;
2293 2294 2295 2296 2297 2298
	if (txfifosz == 0)
		txfifosz = priv->dma_cap.tx_fifo_size;

	/* Adjust for real per queue fifo size */
	rxfifosz /= rx_channels_count;
	txfifosz /= tx_channels_count;
2299

2300 2301 2302 2303
	if (priv->plat->force_thresh_dma_mode) {
		txmode = tc;
		rxmode = tc;
	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2304 2305 2306
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
2307 2308 2309 2310
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
2311 2312
		txmode = SF_DMA_MODE;
		rxmode = SF_DMA_MODE;
2313
		priv->xstats.threshold = SF_DMA_MODE;
2314 2315 2316 2317 2318 2319
	} else {
		txmode = tc;
		rxmode = SF_DMA_MODE;
	}

	/* configure all channels */
2320
	for (chan = 0; chan < rx_channels_count; chan++) {
2321 2322 2323
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
		u32 buf_size;

2324
		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2325

2326 2327
		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
				rxfifosz, qmode);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

		if (rx_q->xsk_pool) {
			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
			stmmac_set_dma_bfsize(priv, priv->ioaddr,
					      buf_size,
					      chan);
		} else {
			stmmac_set_dma_bfsize(priv, priv->ioaddr,
					      priv->dma_buf_sz,
					      chan);
		}
2339
	}
2340

2341 2342
	for (chan = 0; chan < tx_channels_count; chan++) {
		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2343

2344 2345
		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
				txfifosz, qmode);
2346
	}
2347 2348
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	struct xsk_buff_pool *pool = tx_q->xsk_pool;
	unsigned int entry = tx_q->cur_tx;
	struct dma_desc *tx_desc = NULL;
	struct xdp_desc xdp_desc;
	bool work_done = true;

	/* Avoids TX time-out as we are sharing with slow path */
	nq->trans_start = jiffies;

	budget = min(budget, stmmac_tx_avail(priv, queue));

	while (budget-- > 0) {
		dma_addr_t dma_addr;
		bool set_ic;

		/* We are sharing with slow path and stop XSK TX desc submission when
		 * available TX ring is less than threshold.
		 */
		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
		    !netif_carrier_ok(priv->dev)) {
			work_done = false;
			break;
		}

		if (!xsk_tx_peek_desc(pool, &xdp_desc))
			break;

		if (likely(priv->extend_desc))
			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			tx_desc = &tx_q->dma_entx[entry].basic;
		else
			tx_desc = tx_q->dma_tx + entry;

		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);

		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;

		/* To return XDP buffer to XSK pool, we simple call
		 * xsk_tx_completed(), so we don't need to fill up
		 * 'buf' and 'xdpf'.
		 */
		tx_q->tx_skbuff_dma[entry].buf = 0;
		tx_q->xdpf[entry] = NULL;

		tx_q->tx_skbuff_dma[entry].map_as_page = false;
		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
		tx_q->tx_skbuff_dma[entry].last_segment = true;
		tx_q->tx_skbuff_dma[entry].is_jumbo = false;

		stmmac_set_desc_addr(priv, tx_desc, dma_addr);

		tx_q->tx_count_frames++;

		if (!priv->tx_coal_frames[queue])
			set_ic = false;
		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
			set_ic = true;
		else
			set_ic = false;

		if (set_ic) {
			tx_q->tx_count_frames = 0;
			stmmac_set_tx_ic(priv, tx_desc);
			priv->xstats.tx_set_ic_bit++;
		}

		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
				       true, priv->mode, true, true,
				       xdp_desc.len);

		stmmac_enable_dma_transmission(priv, priv->ioaddr);

		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
		entry = tx_q->cur_tx;
	}

	if (tx_desc) {
		stmmac_flush_tx_descriptors(priv, queue);
		xsk_tx_release(pool);
	}

	/* Return true if all of the 3 conditions are met
	 *  a) TX Budget is still available
	 *  b) work_done = true when XSK TX desc peek is empty (no more
	 *     pending XSK TX for transmission)
	 */
	return !!budget && work_done;
}

2444
/**
2445
 * stmmac_tx_clean - to manage the transmission completion
2446
 * @priv: driver private structure
2447
 * @budget: napi budget limiting this functions packet handling
2448
 * @queue: TX queue index
2449
 * Description: it reclaims the transmit resources after transmission completes.
2450
 */
2451
static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2452
{
2453
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2454
	unsigned int bytes_compl = 0, pkts_compl = 0;
2455
	unsigned int entry, xmits = 0, count = 0;
2456

2457
	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2458

2459 2460
	priv->xstats.tx_clean++;

2461 2462
	tx_q->xsk_frames_done = 0;

2463
	entry = tx_q->dirty_tx;
2464 2465 2466

	/* Try to clean all TX complete frame in 1 shot */
	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2467 2468
		struct xdp_frame *xdpf;
		struct sk_buff *skb;
2469
		struct dma_desc *p;
2470
		int status;
2471

2472 2473
		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
			xdpf = tx_q->xdpf[entry];
			skb = NULL;
		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
			xdpf = NULL;
			skb = tx_q->tx_skbuff[entry];
		} else {
			xdpf = NULL;
			skb = NULL;
		}

2484
		if (priv->extend_desc)
2485
			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2486 2487
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			p = &tx_q->dma_entx[entry].basic;
2488
		else
2489
			p = tx_q->dma_tx + entry;
2490

2491 2492
		status = stmmac_tx_status(priv, &priv->dev->stats,
				&priv->xstats, p, priv->ioaddr);
2493 2494 2495 2496
		/* Check if the descriptor is owned by the DMA */
		if (unlikely(status & tx_dma_own))
			break;

2497 2498
		count++;

2499 2500 2501 2502 2503
		/* Make sure descriptor fields are read after reading
		 * the own bit.
		 */
		dma_rmb();

2504 2505 2506 2507 2508 2509
		/* Just consider the last segment and ...*/
		if (likely(!(status & tx_not_ls))) {
			/* ... verify the status error condition */
			if (unlikely(status & tx_err)) {
				priv->dev->stats.tx_errors++;
			} else {
2510 2511
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
2512
			}
2513 2514
			if (skb)
				stmmac_get_tx_hwtstamp(priv, p, skb);
2515 2516
		}

2517 2518
		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2519
			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2520
				dma_unmap_page(priv->device,
2521 2522
					       tx_q->tx_skbuff_dma[entry].buf,
					       tx_q->tx_skbuff_dma[entry].len,
2523 2524 2525
					       DMA_TO_DEVICE);
			else
				dma_unmap_single(priv->device,
2526 2527
						 tx_q->tx_skbuff_dma[entry].buf,
						 tx_q->tx_skbuff_dma[entry].len,
2528
						 DMA_TO_DEVICE);
2529 2530 2531
			tx_q->tx_skbuff_dma[entry].buf = 0;
			tx_q->tx_skbuff_dma[entry].len = 0;
			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2532
		}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
2533

2534
		stmmac_clean_desc3(priv, tx_q, p);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
2535

2536 2537
		tx_q->tx_skbuff_dma[entry].last_segment = false;
		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2538

2539 2540 2541 2542 2543 2544
		if (xdpf &&
		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
			xdp_return_frame_rx_napi(xdpf);
			tx_q->xdpf[entry] = NULL;
		}

2545 2546 2547 2548 2549 2550
		if (xdpf &&
		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
			xdp_return_frame(xdpf);
			tx_q->xdpf[entry] = NULL;
		}

2551 2552 2553
		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
			tx_q->xsk_frames_done++;

2554 2555 2556 2557 2558 2559 2560
		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
			if (likely(skb)) {
				pkts_compl++;
				bytes_compl += skb->len;
				dev_consume_skb_any(skb);
				tx_q->tx_skbuff[entry] = NULL;
			}
2561 2562
		}

2563
		stmmac_release_tx_desc(priv, p, priv->mode);
2564

2565
		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2566
	}
2567
	tx_q->dirty_tx = entry;
2568

2569 2570 2571 2572 2573
	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
				  pkts_compl, bytes_compl);

	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
								queue))) &&
2574
	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2575

2576 2577
		netif_dbg(priv, tx_done, priv->dev,
			  "%s: restart transmit\n", __func__);
2578
		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2579
	}
2580

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	if (tx_q->xsk_pool) {
		bool work_done;

		if (tx_q->xsk_frames_done)
			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);

		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
			xsk_set_tx_need_wakeup(tx_q->xsk_pool);

		/* For XSK TX, we try to send as many as possible.
		 * If XSK work done (XSK TX desc empty and budget still
		 * available), return "budget - 1" to reenable TX IRQ.
		 * Else, return "budget" to make NAPI continue polling.
		 */
		work_done = stmmac_xdp_xmit_zc(priv, queue,
					       STMMAC_XSK_TX_BUDGET_MAX);
		if (work_done)
			xmits = budget - 1;
		else
			xmits = budget;
	}

2603 2604
	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
	    priv->eee_sw_timer_en) {
2605
		stmmac_enable_eee_mode(priv);
2606
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2607
	}
2608

2609 2610
	/* We still have pending packets, let's call for a new scheduling */
	if (tx_q->dirty_tx != tx_q->cur_tx)
2611 2612
		hrtimer_start(&tx_q->txtimer,
			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2613
			      HRTIMER_MODE_REL);
2614

2615 2616
	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));

2617 2618
	/* Combine decisions from TX clean and XSK TX */
	return max(count, xmits);
2619 2620 2621
}

/**
2622
 * stmmac_tx_err - to manage the tx error
2623
 * @priv: driver private structure
2624
 * @chan: channel index
2625
 * Description: it cleans the descriptors and restarts the transmission
2626
 * in case of transmission errors.
2627
 */
2628
static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2629
{
2630 2631
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];

2632
	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2633

2634
	stmmac_stop_tx_dma(priv, chan);
2635
	dma_free_tx_skbufs(priv, chan);
2636
	stmmac_clear_tx_descriptors(priv, chan);
2637 2638
	tx_q->dirty_tx = 0;
	tx_q->cur_tx = 0;
2639
	tx_q->mss = 0;
2640
	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2641 2642
	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
			    tx_q->dma_tx_phy, chan);
2643
	stmmac_start_tx_dma(priv, chan);
2644 2645

	priv->dev->stats.tx_errors++;
2646
	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2647 2648
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
/**
 *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
 *  @priv: driver private structure
 *  @txmode: TX operating mode
 *  @rxmode: RX operating mode
 *  @chan: channel index
 *  Description: it is used for configuring of the DMA operation mode in
 *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
 *  mode.
 */
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
					  u32 rxmode, u32 chan)
{
2662 2663
	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2664 2665
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2666
	int rxfifosz = priv->plat->rx_fifo_size;
2667
	int txfifosz = priv->plat->tx_fifo_size;
2668 2669 2670

	if (rxfifosz == 0)
		rxfifosz = priv->dma_cap.rx_fifo_size;
2671 2672 2673 2674 2675 2676
	if (txfifosz == 0)
		txfifosz = priv->dma_cap.tx_fifo_size;

	/* Adjust for real per queue fifo size */
	rxfifosz /= rx_channels_count;
	txfifosz /= tx_channels_count;
2677

2678 2679
	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2680 2681
}

2682 2683
static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
{
2684
	int ret;
2685

2686 2687 2688
	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
	if (ret && (ret != -EINVAL)) {
2689
		stmmac_global_err(priv);
2690 2691 2692 2693
		return true;
	}

	return false;
2694 2695
}

2696
static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2697 2698
{
	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2699
						 &priv->xstats, chan, dir);
2700 2701
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2702
	struct stmmac_channel *ch = &priv->channel[chan];
2703 2704
	struct napi_struct *rx_napi;
	struct napi_struct *tx_napi;
2705
	unsigned long flags;
2706

2707 2708 2709
	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;

2710
	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2711
		if (napi_schedule_prep(rx_napi)) {
2712 2713 2714
			spin_lock_irqsave(&ch->lock, flags);
			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
			spin_unlock_irqrestore(&ch->lock, flags);
2715
			__napi_schedule(rx_napi);
2716
		}
2717 2718
	}

2719
	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2720
		if (napi_schedule_prep(tx_napi)) {
2721 2722 2723
			spin_lock_irqsave(&ch->lock, flags);
			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
			spin_unlock_irqrestore(&ch->lock, flags);
2724
			__napi_schedule(tx_napi);
2725 2726
		}
	}
2727 2728 2729 2730

	return status;
}

2731
/**
2732
 * stmmac_dma_interrupt - DMA ISR
2733 2734
 * @priv: driver private structure
 * Description: this is the DMA ISR. It is called by the main ISR.
2735 2736
 * It calls the dwmac dma routine and schedule poll method in case of some
 * work can be done.
2737
 */
2738 2739
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
2740
	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2741 2742 2743
	u32 rx_channel_count = priv->plat->rx_queues_to_use;
	u32 channels_to_check = tx_channel_count > rx_channel_count ?
				tx_channel_count : rx_channel_count;
2744
	u32 chan;
Kees Cook's avatar
Kees Cook committed
2745 2746 2747 2748 2749
	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];

	/* Make sure we never check beyond our status buffer. */
	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
		channels_to_check = ARRAY_SIZE(status);
2750 2751

	for (chan = 0; chan < channels_to_check; chan++)
2752 2753
		status[chan] = stmmac_napi_check(priv, chan,
						 DMA_DIR_RXTX);
2754

2755 2756
	for (chan = 0; chan < tx_channel_count; chan++) {
		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
			/* Try to bump up the dma threshold on this failure */
			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
			    (tc <= 256)) {
				tc += 64;
				if (priv->plat->force_thresh_dma_mode)
					stmmac_set_dma_operation_mode(priv,
								      tc,
								      tc,
								      chan);
				else
					stmmac_set_dma_operation_mode(priv,
								    tc,
								    SF_DMA_MODE,
								    chan);
				priv->xstats.threshold = tc;
			}
2773
		} else if (unlikely(status[chan] == tx_hard_error)) {
2774
			stmmac_tx_err(priv, chan);
2775
		}
2776
	}
2777 2778
}

2779 2780 2781 2782 2783
/**
 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
 * @priv: driver private structure
 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
 */
2784 2785 2786
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2787
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2788

2789
	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2790 2791

	if (priv->dma_cap.rmon) {
2792
		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2793 2794
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
2795
		netdev_info(priv->dev, "No MAC Management Counters available\n");
2796 2797
}

2798
/**
2799
 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2800
 * @priv: driver private structure
2801 2802 2803 2804 2805
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
2806 2807 2808
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
2809
	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2810 2811
}

2812
/**
2813
 * stmmac_check_ether_addr - check if the MAC addr is valid
2814 2815 2816 2817 2818
 * @priv: driver private structure
 * Description:
 * it is to verify if the MAC address is valid, in case of failures it
 * generates a random MAC address
 */
2819 2820 2821
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2822
		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
2823
		if (!is_valid_ether_addr(priv->dev->dev_addr))
2824
			eth_hw_addr_random(priv->dev);
2825 2826
		dev_info(priv->device, "device MAC address %pM\n",
			 priv->dev->dev_addr);
2827 2828 2829
	}
}

2830
/**
2831
 * stmmac_init_dma_engine - DMA init.
2832 2833 2834 2835 2836 2837
 * @priv: driver private structure
 * Description:
 * It inits the DMA invoking the specific MAC/GMAC callback.
 * Some DMA parameters can be passed from the platform;
 * in case of these are not passed a default is kept for the MAC or GMAC.
 */
2838 2839
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
2840 2841
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2842
	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2843
	struct stmmac_rx_queue *rx_q;
2844
	struct stmmac_tx_queue *tx_q;
2845
	u32 chan = 0;
2846
	int atds = 0;
2847
	int ret = 0;
2848

2849 2850
	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
		dev_err(priv->device, "Invalid DMA configuration\n");
2851
		return -EINVAL;
2852 2853
	}

2854 2855 2856
	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
		atds = 1;

2857
	ret = stmmac_reset(priv, priv->ioaddr);
2858 2859 2860 2861 2862
	if (ret) {
		dev_err(priv->device, "Failed to reset the dma\n");
		return ret;
	}

2863 2864 2865 2866 2867 2868
	/* DMA Configuration */
	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);

	if (priv->plat->axi)
		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);

2869 2870 2871 2872
	/* DMA CSR Channel configuration */
	for (chan = 0; chan < dma_csr_ch; chan++)
		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);

2873 2874 2875
	/* DMA RX Channel Configuration */
	for (chan = 0; chan < rx_channels_count; chan++) {
		rx_q = &priv->rx_queue[chan];
2876

2877 2878
		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
				    rx_q->dma_rx_phy, chan);
2879

2880
		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2881
				     (rx_q->buf_alloc_num *
2882
				      sizeof(struct dma_desc));
2883 2884 2885
		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
				       rx_q->rx_tail_addr, chan);
	}
2886

2887 2888 2889
	/* DMA TX Channel Configuration */
	for (chan = 0; chan < tx_channels_count; chan++) {
		tx_q = &priv->tx_queue[chan];
2890

2891 2892
		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
				    tx_q->dma_tx_phy, chan);
2893

2894
		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2895 2896 2897
		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
				       tx_q->tx_tail_addr, chan);
	}
2898

2899
	return ret;
2900 2901
}

2902 2903 2904 2905
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

2906 2907
	hrtimer_start(&tx_q->txtimer,
		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2908
		      HRTIMER_MODE_REL);
2909 2910
}

2911
/**
2912
 * stmmac_tx_timer - mitigation sw timer for tx.
2913
 * @t: data pointer
2914 2915 2916
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
2917
static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2918
{
2919
	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2920 2921
	struct stmmac_priv *priv = tx_q->priv_data;
	struct stmmac_channel *ch;
2922
	struct napi_struct *napi;
2923 2924

	ch = &priv->channel[tx_q->queue_index];
2925
	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2926

2927
	if (likely(napi_schedule_prep(napi))) {
2928 2929 2930 2931 2932
		unsigned long flags;

		spin_lock_irqsave(&ch->lock, flags);
		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
		spin_unlock_irqrestore(&ch->lock, flags);
2933
		__napi_schedule(napi);
2934
	}
2935 2936

	return HRTIMER_NORESTART;
2937 2938 2939
}

/**
2940
 * stmmac_init_coalesce - init mitigation options.
2941
 * @priv: driver private structure
2942
 * Description:
2943
 * This inits the coalesce parameters: i.e. timer rate,
2944 2945 2946
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
2947
static void stmmac_init_coalesce(struct stmmac_priv *priv)
2948
{
2949
	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2950
	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2951 2952 2953 2954 2955
	u32 chan;

	for (chan = 0; chan < tx_channel_count; chan++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];

2956 2957 2958
		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;

2959 2960
		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		tx_q->txtimer.function = stmmac_tx_timer;
2961
	}
2962 2963 2964

	for (chan = 0; chan < rx_channel_count; chan++)
		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2965 2966
}

2967 2968 2969 2970 2971 2972 2973
static void stmmac_set_rings_length(struct stmmac_priv *priv)
{
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
	u32 chan;

	/* set TX ring length */
2974 2975
	for (chan = 0; chan < tx_channels_count; chan++)
		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2976
				       (priv->dma_tx_size - 1), chan);
2977 2978

	/* set RX ring length */
2979 2980
	for (chan = 0; chan < rx_channels_count; chan++)
		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2981
				       (priv->dma_rx_size - 1), chan);
2982 2983
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/**
 *  stmmac_set_tx_queue_weight - Set TX queue weight
 *  @priv: driver private structure
 *  Description: It is used for setting TX queues weight
 */
static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
{
	u32 tx_queues_count = priv->plat->tx_queues_to_use;
	u32 weight;
	u32 queue;

	for (queue = 0; queue < tx_queues_count; queue++) {
		weight = priv->plat->tx_queues_cfg[queue].weight;
2997
		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2998 2999 3000
	}
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
/**
 *  stmmac_configure_cbs - Configure CBS in TX queue
 *  @priv: driver private structure
 *  Description: It is used for configuring CBS in AVB TX queues
 */
static void stmmac_configure_cbs(struct stmmac_priv *priv)
{
	u32 tx_queues_count = priv->plat->tx_queues_to_use;
	u32 mode_to_use;
	u32 queue;

3012 3013
	/* queue 0 is reserved for legacy traffic */
	for (queue = 1; queue < tx_queues_count; queue++) {
3014 3015 3016 3017
		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
		if (mode_to_use == MTL_QUEUE_DCB)
			continue;

3018
		stmmac_config_cbs(priv, priv->hw,
3019 3020 3021 3022 3023 3024 3025 3026
				priv->plat->tx_queues_cfg[queue].send_slope,
				priv->plat->tx_queues_cfg[queue].idle_slope,
				priv->plat->tx_queues_cfg[queue].high_credit,
				priv->plat->tx_queues_cfg[queue].low_credit,
				queue);
	}
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**
 *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
 *  @priv: driver private structure
 *  Description: It is used for mapping RX queues to RX dma channels
 */
static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 queue;
	u32 chan;

	for (queue = 0; queue < rx_queues_count; queue++) {
		chan = priv->plat->rx_queues_cfg[queue].chan;
3040
		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3041 3042 3043
	}
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
/**
 *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
 *  @priv: driver private structure
 *  Description: It is used for configuring the RX Queue Priority
 */
static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 queue;
	u32 prio;

	for (queue = 0; queue < rx_queues_count; queue++) {
		if (!priv->plat->rx_queues_cfg[queue].use_prio)
			continue;

		prio = priv->plat->rx_queues_cfg[queue].prio;
3060
		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	}
}

/**
 *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
 *  @priv: driver private structure
 *  Description: It is used for configuring the TX Queue Priority
 */
static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
{
	u32 tx_queues_count = priv->plat->tx_queues_to_use;
	u32 queue;
	u32 prio;

	for (queue = 0; queue < tx_queues_count; queue++) {
		if (!priv->plat->tx_queues_cfg[queue].use_prio)
			continue;

		prio = priv->plat->tx_queues_cfg[queue].prio;
3080
		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3081 3082 3083
	}
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
/**
 *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
 *  @priv: driver private structure
 *  Description: It is used for configuring the RX queue routing
 */
static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 queue;
	u8 packet;

	for (queue = 0; queue < rx_queues_count; queue++) {
		/* no specific packet type routing specified for the queue */
		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
			continue;

		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3101
		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3102 3103 3104
	}
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static void stmmac_mac_config_rss(struct stmmac_priv *priv)
{
	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
		priv->rss.enable = false;
		return;
	}

	if (priv->dev->features & NETIF_F_RXHASH)
		priv->rss.enable = true;
	else
		priv->rss.enable = false;

	stmmac_rss_configure(priv, priv->hw, &priv->rss,
			     priv->plat->rx_queues_to_use);
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/**
 *  stmmac_mtl_configuration - Configure MTL
 *  @priv: driver private structure
 *  Description: It is used for configurring MTL
 */
static void stmmac_mtl_configuration(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 tx_queues_count = priv->plat->tx_queues_to_use;

3131
	if (tx_queues_count > 1)
3132 3133
		stmmac_set_tx_queue_weight(priv);

3134
	/* Configure MTL RX algorithms */
3135 3136 3137
	if (rx_queues_count > 1)
		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
				priv->plat->rx_sched_algorithm);
3138 3139

	/* Configure MTL TX algorithms */
3140 3141 3142
	if (tx_queues_count > 1)
		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
				priv->plat->tx_sched_algorithm);
3143

3144
	/* Configure CBS in AVB TX queues */
3145
	if (tx_queues_count > 1)
3146 3147
		stmmac_configure_cbs(priv);

3148
	/* Map RX MTL to DMA channels */
3149
	stmmac_rx_queue_dma_chan_map(priv);
3150

3151
	/* Enable MAC RX Queues */
3152
	stmmac_mac_enable_rx_queues(priv);
3153

3154
	/* Set RX priorities */
3155
	if (rx_queues_count > 1)
3156 3157 3158
		stmmac_mac_config_rx_queues_prio(priv);

	/* Set TX priorities */
3159
	if (tx_queues_count > 1)
3160
		stmmac_mac_config_tx_queues_prio(priv);
3161 3162

	/* Set RX routing */
3163
	if (rx_queues_count > 1)
3164
		stmmac_mac_config_rx_queues_routing(priv);
3165 3166 3167 3168

	/* Receive Side Scaling */
	if (rx_queues_count > 1)
		stmmac_mac_config_rss(priv);
3169 3170
}

3171 3172
static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
{
3173
	if (priv->dma_cap.asp) {
3174
		netdev_info(priv->dev, "Enabling Safety Features\n");
3175
		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
3176 3177 3178 3179 3180
	} else {
		netdev_info(priv->dev, "No Safety Features support found\n");
	}
}

3181 3182 3183 3184 3185
static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
{
	char *name;

	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3186
	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	name = priv->wq_name;
	sprintf(name, "%s-fpe", priv->dev->name);

	priv->fpe_wq = create_singlethread_workqueue(name);
	if (!priv->fpe_wq) {
		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);

		return -ENOMEM;
	}
	netdev_info(priv->dev, "FPE workqueue start");

	return 0;
}

3202
/**
3203
 * stmmac_hw_setup - setup mac in a usable state.
3204
 *  @dev : pointer to the device structure.
3205
 *  @init_ptp: initialize PTP if set
3206
 *  Description:
3207 3208 3209 3210
 *  this is the main function to setup the HW in a usable state because the
 *  dma engine is reset, the core registers are configured (e.g. AXI,
 *  Checksum features, timers). The DMA is ready to start receiving and
 *  transmitting.
3211 3212 3213 3214
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
3215
static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3216 3217
{
	struct stmmac_priv *priv = netdev_priv(dev);
3218
	u32 rx_cnt = priv->plat->rx_queues_to_use;
3219
	u32 tx_cnt = priv->plat->tx_queues_to_use;
3220
	bool sph_en;
3221
	u32 chan;
3222 3223 3224 3225 3226
	int ret;

	/* DMA initialization and SW reset */
	ret = stmmac_init_dma_engine(priv);
	if (ret < 0) {
3227 3228
		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
			   __func__);
3229 3230 3231 3232
		return ret;
	}

	/* Copy the MAC addr into the HW  */
3233
	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	/* PS and related bits will be programmed according to the speed */
	if (priv->hw->pcs) {
		int speed = priv->plat->mac_port_sel_speed;

		if ((speed == SPEED_10) || (speed == SPEED_100) ||
		    (speed == SPEED_1000)) {
			priv->hw->ps = speed;
		} else {
			dev_warn(priv->device, "invalid port speed\n");
			priv->hw->ps = 0;
		}
	}

3248
	/* Initialize the MAC Core */
3249
	stmmac_core_init(priv, priv->hw, dev);
3250

3251
	/* Initialize MTL*/
3252
	stmmac_mtl_configuration(priv);
jpinto's avatar
jpinto committed
3253

3254
	/* Initialize Safety Features */
3255
	stmmac_safety_feat_configuration(priv);
3256

3257
	ret = stmmac_rx_ipc(priv, priv->hw);
3258
	if (!ret) {
3259
		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3260
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3261
		priv->hw->rx_csum = 0;
3262 3263
	}

3264
	/* Enable the MAC Rx/Tx */
3265
	stmmac_mac_set(priv, priv->ioaddr, true);
3266

3267 3268 3269
	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

3270 3271
	stmmac_mmc_setup(priv);

3272
	if (init_ptp) {
3273 3274 3275 3276
		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
		if (ret < 0)
			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);

3277
		ret = stmmac_init_ptp(priv);
3278 3279 3280 3281
		if (ret == -EOPNOTSUPP)
			netdev_warn(priv->dev, "PTP not supported by HW\n");
		else if (ret)
			netdev_warn(priv->dev, "PTP init failed\n");
3282
	}
3283

3284 3285 3286 3287 3288
	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;

	/* Convert the timer from msec to usec */
	if (!priv->tx_lpi_timer)
		priv->tx_lpi_timer = eee_timer * 1000;
3289

3290
	if (priv->use_riwt) {
3291 3292 3293 3294 3295
		u32 queue;

		for (queue = 0; queue < rx_cnt; queue++) {
			if (!priv->rx_riwt[queue])
				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3296

3297 3298 3299
			stmmac_rx_watchdog(priv, priv->ioaddr,
					   priv->rx_riwt[queue], queue);
		}
3300 3301
	}

3302
	if (priv->hw->pcs)
3303
		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3304

3305 3306 3307
	/* set TX and RX rings length */
	stmmac_set_rings_length(priv);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3308
	/* Enable TSO */
3309
	if (priv->tso) {
3310 3311 3312 3313 3314 3315 3316
		for (chan = 0; chan < tx_cnt; chan++) {
			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];

			/* TSO and TBS cannot co-exist */
			if (tx_q->tbs & STMMAC_TBS_AVAIL)
				continue;

3317
			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3318
		}
3319
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3320

3321
	/* Enable Split Header */
3322 3323 3324 3325
	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
	for (chan = 0; chan < rx_cnt; chan++)
		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);

3326

3327 3328 3329 3330
	/* VLAN Tag Insertion */
	if (priv->dma_cap.vlins)
		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);

3331 3332 3333 3334 3335 3336 3337 3338
	/* TBS */
	for (chan = 0; chan < tx_cnt; chan++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;

		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
	}

3339 3340 3341 3342
	/* Configure real RX and TX queues */
	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);

3343 3344 3345
	/* Start the ball rolling... */
	stmmac_start_all_dma(priv);

3346 3347 3348 3349 3350 3351 3352
	if (priv->dma_cap.fpesel) {
		stmmac_fpe_start_wq(priv);

		if (priv->plat->fpe_cfg->enable)
			stmmac_fpe_handshake(priv, true);
	}

3353 3354 3355
	return 0;
}

3356 3357 3358 3359 3360 3361 3362
static void stmmac_hw_teardown(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	clk_disable_unprepare(priv->plat->clk_ptp_ref);
}

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
static void stmmac_free_irq(struct net_device *dev,
			    enum request_irq_err irq_err, int irq_idx)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int j;

	switch (irq_err) {
	case REQ_IRQ_ERR_ALL:
		irq_idx = priv->plat->tx_queues_to_use;
		fallthrough;
	case REQ_IRQ_ERR_TX:
		for (j = irq_idx - 1; j >= 0; j--) {
3375 3376
			if (priv->tx_irq[j] > 0) {
				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3377
				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3378
			}
3379 3380 3381 3382 3383
		}
		irq_idx = priv->plat->rx_queues_to_use;
		fallthrough;
	case REQ_IRQ_ERR_RX:
		for (j = irq_idx - 1; j >= 0; j--) {
3384 3385
			if (priv->rx_irq[j] > 0) {
				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3386
				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3387
			}
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		}

		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
			free_irq(priv->sfty_ue_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_SFTY_UE:
		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
			free_irq(priv->sfty_ce_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_SFTY_CE:
		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
			free_irq(priv->lpi_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_LPI:
		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
			free_irq(priv->wol_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_WOL:
		free_irq(dev->irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_MAC:
	case REQ_IRQ_ERR_NO:
		/* If MAC IRQ request error, no more IRQ to free */
		break;
	}
}

static int stmmac_request_irq_multi_msi(struct net_device *dev)
{
	enum request_irq_err irq_err = REQ_IRQ_ERR_NO;
	struct stmmac_priv *priv = netdev_priv(dev);
3419
	cpumask_t cpu_mask;
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	int irq_idx = 0;
	char *int_name;
	int ret;
	int i;

	/* For common interrupt */
	int_name = priv->int_name_mac;
	sprintf(int_name, "%s:%s", dev->name, "mac");
	ret = request_irq(dev->irq, stmmac_mac_interrupt,
			  0, int_name, dev);
	if (unlikely(ret < 0)) {
		netdev_err(priv->dev,
			   "%s: alloc mac MSI %d (error: %d)\n",
			   __func__, dev->irq, ret);
		irq_err = REQ_IRQ_ERR_MAC;
		goto irq_error;
	}

	/* Request the Wake IRQ in case of another line
	 * is used for WoL
	 */
	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
		int_name = priv->int_name_wol;
		sprintf(int_name, "%s:%s", dev->name, "wol");
		ret = request_irq(priv->wol_irq,
				  stmmac_mac_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc wol MSI %d (error: %d)\n",
				   __func__, priv->wol_irq, ret);
			irq_err = REQ_IRQ_ERR_WOL;
			goto irq_error;
		}
	}

	/* Request the LPI IRQ in case of another line
	 * is used for LPI
	 */
	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
		int_name = priv->int_name_lpi;
		sprintf(int_name, "%s:%s", dev->name, "lpi");
		ret = request_irq(priv->lpi_irq,
				  stmmac_mac_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc lpi MSI %d (error: %d)\n",
				   __func__, priv->lpi_irq, ret);
			irq_err = REQ_IRQ_ERR_LPI;
			goto irq_error;
		}
	}

	/* Request the Safety Feature Correctible Error line in
	 * case of another line is used
	 */
	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
		int_name = priv->int_name_sfty_ce;
		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
		ret = request_irq(priv->sfty_ce_irq,
				  stmmac_safety_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc sfty ce MSI %d (error: %d)\n",
				   __func__, priv->sfty_ce_irq, ret);
			irq_err = REQ_IRQ_ERR_SFTY_CE;
			goto irq_error;
		}
	}

	/* Request the Safety Feature Uncorrectible Error line in
	 * case of another line is used
	 */
	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
		int_name = priv->int_name_sfty_ue;
		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
		ret = request_irq(priv->sfty_ue_irq,
				  stmmac_safety_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc sfty ue MSI %d (error: %d)\n",
				   __func__, priv->sfty_ue_irq, ret);
			irq_err = REQ_IRQ_ERR_SFTY_UE;
			goto irq_error;
		}
	}

	/* Request Rx MSI irq */
	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
		if (priv->rx_irq[i] == 0)
			continue;

		int_name = priv->int_name_rx_irq[i];
		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
		ret = request_irq(priv->rx_irq[i],
				  stmmac_msi_intr_rx,
				  0, int_name, &priv->rx_queue[i]);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
				   __func__, i, priv->rx_irq[i], ret);
			irq_err = REQ_IRQ_ERR_RX;
			irq_idx = i;
			goto irq_error;
		}
3528 3529 3530
		cpumask_clear(&cpu_mask);
		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	}

	/* Request Tx MSI irq */
	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
		if (priv->tx_irq[i] == 0)
			continue;

		int_name = priv->int_name_tx_irq[i];
		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
		ret = request_irq(priv->tx_irq[i],
				  stmmac_msi_intr_tx,
				  0, int_name, &priv->tx_queue[i]);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
				   __func__, i, priv->tx_irq[i], ret);
			irq_err = REQ_IRQ_ERR_TX;
			irq_idx = i;
			goto irq_error;
		}
3551 3552 3553
		cpumask_clear(&cpu_mask);
		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	}

	return 0;

irq_error:
	stmmac_free_irq(dev, irq_err, irq_idx);
	return ret;
}

static int stmmac_request_irq_single(struct net_device *dev)
{
	enum request_irq_err irq_err = REQ_IRQ_ERR_NO;
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

	ret = request_irq(dev->irq, stmmac_interrupt,
			  IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		netdev_err(priv->dev,
			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
			   __func__, dev->irq, ret);
		irq_err = REQ_IRQ_ERR_MAC;
		return ret;
	}

	/* Request the Wake IRQ in case of another line
	 * is used for WoL
	 */
	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
				   __func__, priv->wol_irq, ret);
			irq_err = REQ_IRQ_ERR_WOL;
			return ret;
		}
	}

	/* Request the IRQ lines */
	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
				   __func__, priv->lpi_irq, ret);
			irq_err = REQ_IRQ_ERR_LPI;
			goto irq_error;
		}
	}

	return 0;

irq_error:
	stmmac_free_irq(dev, irq_err, 0);
	return ret;
}

static int stmmac_request_irq(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

	/* Request the IRQ lines */
	if (priv->plat->multi_msi_en)
		ret = stmmac_request_irq_multi_msi(dev);
	else
		ret = stmmac_request_irq_single(dev);

	return ret;
}

3628 3629 3630 3631 3632 3633 3634 3635 3636
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
3637
int stmmac_open(struct net_device *dev)
3638 3639
{
	struct stmmac_priv *priv = netdev_priv(dev);
3640
	int bfsize = 0;
3641
	u32 chan;
3642 3643
	int ret;

3644 3645 3646 3647 3648 3649
	ret = pm_runtime_get_sync(priv->device);
	if (ret < 0) {
		pm_runtime_put_noidle(priv->device);
		return ret;
	}

3650
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3651
	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3652
	    priv->hw->xpcs_args.an_mode != DW_AN_C73) {
3653 3654
		ret = stmmac_init_phy(dev);
		if (ret) {
3655 3656 3657
			netdev_err(priv->dev,
				   "%s: Cannot attach to PHY (error: %d)\n",
				   __func__, ret);
3658
			goto init_phy_error;
3659
		}
3660
	}
3661

3662 3663 3664 3665
	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
	if (bfsize < 0)
		bfsize = 0;

	if (bfsize < BUF_SIZE_16KiB)
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);

	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

3676
	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3677

3678 3679 3680 3681 3682
	if (!priv->dma_tx_size)
		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
	if (!priv->dma_rx_size)
		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;

3683 3684 3685 3686 3687
	/* Earlier check for TBS */
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;

3688
		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3689 3690 3691
		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
	}

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	ret = alloc_dma_desc_resources(priv);
	if (ret < 0) {
		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
			   __func__);
		goto dma_desc_error;
	}

	ret = init_dma_desc_rings(dev, GFP_KERNEL);
	if (ret < 0) {
		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
			   __func__);
		goto init_error;
	}

3706
	ret = stmmac_hw_setup(dev, true);
3707
	if (ret < 0) {
3708
		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3709
		goto init_error;
3710 3711
	}

3712
	stmmac_init_coalesce(priv);
3713

3714
	phylink_start(priv->phylink);
3715 3716
	/* We may have called phylink_speed_down before */
	phylink_speed_up(priv->phylink);
3717

3718 3719
	ret = stmmac_request_irq(dev);
	if (ret)
3720
		goto irq_error;
3721

3722
	stmmac_enable_all_queues(priv);
3723
	netif_tx_start_all_queues(priv->dev);
3724

3725
	return 0;
3726

3727
irq_error:
3728
	phylink_stop(priv->phylink);
3729

3730
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3731
		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3732

3733
	stmmac_hw_teardown(dev);
3734 3735
init_error:
	free_dma_desc_resources(priv);
3736
dma_desc_error:
3737
	phylink_disconnect_phy(priv->phylink);
3738 3739
init_phy_error:
	pm_runtime_put(priv->device);
3740
	return ret;
3741 3742
}

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
{
	set_bit(__FPE_REMOVING, &priv->fpe_task_state);

	if (priv->fpe_wq)
		destroy_workqueue(priv->fpe_wq);

	netdev_info(priv->dev, "FPE workqueue stop");
}

3753 3754 3755 3756 3757 3758
/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
3759
int stmmac_release(struct net_device *dev)
3760 3761
{
	struct stmmac_priv *priv = netdev_priv(dev);
3762
	u32 chan;
3763

3764 3765
	if (device_may_wakeup(priv->device))
		phylink_speed_down(priv->phylink, false);
3766
	/* Stop and disconnect the PHY */
3767 3768
	phylink_stop(priv->phylink);
	phylink_disconnect_phy(priv->phylink);
3769

3770
	stmmac_disable_all_queues(priv);
3771

3772
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3773
		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3774

3775
	/* Free the IRQ lines */
3776
	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3777

3778 3779 3780 3781 3782
	if (priv->eee_enabled) {
		priv->tx_path_in_lpi_mode = false;
		del_timer_sync(&priv->eee_ctrl_timer);
	}

3783
	/* Stop TX/RX DMA and clear the descriptors */
3784
	stmmac_stop_all_dma(priv);
3785 3786 3787 3788

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

3789
	/* Disable the MAC Rx/Tx */
3790
	stmmac_mac_set(priv, priv->ioaddr, false);
3791 3792 3793

	netif_carrier_off(dev);

3794 3795
	stmmac_release_ptp(priv);

3796 3797
	pm_runtime_put(priv->device);

3798 3799 3800
	if (priv->dma_cap.fpesel)
		stmmac_fpe_stop_wq(priv);

3801 3802 3803
	return 0;
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
			       struct stmmac_tx_queue *tx_q)
{
	u16 tag = 0x0, inner_tag = 0x0;
	u32 inner_type = 0x0;
	struct dma_desc *p;

	if (!priv->dma_cap.vlins)
		return false;
	if (!skb_vlan_tag_present(skb))
		return false;
	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
		inner_tag = skb_vlan_tag_get(skb);
		inner_type = STMMAC_VLAN_INSERT;
	}

	tag = skb_vlan_tag_get(skb);

3822 3823 3824 3825 3826
	if (tx_q->tbs & STMMAC_TBS_AVAIL)
		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
	else
		p = &tx_q->dma_tx[tx_q->cur_tx];

3827 3828 3829 3830
	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
		return false;

	stmmac_set_tx_owner(priv, p);
3831
	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3832 3833 3834
	return true;
}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3835 3836 3837 3838 3839
/**
 *  stmmac_tso_allocator - close entry point of the driver
 *  @priv: driver private structure
 *  @des: buffer start address
 *  @total_len: total length to fill in descriptors
3840
 *  @last_segment: condition for the last descriptor
3841
 *  @queue: TX queue index
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3842 3843 3844 3845
 *  Description:
 *  This function fills descriptor and request new descriptors according to
 *  buffer length to fill
 */
3846
static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3847
				 int total_len, bool last_segment, u32 queue)
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3848
{
3849
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3850
	struct dma_desc *desc;
3851
	u32 buff_size;
3852
	int tmp_len;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3853 3854 3855 3856

	tmp_len = total_len;

	while (tmp_len > 0) {
3857 3858
		dma_addr_t curr_addr;

3859 3860
		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
						priv->dma_tx_size);
3861
		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3862 3863 3864 3865 3866

		if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
		else
			desc = &tx_q->dma_tx[tx_q->cur_tx];
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3867

3868 3869 3870 3871 3872 3873
		curr_addr = des + (total_len - tmp_len);
		if (priv->dma_cap.addr64 <= 32)
			desc->des0 = cpu_to_le32(curr_addr);
		else
			stmmac_set_desc_addr(priv, desc, curr_addr);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3874 3875 3876
		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
			    TSO_MAX_BUFF_SIZE : tmp_len;

3877 3878 3879 3880
		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
				0, 1,
				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
				0, 0);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3881 3882 3883 3884 3885

		tmp_len -= TSO_MAX_BUFF_SIZE;
	}
}

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	int desc_size;

	if (likely(priv->extend_desc))
		desc_size = sizeof(struct dma_extended_desc);
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		desc_size = sizeof(struct dma_edesc);
	else
		desc_size = sizeof(struct dma_desc);

	/* The own bit must be the latest setting done when prepare the
	 * descriptor and then barrier is needed to make sure that
	 * all is coherent before granting the DMA engine.
	 */
	wmb();

	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
/**
 *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description: this is the transmit function that is called on TSO frames
 *  (support available on GMAC4 and newer chips).
 *  Diagram below show the ring programming in case of TSO frames:
 *
 *  First Descriptor
 *   --------
 *   | DES0 |---> buffer1 = L2/L3/L4 header
 *   | DES1 |---> TCP Payload (can continue on next descr...)
 *   | DES2 |---> buffer 1 and 2 len
 *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
 *   --------
 *	|
 *     ...
 *	|
 *   --------
 *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
 *   | DES1 | --|
 *   | DES2 | --> buffer 1 and 2 len
 *   | DES3 |
 *   --------
 *
 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
 */
static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
{
3937
	struct dma_desc *desc, *first, *mss_desc = NULL;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3938 3939
	struct stmmac_priv *priv = netdev_priv(dev);
	int nfrags = skb_shinfo(skb)->nr_frags;
3940
	u32 queue = skb_get_queue_mapping(skb);
3941
	unsigned int first_entry, tx_packets;
3942
	int tmp_pay_len = 0, first_tx;
3943
	struct stmmac_tx_queue *tx_q;
3944
	bool has_vlan, set_ic;
3945
	u8 proto_hdr_len, hdr;
3946
	u32 pay_len, mss;
3947
	dma_addr_t des;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3948 3949
	int i;

3950
	tx_q = &priv->tx_queue[queue];
3951
	first_tx = tx_q->cur_tx;
3952

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3953
	/* Compute header lengths */
3954 3955 3956 3957 3958 3959 3960
	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
		hdr = sizeof(struct udphdr);
	} else {
		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
		hdr = tcp_hdrlen(skb);
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3961 3962

	/* Desc availability based on threshold should be enough safe */
3963
	if (unlikely(stmmac_tx_avail(priv, queue) <
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3964
		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3965 3966 3967
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
								queue));
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3968
			/* This is a hard error, log it. */
3969 3970 3971
			netdev_err(priv->dev,
				   "%s: Tx Ring full when queue awake\n",
				   __func__);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3972 3973 3974 3975 3976 3977 3978 3979 3980
		}
		return NETDEV_TX_BUSY;
	}

	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */

	mss = skb_shinfo(skb)->gso_size;

	/* set new MSS value if needed */
3981
	if (mss != tx_q->mss) {
3982 3983 3984 3985 3986
		if (tx_q->tbs & STMMAC_TBS_AVAIL)
			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
		else
			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];

3987
		stmmac_set_mss(priv, mss_desc, mss);
3988
		tx_q->mss = mss;
3989 3990
		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
						priv->dma_tx_size);
3991
		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3992 3993 3994
	}

	if (netif_msg_tx_queued(priv)) {
3995 3996
		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
			__func__, hdr, proto_hdr_len, pay_len, mss);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3997 3998 3999 4000
		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
			skb->data_len);
	}

4001 4002 4003
	/* Check if VLAN can be inserted by HW */
	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);

4004
	first_entry = tx_q->cur_tx;
4005
	WARN_ON(tx_q->tx_skbuff[first_entry]);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4006

4007 4008 4009 4010
	if (tx_q->tbs & STMMAC_TBS_AVAIL)
		desc = &tx_q->dma_entx[first_entry].basic;
	else
		desc = &tx_q->dma_tx[first_entry];
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4011 4012
	first = desc;

4013 4014 4015
	if (has_vlan)
		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4016 4017 4018 4019 4020 4021
	/* first descriptor: fill Headers on Buf1 */
	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
			     DMA_TO_DEVICE);
	if (dma_mapping_error(priv->device, des))
		goto dma_map_err;

4022 4023
	tx_q->tx_skbuff_dma[first_entry].buf = des;
	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4024 4025
	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4026

4027 4028
	if (priv->dma_cap.addr64 <= 32) {
		first->des0 = cpu_to_le32(des);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4029

4030 4031 4032
		/* Fill start of payload in buff2 of first descriptor */
		if (pay_len)
			first->des1 = cpu_to_le32(des + proto_hdr_len);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4033

4034 4035 4036 4037 4038
		/* If needed take extra descriptors to fill the remaining payload */
		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
	} else {
		stmmac_set_desc_addr(priv, first, des);
		tmp_pay_len = pay_len;
4039
		des += proto_hdr_len;
4040
		pay_len = 0;
4041
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4042

4043
	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4044 4045 4046 4047 4048 4049 4050 4051

	/* Prepare fragments */
	for (i = 0; i < nfrags; i++) {
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		des = skb_frag_dma_map(priv->device, frag, 0,
				       skb_frag_size(frag),
				       DMA_TO_DEVICE);
4052 4053
		if (dma_mapping_error(priv->device, des))
			goto dma_map_err;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4054 4055

		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4056
				     (i == nfrags - 1), queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4057

4058 4059 4060
		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4061
		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4062 4063
	}

4064
	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4065

4066 4067
	/* Only the last descriptor gets to point to the skb. */
	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4068
	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4069

4070
	/* Manage tx mitigation */
4071 4072 4073 4074 4075
	tx_packets = (tx_q->cur_tx + 1) - first_tx;
	tx_q->tx_count_frames += tx_packets;

	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
		set_ic = true;
4076
	else if (!priv->tx_coal_frames[queue])
4077
		set_ic = false;
4078
	else if (tx_packets > priv->tx_coal_frames[queue])
4079
		set_ic = true;
4080 4081
	else if ((tx_q->tx_count_frames %
		  priv->tx_coal_frames[queue]) < tx_packets)
4082 4083 4084 4085 4086
		set_ic = true;
	else
		set_ic = false;

	if (set_ic) {
4087 4088 4089 4090 4091
		if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
		else
			desc = &tx_q->dma_tx[tx_q->cur_tx];

4092 4093 4094 4095 4096
		tx_q->tx_count_frames = 0;
		stmmac_set_tx_ic(priv, desc);
		priv->xstats.tx_set_ic_bit++;
	}

4097 4098 4099 4100 4101
	/* We've used all descriptors we need for this skb, however,
	 * advance cur_tx so that it references a fresh descriptor.
	 * ndo_start_xmit will fill this descriptor the next time it's
	 * called and stmmac_tx_clean may clean up to this descriptor.
	 */
4102
	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4103

4104
	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4105 4106
		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
			  __func__);
4107
		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4108 4109 4110 4111 4112 4113
	}

	dev->stats.tx_bytes += skb->len;
	priv->xstats.tx_tso_frames++;
	priv->xstats.tx_tso_nfrags += nfrags;

4114 4115 4116
	if (priv->sarc_type)
		stmmac_set_desc_sarc(priv, first, priv->sarc_type);

4117
	skb_tx_timestamp(skb);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4118 4119 4120 4121 4122

	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     priv->hwts_tx_en)) {
		/* declare that device is doing timestamping */
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4123
		stmmac_enable_tx_timestamp(priv, first);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4124 4125 4126
	}

	/* Complete the first descriptor before granting the DMA */
4127
	stmmac_prepare_tso_tx_desc(priv, first, 1,
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4128 4129
			proto_hdr_len,
			pay_len,
4130
			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4131
			hdr / 4, (skb->len - proto_hdr_len));
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4132 4133

	/* If context desc is used to change MSS */
4134 4135 4136 4137 4138 4139 4140
	if (mss_desc) {
		/* Make sure that first descriptor has been completely
		 * written, including its own bit. This is because MSS is
		 * actually before first descriptor, so we need to make
		 * sure that MSS's own bit is the last thing written.
		 */
		dma_wmb();
4141
		stmmac_set_tx_owner(priv, mss_desc);
4142
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4143 4144 4145

	if (netif_msg_pktdata(priv)) {
		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4146 4147
			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
			tx_q->cur_tx, first, nfrags);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4148 4149 4150 4151
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb_headlen(skb));
	}

4152
	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4153

4154
	stmmac_flush_tx_descriptors(priv, queue);
4155
	stmmac_tx_timer_arm(priv, queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165

	return NETDEV_TX_OK;

dma_map_err:
	dev_err(priv->device, "Tx dma map failed\n");
	dev_kfree_skb(skb);
	priv->dev->stats.tx_dropped++;
	return NETDEV_TX_OK;
}

4166
/**
4167
 *  stmmac_xmit - Tx entry point of the driver
4168 4169
 *  @skb : the socket buffer
 *  @dev : device pointer
4170 4171 4172
 *  Description : this is the tx entry point of the driver.
 *  It programs the chain or the ring and supports oversized frames
 *  and SG feature.
4173 4174 4175
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
4176
	unsigned int first_entry, tx_packets, enh_desc;
4177
	struct stmmac_priv *priv = netdev_priv(dev);
4178
	unsigned int nopaged_len = skb_headlen(skb);
4179
	int i, csum_insertion = 0, is_jumbo = 0;
4180
	u32 queue = skb_get_queue_mapping(skb);
4181
	int nfrags = skb_shinfo(skb)->nr_frags;
4182
	int gso = skb_shinfo(skb)->gso_type;
4183
	struct dma_edesc *tbs_desc = NULL;
4184
	struct dma_desc *desc, *first;
4185
	struct stmmac_tx_queue *tx_q;
4186
	bool has_vlan, set_ic;
4187
	int entry, first_tx;
4188
	dma_addr_t des;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4189

4190
	tx_q = &priv->tx_queue[queue];
4191
	first_tx = tx_q->cur_tx;
4192

4193
	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4194 4195
		stmmac_disable_eee_mode(priv);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4196 4197
	/* Manage oversized TCP frames for GMAC4 device */
	if (skb_is_gso(skb) && priv->tso) {
4198 4199 4200
		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
			return stmmac_tso_xmit(skb, dev);
		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4201 4202
			return stmmac_tso_xmit(skb, dev);
	}
4203

4204
	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4205 4206 4207
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
								queue));
4208
			/* This is a hard error, log it. */
4209 4210 4211
			netdev_err(priv->dev,
				   "%s: Tx Ring full when queue awake\n",
				   __func__);
4212 4213 4214 4215
		}
		return NETDEV_TX_BUSY;
	}

4216 4217 4218
	/* Check if VLAN can be inserted by HW */
	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);

4219
	entry = tx_q->cur_tx;
4220
	first_entry = entry;
4221
	WARN_ON(tx_q->tx_skbuff[first_entry]);
4222

4223
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4224

4225
	if (likely(priv->extend_desc))
4226
		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4227 4228
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		desc = &tx_q->dma_entx[entry].basic;
4229
	else
4230
		desc = tx_q->dma_tx + entry;
4231

4232 4233
	first = desc;

4234 4235 4236
	if (has_vlan)
		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);

4237
	enh_desc = priv->plat->enh_desc;
4238
	/* To program the descriptors according to the size of the frame */
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
4239
	if (enh_desc)
4240
		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
4241

4242
	if (unlikely(is_jumbo)) {
4243
		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4244
		if (unlikely(entry < 0) && (entry != -EINVAL))
4245
			goto dma_map_err;
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
4246
	}
4247 4248

	for (i = 0; i < nfrags; i++) {
4249 4250
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
4251
		bool last_segment = (i == (nfrags - 1));
4252

4253
		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4254
		WARN_ON(tx_q->tx_skbuff[entry]);
4255

4256
		if (likely(priv->extend_desc))
4257
			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4258 4259
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[entry].basic;
4260
		else
4261
			desc = tx_q->dma_tx + entry;
4262

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4263 4264 4265
		des = skb_frag_dma_map(priv->device, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->device, des))
4266 4267
			goto dma_map_err; /* should reuse desc w/o issues */

4268
		tx_q->tx_skbuff_dma[entry].buf = des;
4269 4270

		stmmac_set_desc_addr(priv, desc, des);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4271

4272 4273 4274
		tx_q->tx_skbuff_dma[entry].map_as_page = true;
		tx_q->tx_skbuff_dma[entry].len = len;
		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4275
		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4276 4277

		/* Prepare the descriptor and set the own bit too */
4278 4279
		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
				priv->mode, 1, last_segment, skb->len);
4280 4281
	}

4282 4283
	/* Only the last descriptor gets to point to the skb. */
	tx_q->tx_skbuff[entry] = skb;
4284
	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4285

4286 4287 4288 4289 4290
	/* According to the coalesce parameter the IC bit for the latest
	 * segment is reset and the timer re-started to clean the tx status.
	 * This approach takes care about the fragments: desc is the first
	 * element in case of no SG.
	 */
4291 4292 4293 4294 4295
	tx_packets = (entry + 1) - first_tx;
	tx_q->tx_count_frames += tx_packets;

	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
		set_ic = true;
4296
	else if (!priv->tx_coal_frames[queue])
4297
		set_ic = false;
4298
	else if (tx_packets > priv->tx_coal_frames[queue])
4299
		set_ic = true;
4300 4301
	else if ((tx_q->tx_count_frames %
		  priv->tx_coal_frames[queue]) < tx_packets)
4302 4303 4304 4305 4306
		set_ic = true;
	else
		set_ic = false;

	if (set_ic) {
4307 4308
		if (likely(priv->extend_desc))
			desc = &tx_q->dma_etx[entry].basic;
4309 4310
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[entry].basic;
4311 4312 4313 4314 4315 4316 4317 4318
		else
			desc = &tx_q->dma_tx[entry];

		tx_q->tx_count_frames = 0;
		stmmac_set_tx_ic(priv, desc);
		priv->xstats.tx_set_ic_bit++;
	}

4319 4320 4321 4322 4323
	/* We've used all descriptors we need for this skb, however,
	 * advance cur_tx so that it references a fresh descriptor.
	 * ndo_start_xmit will fill this descriptor the next time it's
	 * called and stmmac_tx_clean may clean up to this descriptor.
	 */
4324
	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4325
	tx_q->cur_tx = entry;
4326 4327

	if (netif_msg_pktdata(priv)) {
4328 4329
		netdev_dbg(priv->dev,
			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4330
			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4331
			   entry, first, nfrags);
4332

4333
		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4334 4335
		print_pkt(skb->data, skb->len);
	}
4336

4337
	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4338 4339
		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
			  __func__);
4340
		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4341 4342 4343 4344
	}

	dev->stats.tx_bytes += skb->len;

4345 4346 4347
	if (priv->sarc_type)
		stmmac_set_desc_sarc(priv, first, priv->sarc_type);

4348
	skb_tx_timestamp(skb);
4349

4350 4351 4352 4353 4354 4355 4356
	/* Ready to fill the first descriptor and set the OWN bit w/o any
	 * problems because all the descriptors are actually ready to be
	 * passed to the DMA engine.
	 */
	if (likely(!is_jumbo)) {
		bool last_segment = (nfrags == 0);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4357 4358 4359
		des = dma_map_single(priv->device, skb->data,
				     nopaged_len, DMA_TO_DEVICE);
		if (dma_mapping_error(priv->device, des))
4360 4361
			goto dma_map_err;

4362
		tx_q->tx_skbuff_dma[first_entry].buf = des;
4363 4364
		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4365 4366

		stmmac_set_desc_addr(priv, first, des);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4367

4368 4369
		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4370 4371 4372 4373 4374

		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
			     priv->hwts_tx_en)) {
			/* declare that device is doing timestamping */
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4375
			stmmac_enable_tx_timestamp(priv, first);
4376 4377 4378
		}

		/* Prepare the first descriptor setting the OWN bit too */
4379
		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4380
				csum_insertion, priv->mode, 0, last_segment,
4381
				skb->len);
4382 4383
	}

4384 4385 4386 4387 4388 4389 4390 4391 4392
	if (tx_q->tbs & STMMAC_TBS_EN) {
		struct timespec64 ts = ns_to_timespec64(skb->tstamp);

		tbs_desc = &tx_q->dma_entx[first_entry];
		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
	}

	stmmac_set_tx_owner(priv, first);

4393
	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4394

4395
	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4396

4397
	stmmac_flush_tx_descriptors(priv, queue);
4398
	stmmac_tx_timer_arm(priv, queue);
4399

4400
	return NETDEV_TX_OK;
4401

4402
dma_map_err:
4403
	netdev_err(priv->dev, "Tx DMA map failed\n");
4404 4405
	dev_kfree_skb(skb);
	priv->dev->stats.tx_dropped++;
4406 4407 4408
	return NETDEV_TX_OK;
}

4409 4410
static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
{
4411 4412
	struct vlan_ethhdr *veth;
	__be16 vlan_proto;
4413 4414
	u16 vlanid;

4415 4416 4417 4418 4419 4420 4421
	veth = (struct vlan_ethhdr *)skb->data;
	vlan_proto = veth->h_vlan_proto;

	if ((vlan_proto == htons(ETH_P_8021Q) &&
	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
	    (vlan_proto == htons(ETH_P_8021AD) &&
	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4422
		/* pop the vlan tag */
4423 4424
		vlanid = ntohs(veth->h_vlan_TCI);
		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4425
		skb_pull(skb, VLAN_HLEN);
4426
		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4427 4428 4429
	}
}

4430
/**
4431
 * stmmac_rx_refill - refill used skb preallocated buffers
4432
 * @priv: driver private structure
4433
 * @queue: RX queue index
4434 4435 4436
 * Description : this is to reallocate the skb for the reception process
 * that is based on zero-copy.
 */
4437
static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4438
{
4439
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4440
	int dirty = stmmac_rx_dirty(priv, queue);
4441 4442
	unsigned int entry = rx_q->dirty_rx;

4443
	while (dirty-- > 0) {
4444
		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4445
		struct dma_desc *p;
4446
		bool use_rx_wd;
4447 4448

		if (priv->extend_desc)
4449
			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4450
		else
4451
			p = rx_q->dma_rx + entry;
4452

4453 4454 4455
		if (!buf->page) {
			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
			if (!buf->page)
4456
				break;
4457
		}
4458

4459 4460 4461 4462 4463 4464 4465 4466
		if (priv->sph && !buf->sec_page) {
			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
			if (!buf->sec_page)
				break;

			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
		}

4467
		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4468

4469
		stmmac_set_desc_addr(priv, p, buf->addr);
4470 4471 4472 4473
		if (priv->sph)
			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
		else
			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4474
		stmmac_refill_desc3(priv, rx_q, p);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4475

4476
		rx_q->rx_count_frames++;
4477 4478
		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4479
			rx_q->rx_count_frames = 0;
4480

4481
		use_rx_wd = !priv->rx_coal_frames[queue];
4482 4483 4484
		use_rx_wd |= rx_q->rx_count_frames > 0;
		if (!priv->use_riwt)
			use_rx_wd = false;
4485

Pavel Machek's avatar
Pavel Machek committed
4486
		dma_wmb();
4487
		stmmac_set_rx_owner(priv, p, use_rx_wd);
4488

4489
		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4490
	}
4491
	rx_q->dirty_rx = entry;
4492 4493
	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4494
	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4495 4496
}

Jose Abreu's avatar
Jose Abreu committed
4497 4498 4499 4500 4501
static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
				       struct dma_desc *p,
				       int status, unsigned int len)
{
	unsigned int plen = 0, hlen = 0;
4502
	int coe = priv->hw->rx_csum;
Jose Abreu's avatar
Jose Abreu committed
4503 4504 4505 4506 4507 4508

	/* Not first descriptor, buffer is always zero */
	if (priv->sph && len)
		return 0;

	/* First descriptor, get split header length */
4509
	stmmac_get_rx_header_len(priv, p, &hlen);
Jose Abreu's avatar
Jose Abreu committed
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	if (priv->sph && hlen) {
		priv->xstats.rx_split_hdr_pkt_n++;
		return hlen;
	}

	/* First descriptor, not last descriptor and not split header */
	if (status & rx_not_ls)
		return priv->dma_buf_sz;

	plen = stmmac_get_rx_frame_len(priv, p, coe);

	/* First descriptor and last descriptor and not split header */
	return min_t(unsigned int, priv->dma_buf_sz, plen);
}

static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
				       struct dma_desc *p,
				       int status, unsigned int len)
{
	int coe = priv->hw->rx_csum;
	unsigned int plen = 0;

	/* Not split header, buffer is not available */
	if (!priv->sph)
		return 0;

	/* Not last descriptor */
	if (status & rx_not_ls)
		return priv->dma_buf_sz;

	plen = stmmac_get_rx_frame_len(priv, p, coe);

	/* Last descriptor */
	return plen - len;
}

4546
static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4547
				struct xdp_frame *xdpf, bool dma_map)
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	unsigned int entry = tx_q->cur_tx;
	struct dma_desc *tx_desc;
	dma_addr_t dma_addr;
	bool set_ic;

	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
		return STMMAC_XDP_CONSUMED;

	if (likely(priv->extend_desc))
		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		tx_desc = &tx_q->dma_entx[entry].basic;
	else
		tx_desc = tx_q->dma_tx + entry;

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	if (dma_map) {
		dma_addr = dma_map_single(priv->device, xdpf->data,
					  xdpf->len, DMA_TO_DEVICE);
		if (dma_mapping_error(priv->device, dma_addr))
			return STMMAC_XDP_CONSUMED;

		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
	} else {
		struct page *page = virt_to_page(xdpf->data);

		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
			   xdpf->headroom;
		dma_sync_single_for_device(priv->device, dma_addr,
					   xdpf->len, DMA_BIDIRECTIONAL);
4579

4580 4581
		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
	}
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650

	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
	tx_q->tx_skbuff_dma[entry].map_as_page = false;
	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
	tx_q->tx_skbuff_dma[entry].last_segment = true;
	tx_q->tx_skbuff_dma[entry].is_jumbo = false;

	tx_q->xdpf[entry] = xdpf;

	stmmac_set_desc_addr(priv, tx_desc, dma_addr);

	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
			       true, priv->mode, true, true,
			       xdpf->len);

	tx_q->tx_count_frames++;

	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
		set_ic = true;
	else
		set_ic = false;

	if (set_ic) {
		tx_q->tx_count_frames = 0;
		stmmac_set_tx_ic(priv, tx_desc);
		priv->xstats.tx_set_ic_bit++;
	}

	stmmac_enable_dma_transmission(priv, priv->ioaddr);

	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
	tx_q->cur_tx = entry;

	return STMMAC_XDP_TX;
}

static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
				   int cpu)
{
	int index = cpu;

	if (unlikely(index < 0))
		index = 0;

	while (index >= priv->plat->tx_queues_to_use)
		index -= priv->plat->tx_queues_to_use;

	return index;
}

static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
				struct xdp_buff *xdp)
{
	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
	int cpu = smp_processor_id();
	struct netdev_queue *nq;
	int queue;
	int res;

	if (unlikely(!xdpf))
		return STMMAC_XDP_CONSUMED;

	queue = stmmac_xdp_get_tx_queue(priv, cpu);
	nq = netdev_get_tx_queue(priv->dev, queue);

	__netif_tx_lock(nq, cpu);
	/* Avoids TX time-out as we are sharing with slow path */
	nq->trans_start = jiffies;

4651
	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4652 4653 4654 4655 4656 4657 4658 4659
	if (res == STMMAC_XDP_TX)
		stmmac_flush_tx_descriptors(priv, queue);

	__netif_tx_unlock(nq);

	return res;
}

4660 4661 4662 4663
/* This function assumes rcu_read_lock() is held by the caller. */
static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
				 struct bpf_prog *prog,
				 struct xdp_buff *xdp)
4664 4665
{
	u32 act;
4666
	int res;
4667 4668 4669 4670 4671 4672

	act = bpf_prog_run_xdp(prog, xdp);
	switch (act) {
	case XDP_PASS:
		res = STMMAC_XDP_PASS;
		break;
4673 4674 4675
	case XDP_TX:
		res = stmmac_xdp_xmit_back(priv, xdp);
		break;
4676 4677 4678 4679 4680 4681
	case XDP_REDIRECT:
		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
			res = STMMAC_XDP_CONSUMED;
		else
			res = STMMAC_XDP_REDIRECT;
		break;
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	default:
		bpf_warn_invalid_xdp_action(act);
		fallthrough;
	case XDP_ABORTED:
		trace_xdp_exception(priv->dev, prog, act);
		fallthrough;
	case XDP_DROP:
		res = STMMAC_XDP_CONSUMED;
		break;
	}

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	return res;
}

static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
					   struct xdp_buff *xdp)
{
	struct bpf_prog *prog;
	int res;

	rcu_read_lock();

	prog = READ_ONCE(priv->xdp_prog);
	if (!prog) {
		res = STMMAC_XDP_PASS;
		goto unlock;
	}

	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4711 4712 4713 4714 4715
unlock:
	rcu_read_unlock();
	return ERR_PTR(-res);
}

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
				   int xdp_status)
{
	int cpu = smp_processor_id();
	int queue;

	queue = stmmac_xdp_get_tx_queue(priv, cpu);

	if (xdp_status & STMMAC_XDP_TX)
		stmmac_tx_timer_arm(priv, queue);
4726 4727 4728

	if (xdp_status & STMMAC_XDP_REDIRECT)
		xdp_do_flush();
4729 4730
}

4731 4732 4733 4734 4735 4736 4737
static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
					       struct xdp_buff *xdp)
{
	unsigned int metasize = xdp->data - xdp->data_meta;
	unsigned int datasize = xdp->data_end - xdp->data;
	struct sk_buff *skb;

4738
	skb = __napi_alloc_skb(&ch->rxtx_napi,
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
			       xdp->data_end - xdp->data_hard_start,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	skb_reserve(skb, xdp->data - xdp->data_hard_start);
	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
	if (metasize)
		skb_metadata_set(skb, metasize);

	return skb;
}

static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
				   struct dma_desc *p, struct dma_desc *np,
				   struct xdp_buff *xdp)
{
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned int len = xdp->data_end - xdp->data;
	enum pkt_hash_types hash_type;
	int coe = priv->hw->rx_csum;
	struct sk_buff *skb;
	u32 hash;

	skb = stmmac_construct_skb_zc(ch, xdp);
	if (!skb) {
		priv->dev->stats.rx_dropped++;
		return;
	}

	stmmac_get_rx_hwtstamp(priv, p, np, skb);
	stmmac_rx_vlan(priv->dev, skb);
	skb->protocol = eth_type_trans(skb, priv->dev);

	if (unlikely(!coe))
		skb_checksum_none_assert(skb);
	else
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
		skb_set_hash(skb, hash, hash_type);

	skb_record_rx_queue(skb, queue);
4782
	napi_gro_receive(&ch->rxtx_napi, skb);
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

	priv->dev->stats.rx_packets++;
	priv->dev->stats.rx_bytes += len;
}

static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	unsigned int entry = rx_q->dirty_rx;
	struct dma_desc *rx_desc = NULL;
	bool ret = true;

	budget = min(budget, stmmac_rx_dirty(priv, queue));

	while (budget-- > 0 && entry != rx_q->cur_rx) {
		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
		dma_addr_t dma_addr;
		bool use_rx_wd;

		if (!buf->xdp) {
			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
			if (!buf->xdp) {
				ret = false;
				break;
			}
		}

		if (priv->extend_desc)
			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
		else
			rx_desc = rx_q->dma_rx + entry;

		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
		stmmac_refill_desc3(priv, rx_q, rx_desc);

		rx_q->rx_count_frames++;
		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
			rx_q->rx_count_frames = 0;

		use_rx_wd = !priv->rx_coal_frames[queue];
		use_rx_wd |= rx_q->rx_count_frames > 0;
		if (!priv->use_riwt)
			use_rx_wd = false;

		dma_wmb();
		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);

		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
	}

	if (rx_desc) {
		rx_q->dirty_rx = entry;
		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
				     (rx_q->dirty_rx * sizeof(struct dma_desc));
		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
	}

	return ret;
}

static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	unsigned int count = 0, error = 0, len = 0;
	int dirty = stmmac_rx_dirty(priv, queue);
	unsigned int next_entry = rx_q->cur_rx;
	unsigned int desc_size;
	struct bpf_prog *prog;
	bool failure = false;
	int xdp_status = 0;
	int status = 0;

	if (netif_msg_rx_status(priv)) {
		void *rx_head;

		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
		if (priv->extend_desc) {
			rx_head = (void *)rx_q->dma_erx;
			desc_size = sizeof(struct dma_extended_desc);
		} else {
			rx_head = (void *)rx_q->dma_rx;
			desc_size = sizeof(struct dma_desc);
		}

		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
				    rx_q->dma_rx_phy, desc_size);
	}
	while (count < limit) {
		struct stmmac_rx_buffer *buf;
		unsigned int buf1_len = 0;
		struct dma_desc *np, *p;
		int entry;
		int res;

		if (!count && rx_q->state_saved) {
			error = rx_q->state.error;
			len = rx_q->state.len;
		} else {
			rx_q->state_saved = false;
			error = 0;
			len = 0;
		}

		if (count >= limit)
			break;

read_again:
		buf1_len = 0;
		entry = next_entry;
		buf = &rx_q->buf_pool[entry];

		if (dirty >= STMMAC_RX_FILL_BATCH) {
			failure = failure ||
				  !stmmac_rx_refill_zc(priv, queue, dirty);
			dirty = 0;
		}

		if (priv->extend_desc)
			p = (struct dma_desc *)(rx_q->dma_erx + entry);
		else
			p = rx_q->dma_rx + entry;

		/* read the status of the incoming frame */
		status = stmmac_rx_status(priv, &priv->dev->stats,
					  &priv->xstats, p);
		/* check if managed by the DMA otherwise go ahead */
		if (unlikely(status & dma_own))
			break;

		/* Prefetch the next RX descriptor */
		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
						priv->dma_rx_size);
		next_entry = rx_q->cur_rx;

		if (priv->extend_desc)
			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
		else
			np = rx_q->dma_rx + next_entry;

		prefetch(np);

		if (priv->extend_desc)
			stmmac_rx_extended_status(priv, &priv->dev->stats,
						  &priv->xstats,
						  rx_q->dma_erx + entry);
		if (unlikely(status == discard_frame)) {
			xsk_buff_free(buf->xdp);
			buf->xdp = NULL;
			dirty++;
			error = 1;
			if (!priv->hwts_rx_en)
				priv->dev->stats.rx_errors++;
		}

		if (unlikely(error && (status & rx_not_ls)))
			goto read_again;
		if (unlikely(error)) {
			count++;
			continue;
		}

		/* Ensure a valid XSK buffer before proceed */
		if (!buf->xdp)
			break;

		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
		if (likely(status & rx_not_ls)) {
			xsk_buff_free(buf->xdp);
			buf->xdp = NULL;
			dirty++;
			count++;
			goto read_again;
		}

		/* XDP ZC Frame only support primary buffers for now */
		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
		len += buf1_len;

		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
		 * Type frames (LLC/LLC-SNAP)
		 *
		 * llc_snap is never checked in GMAC >= 4, so this ACS
		 * feature is always disabled and packets need to be
		 * stripped manually.
		 */
		if (likely(!(status & rx_not_ls)) &&
		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
		     unlikely(status != llc_snap))) {
			buf1_len -= ETH_FCS_LEN;
			len -= ETH_FCS_LEN;
		}

		/* RX buffer is good and fit into a XSK pool buffer */
		buf->xdp->data_end = buf->xdp->data + buf1_len;
		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);

		rcu_read_lock();
		prog = READ_ONCE(priv->xdp_prog);
		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
		rcu_read_unlock();

		switch (res) {
		case STMMAC_XDP_PASS:
			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
			xsk_buff_free(buf->xdp);
			break;
		case STMMAC_XDP_CONSUMED:
			xsk_buff_free(buf->xdp);
			priv->dev->stats.rx_dropped++;
			break;
		case STMMAC_XDP_TX:
		case STMMAC_XDP_REDIRECT:
			xdp_status |= res;
			break;
		}

		buf->xdp = NULL;
		dirty++;
		count++;
	}

	if (status & rx_not_ls) {
		rx_q->state_saved = true;
		rx_q->state.error = error;
		rx_q->state.len = len;
	}

	stmmac_finalize_xdp_rx(priv, xdp_status);

	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
		if (failure || stmmac_rx_dirty(priv, queue) > 0)
			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
		else
			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);

		return (int)count;
	}

	return failure ? limit : (int)count;
}

5027
/**
5028
 * stmmac_rx - manage the receive process
5029
 * @priv: driver private structure
5030 5031
 * @limit: napi bugget
 * @queue: RX queue index.
5032 5033 5034
 * Description :  this the function called by the napi poll method.
 * It gets all the frames inside the ring.
 */
5035
static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5036
{
5037
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5038
	struct stmmac_channel *ch = &priv->channel[queue];
5039 5040
	unsigned int count = 0, error = 0, len = 0;
	int status = 0, coe = priv->hw->rx_csum;
5041
	unsigned int next_entry = rx_q->cur_rx;
5042
	enum dma_data_direction dma_dir;
5043
	unsigned int desc_size;
5044
	struct sk_buff *skb = NULL;
5045
	struct xdp_buff xdp;
5046
	int xdp_status = 0;
5047 5048 5049 5050
	int buf_sz;

	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5051

5052
	if (netif_msg_rx_status(priv)) {
5053 5054
		void *rx_head;

5055
		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5056
		if (priv->extend_desc) {
5057
			rx_head = (void *)rx_q->dma_erx;
5058 5059
			desc_size = sizeof(struct dma_extended_desc);
		} else {
5060
			rx_head = (void *)rx_q->dma_rx;
5061 5062
			desc_size = sizeof(struct dma_desc);
		}
5063

5064 5065
		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
				    rx_q->dma_rx_phy, desc_size);
5066
	}
5067
	while (count < limit) {
Jose Abreu's avatar
Jose Abreu committed
5068
		unsigned int buf1_len = 0, buf2_len = 0;
5069
		enum pkt_hash_types hash_type;
5070 5071
		struct stmmac_rx_buffer *buf;
		struct dma_desc *np, *p;
5072 5073
		int entry;
		u32 hash;
5074

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
		if (!count && rx_q->state_saved) {
			skb = rx_q->state.skb;
			error = rx_q->state.error;
			len = rx_q->state.len;
		} else {
			rx_q->state_saved = false;
			skb = NULL;
			error = 0;
			len = 0;
		}

		if (count >= limit)
			break;

read_again:
Jose Abreu's avatar
Jose Abreu committed
5090 5091
		buf1_len = 0;
		buf2_len = 0;
5092
		entry = next_entry;
5093
		buf = &rx_q->buf_pool[entry];
5094

5095
		if (priv->extend_desc)
5096
			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5097
		else
5098
			p = rx_q->dma_rx + entry;
5099

5100
		/* read the status of the incoming frame */
5101 5102
		status = stmmac_rx_status(priv, &priv->dev->stats,
				&priv->xstats, p);
5103 5104
		/* check if managed by the DMA otherwise go ahead */
		if (unlikely(status & dma_own))
5105 5106
			break;

5107 5108
		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
						priv->dma_rx_size);
5109
		next_entry = rx_q->cur_rx;
5110

5111
		if (priv->extend_desc)
5112
			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5113
		else
5114
			np = rx_q->dma_rx + next_entry;
5115 5116

		prefetch(np);
5117

5118 5119 5120
		if (priv->extend_desc)
			stmmac_rx_extended_status(priv, &priv->dev->stats,
					&priv->xstats, rx_q->dma_erx + entry);
5121
		if (unlikely(status == discard_frame)) {
5122 5123
			page_pool_recycle_direct(rx_q->page_pool, buf->page);
			buf->page = NULL;
5124
			error = 1;
5125 5126
			if (!priv->hwts_rx_en)
				priv->dev->stats.rx_errors++;
5127 5128 5129 5130 5131
		}

		if (unlikely(error && (status & rx_not_ls)))
			goto read_again;
		if (unlikely(error)) {
5132
			dev_kfree_skb(skb);
Jose Abreu's avatar
Jose Abreu committed
5133
			skb = NULL;
5134
			count++;
5135 5136 5137 5138 5139
			continue;
		}

		/* Buffer is good. Go on. */

Jose Abreu's avatar
Jose Abreu committed
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
		prefetch(page_address(buf->page));
		if (buf->sec_page)
			prefetch(page_address(buf->sec_page));

		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
		len += buf1_len;
		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
		len += buf2_len;

		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
		 * Type frames (LLC/LLC-SNAP)
		 *
		 * llc_snap is never checked in GMAC >= 4, so this ACS
		 * feature is always disabled and packets need to be
		 * stripped manually.
		 */
5156 5157 5158
		if (likely(!(status & rx_not_ls)) &&
		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
		     unlikely(status != llc_snap))) {
Jose Abreu's avatar
Jose Abreu committed
5159 5160 5161 5162 5163 5164
			if (buf2_len)
				buf2_len -= ETH_FCS_LEN;
			else
				buf1_len -= ETH_FCS_LEN;

			len -= ETH_FCS_LEN;
5165
		}
5166

5167
		if (!skb) {
5168 5169
			unsigned int pre_len, sync_len;

5170 5171 5172 5173 5174 5175 5176 5177
			dma_sync_single_for_cpu(priv->device, buf->addr,
						buf1_len, dma_dir);

			xdp.data = page_address(buf->page) + buf->page_offset;
			xdp.data_end = xdp.data + buf1_len;
			xdp.data_hard_start = page_address(buf->page);
			xdp_set_data_meta_invalid(&xdp);
			xdp.frame_sz = buf_sz;
5178
			xdp.rxq = &rx_q->xdp_rxq;
5179

5180 5181
			pre_len = xdp.data_end - xdp.data_hard_start -
				  buf->page_offset;
5182
			skb = stmmac_xdp_run_prog(priv, &xdp);
5183 5184 5185 5186 5187 5188
			/* Due xdp_adjust_tail: DMA sync for_device
			 * cover max len CPU touch
			 */
			sync_len = xdp.data_end - xdp.data_hard_start -
				   buf->page_offset;
			sync_len = max(sync_len, pre_len);
5189 5190 5191 5192 5193 5194

			/* For Not XDP_PASS verdict */
			if (IS_ERR(skb)) {
				unsigned int xdp_res = -PTR_ERR(skb);

				if (xdp_res & STMMAC_XDP_CONSUMED) {
5195 5196 5197
					page_pool_put_page(rx_q->page_pool,
							   virt_to_head_page(xdp.data),
							   sync_len, true);
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
					buf->page = NULL;
					priv->dev->stats.rx_dropped++;

					/* Clear skb as it was set as
					 * status by XDP program.
					 */
					skb = NULL;

					if (unlikely((status & rx_not_ls)))
						goto read_again;

					count++;
					continue;
5211 5212
				} else if (xdp_res & (STMMAC_XDP_TX |
						      STMMAC_XDP_REDIRECT)) {
5213 5214 5215 5216 5217
					xdp_status |= xdp_res;
					buf->page = NULL;
					skb = NULL;
					count++;
					continue;
5218 5219 5220 5221 5222 5223 5224 5225
				}
			}
		}

		if (!skb) {
			/* XDP program may expand or reduce tail */
			buf1_len = xdp.data_end - xdp.data;

Jose Abreu's avatar
Jose Abreu committed
5226
			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5227
			if (!skb) {
5228
				priv->dev->stats.rx_dropped++;
5229
				count++;
Jose Abreu's avatar
Jose Abreu committed
5230
				goto drain_data;
5231 5232
			}

5233 5234
			/* XDP program may adjust header */
			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
Jose Abreu's avatar
Jose Abreu committed
5235
			skb_put(skb, buf1_len);
5236

5237 5238 5239
			/* Data payload copied into SKB, page ready for recycle */
			page_pool_recycle_direct(rx_q->page_pool, buf->page);
			buf->page = NULL;
Jose Abreu's avatar
Jose Abreu committed
5240
		} else if (buf1_len) {
5241
			dma_sync_single_for_cpu(priv->device, buf->addr,
5242
						buf1_len, dma_dir);
5243
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5244
					buf->page, buf->page_offset, buf1_len,
5245
					priv->dma_buf_sz);
5246

5247 5248 5249 5250
			/* Data payload appended into SKB */
			page_pool_release_page(rx_q->page_pool, buf->page);
			buf->page = NULL;
		}
5251

Jose Abreu's avatar
Jose Abreu committed
5252
		if (buf2_len) {
5253
			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5254
						buf2_len, dma_dir);
5255
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
Jose Abreu's avatar
Jose Abreu committed
5256
					buf->sec_page, 0, buf2_len,
5257 5258 5259 5260 5261 5262 5263
					priv->dma_buf_sz);

			/* Data payload appended into SKB */
			page_pool_release_page(rx_q->page_pool, buf->sec_page);
			buf->sec_page = NULL;
		}

Jose Abreu's avatar
Jose Abreu committed
5264
drain_data:
5265 5266
		if (likely(status & rx_not_ls))
			goto read_again;
Jose Abreu's avatar
Jose Abreu committed
5267 5268
		if (!skb)
			continue;
5269

5270
		/* Got entire packet into SKB. Finish it. */
5271

5272 5273 5274
		stmmac_get_rx_hwtstamp(priv, p, np, skb);
		stmmac_rx_vlan(priv->dev, skb);
		skb->protocol = eth_type_trans(skb, priv->dev);
5275

5276 5277 5278 5279
		if (unlikely(!coe))
			skb_checksum_none_assert(skb);
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
5280

5281 5282 5283 5284 5285
		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
			skb_set_hash(skb, hash, hash_type);

		skb_record_rx_queue(skb, queue);
		napi_gro_receive(&ch->rx_napi, skb);
Jose Abreu's avatar
Jose Abreu committed
5286
		skb = NULL;
5287 5288 5289

		priv->dev->stats.rx_packets++;
		priv->dev->stats.rx_bytes += len;
5290
		count++;
5291 5292
	}

Jose Abreu's avatar
Jose Abreu committed
5293
	if (status & rx_not_ls || skb) {
5294 5295 5296 5297
		rx_q->state_saved = true;
		rx_q->state.skb = skb;
		rx_q->state.error = error;
		rx_q->state.len = len;
5298 5299
	}

5300 5301
	stmmac_finalize_xdp_rx(priv, xdp_status);

5302
	stmmac_rx_refill(priv, queue);
5303 5304 5305 5306 5307 5308

	priv->xstats.rx_pkt_n += count;

	return count;
}

5309
static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5310
{
5311
	struct stmmac_channel *ch =
5312
		container_of(napi, struct stmmac_channel, rx_napi);
5313 5314
	struct stmmac_priv *priv = ch->priv_data;
	u32 chan = ch->index;
5315
	int work_done;
5316

5317
	priv->xstats.napi_poll++;
5318

5319
	work_done = stmmac_rx(priv, budget, chan);
5320 5321 5322 5323 5324 5325 5326 5327
	if (work_done < budget && napi_complete_done(napi, work_done)) {
		unsigned long flags;

		spin_lock_irqsave(&ch->lock, flags);
		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
		spin_unlock_irqrestore(&ch->lock, flags);
	}

5328 5329
	return work_done;
}
5330

5331 5332 5333 5334 5335 5336 5337
static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
{
	struct stmmac_channel *ch =
		container_of(napi, struct stmmac_channel, tx_napi);
	struct stmmac_priv *priv = ch->priv_data;
	u32 chan = ch->index;
	int work_done;
5338

5339 5340
	priv->xstats.napi_poll++;

5341
	work_done = stmmac_tx_clean(priv, budget, chan);
5342
	work_done = min(work_done, budget);
5343

5344 5345
	if (work_done < budget && napi_complete_done(napi, work_done)) {
		unsigned long flags;
5346

5347 5348 5349
		spin_lock_irqsave(&ch->lock, flags);
		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
		spin_unlock_irqrestore(&ch->lock, flags);
5350
	}
5351

5352 5353 5354
	return work_done;
}

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
{
	struct stmmac_channel *ch =
		container_of(napi, struct stmmac_channel, rxtx_napi);
	struct stmmac_priv *priv = ch->priv_data;
	int rx_done, tx_done;
	u32 chan = ch->index;

	priv->xstats.napi_poll++;

	tx_done = stmmac_tx_clean(priv, budget, chan);
	tx_done = min(tx_done, budget);

	rx_done = stmmac_rx_zc(priv, budget, chan);

	/* If either TX or RX work is not complete, return budget
	 * and keep pooling
	 */
	if (tx_done >= budget || rx_done >= budget)
		return budget;

	/* all work done, exit the polling mode */
	if (napi_complete_done(napi, rx_done)) {
		unsigned long flags;

		spin_lock_irqsave(&ch->lock, flags);
		/* Both RX and TX work done are compelte,
		 * so enable both RX & TX IRQs.
		 */
		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
		spin_unlock_irqrestore(&ch->lock, flags);
	}

	return min(rx_done, budget - 1);
}

5391 5392 5393
/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
5394
 *  @txqueue: the index of the hanging transmit queue
5395
 *  Description: this function is called when a packet transmission fails to
5396
 *   complete within a reasonable time. The driver will mark the error in the
5397 5398 5399
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
5400
static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5401 5402 5403
{
	struct stmmac_priv *priv = netdev_priv(dev);

5404
	stmmac_global_err(priv);
5405 5406 5407
}

/**
5408
 *  stmmac_set_rx_mode - entry point for multicast addressing
5409 5410 5411 5412 5413 5414 5415
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
5416
static void stmmac_set_rx_mode(struct net_device *dev)
5417 5418 5419
{
	struct stmmac_priv *priv = netdev_priv(dev);

5420
	stmmac_set_filter(priv, priv->hw, dev);
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
5436
	struct stmmac_priv *priv = netdev_priv(dev);
5437
	int txfifosz = priv->plat->tx_fifo_size;
5438
	const int mtu = new_mtu;
5439 5440 5441 5442 5443

	if (txfifosz == 0)
		txfifosz = priv->dma_cap.tx_fifo_size;

	txfifosz /= priv->plat->tx_queues_to_use;
5444

5445
	if (netif_running(dev)) {
5446
		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5447 5448 5449
		return -EBUSY;
	}

5450 5451 5452 5453 5454
	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
		return -EINVAL;
	}

5455 5456 5457 5458 5459 5460
	new_mtu = STMMAC_ALIGN(new_mtu);

	/* If condition true, FIFO is too small or MTU too large */
	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
		return -EINVAL;

5461
	dev->mtu = mtu;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
5462

5463 5464 5465 5466 5467
	netdev_update_features(dev);

	return 0;
}

5468
static netdev_features_t stmmac_fix_features(struct net_device *dev,
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5469
					     netdev_features_t features)
5470 5471 5472
{
	struct stmmac_priv *priv = netdev_priv(dev);

5473
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5474
		features &= ~NETIF_F_RXCSUM;
5475

5476
	if (!priv->plat->tx_coe)
5477
		features &= ~NETIF_F_CSUM_MASK;
5478

5479 5480 5481
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
5482
	 * the TX csum insertion in the TDES and not use SF.
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5483
	 */
5484
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5485
		features &= ~NETIF_F_CSUM_MASK;
5486

Alexandre TORGUE's avatar
Alexandre TORGUE committed
5487 5488 5489 5490 5491 5492 5493 5494
	/* Disable tso if asked by ethtool */
	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
		if (features & NETIF_F_TSO)
			priv->tso = true;
		else
			priv->tso = false;
	}

5495
	return features;
5496 5497
}

5498 5499 5500 5501
static int stmmac_set_features(struct net_device *netdev,
			       netdev_features_t features)
{
	struct stmmac_priv *priv = netdev_priv(netdev);
5502 5503
	bool sph_en;
	u32 chan;
5504 5505 5506 5507 5508 5509 5510 5511 5512

	/* Keep the COE Type in case of csum is supporting */
	if (features & NETIF_F_RXCSUM)
		priv->hw->rx_csum = priv->plat->rx_coe;
	else
		priv->hw->rx_csum = 0;
	/* No check needed because rx_coe has been set before and it will be
	 * fixed in case of issue.
	 */
5513
	stmmac_rx_ipc(priv, priv->hw);
5514

5515
	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5516

5517 5518 5519
	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);

5520 5521 5522
	return 0;
}

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
{
	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
	bool *hs_enable = &fpe_cfg->hs_enable;

	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
		return;

	/* If LP has sent verify mPacket, LP is FPE capable */
	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
		if (*lp_state < FPE_STATE_CAPABLE)
			*lp_state = FPE_STATE_CAPABLE;

		/* If user has requested FPE enable, quickly response */
		if (*hs_enable)
			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
						MPACKET_RESPONSE);
	}

	/* If Local has sent verify mPacket, Local is FPE capable */
	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
		if (*lo_state < FPE_STATE_CAPABLE)
			*lo_state = FPE_STATE_CAPABLE;
	}

	/* If LP has sent response mPacket, LP is entering FPE ON */
	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
		*lp_state = FPE_STATE_ENTERING_ON;

	/* If Local has sent response mPacket, Local is entering FPE ON */
	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
		*lo_state = FPE_STATE_ENTERING_ON;

	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
	    priv->fpe_wq) {
		queue_work(priv->fpe_wq, &priv->fpe_task);
	}
}

5565
static void stmmac_common_interrupt(struct stmmac_priv *priv)
5566
{
5567 5568 5569 5570
	u32 rx_cnt = priv->plat->rx_queues_to_use;
	u32 tx_cnt = priv->plat->tx_queues_to_use;
	u32 queues_count;
	u32 queue;
5571
	bool xmac;
5572

5573
	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5574
	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5575

5576 5577 5578
	if (priv->irq_wake)
		pm_wakeup_event(priv->device, 0);

5579
	if (priv->dma_cap.estsel)
5580 5581
		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
				      &priv->xstats, tx_cnt);
5582

5583 5584 5585 5586 5587 5588 5589
	if (priv->dma_cap.fpesel) {
		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
						   priv->dev);

		stmmac_fpe_event_status(priv, status);
	}

5590
	/* To handle GMAC own interrupts */
5591
	if ((priv->plat->has_gmac) || xmac) {
5592
		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5593

5594 5595
		if (unlikely(status)) {
			/* For LPI we need to save the tx status */
5596
			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5597
				priv->tx_path_in_lpi_mode = true;
5598
			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5599
				priv->tx_path_in_lpi_mode = false;
5600 5601
		}

5602
		for (queue = 0; queue < queues_count; queue++) {
5603 5604
			status = stmmac_host_mtl_irq_status(priv, priv->hw,
							    queue);
5605
		}
5606 5607

		/* PCS link status */
5608
		if (priv->hw->pcs) {
5609
			if (priv->xstats.pcs_link)
5610
				netif_carrier_on(priv->dev);
5611
			else
5612
				netif_carrier_off(priv->dev);
5613
		}
5614 5615

		stmmac_timestamp_interrupt(priv, priv);
5616
	}
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
}

/**
 *  stmmac_interrupt - main ISR
 *  @irq: interrupt number.
 *  @dev_id: to pass the net device pointer.
 *  Description: this is the main driver interrupt service routine.
 *  It can call:
 *  o DMA service routine (to manage incoming frame reception and transmission
 *    status)
 *  o Core interrupts to manage: remote wake-up, management counter, LPI
 *    interrupts.
 */
static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	/* Check if a fatal error happened */
	if (stmmac_safety_feat_interrupt(priv))
		return IRQ_HANDLED;

	/* To handle Common interrupts */
	stmmac_common_interrupt(priv);
5645

5646
	/* To handle DMA interrupts */
5647
	stmmac_dma_interrupt(priv);
5648 5649 5650 5651

	return IRQ_HANDLED;
}

5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	/* To handle Common interrupts */
	stmmac_common_interrupt(priv);

	return IRQ_HANDLED;
}

static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	/* Check if a fatal error happened */
	stmmac_safety_feat_interrupt(priv);

	return IRQ_HANDLED;
}

static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
{
	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
	int chan = tx_q->queue_index;
	struct stmmac_priv *priv;
	int status;

	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);

	if (unlikely(!data)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);

	if (unlikely(status & tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
		    tc <= 256) {
			tc += 64;
			if (priv->plat->force_thresh_dma_mode)
				stmmac_set_dma_operation_mode(priv,
							      tc,
							      tc,
							      chan);
			else
				stmmac_set_dma_operation_mode(priv,
							      tc,
							      SF_DMA_MODE,
							      chan);
			priv->xstats.threshold = tc;
		}
	} else if (unlikely(status == tx_hard_error)) {
		stmmac_tx_err(priv, chan);
	}

	return IRQ_HANDLED;
}

static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
{
	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
	int chan = rx_q->queue_index;
	struct stmmac_priv *priv;

	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);

	if (unlikely(!data)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	stmmac_napi_check(priv, chan, DMA_DIR_RX);

	return IRQ_HANDLED;
}

5758 5759
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5760 5761
 * to allow network I/O with interrupts disabled.
 */
5762 5763
static void stmmac_poll_controller(struct net_device *dev)
{
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
	struct stmmac_priv *priv = netdev_priv(dev);
	int i;

	/* If adapter is down, do nothing */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return;

	if (priv->plat->multi_msi_en) {
		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);

		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
	} else {
		disable_irq(dev->irq);
		stmmac_interrupt(dev->irq, dev);
		enable_irq(dev->irq);
	}
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
5792
 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5793 5794 5795
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
5796
	struct stmmac_priv *priv = netdev_priv (dev);
5797
	int ret = -EOPNOTSUPP;
5798 5799 5800 5801

	if (!netif_running(dev))
		return -EINVAL;

5802 5803 5804 5805
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
5806
		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5807 5808
		break;
	case SIOCSHWTSTAMP:
5809 5810 5811 5812
		ret = stmmac_hwtstamp_set(dev, rq);
		break;
	case SIOCGHWTSTAMP:
		ret = stmmac_hwtstamp_get(dev, rq);
5813 5814 5815 5816
		break;
	default:
		break;
	}
5817

5818 5819 5820
	return ret;
}

5821 5822 5823 5824 5825 5826
static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
				    void *cb_priv)
{
	struct stmmac_priv *priv = cb_priv;
	int ret = -EOPNOTSUPP;

5827 5828 5829
	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
		return ret;

5830
	__stmmac_disable_all_queues(priv);
5831 5832 5833

	switch (type) {
	case TC_SETUP_CLSU32:
5834 5835 5836 5837
		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
		break;
	case TC_SETUP_CLSFLOWER:
		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5838 5839 5840 5841 5842 5843 5844 5845 5846
		break;
	default:
		break;
	}

	stmmac_enable_all_queues(priv);
	return ret;
}

5847 5848
static LIST_HEAD(stmmac_block_cb_list);

5849 5850 5851 5852 5853 5854 5855
static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			   void *type_data)
{
	struct stmmac_priv *priv = netdev_priv(ndev);

	switch (type) {
	case TC_SETUP_BLOCK:
5856 5857
		return flow_block_cb_setup_simple(type_data,
						  &stmmac_block_cb_list,
5858 5859
						  stmmac_setup_tc_block_cb,
						  priv, priv, true);
5860 5861
	case TC_SETUP_QDISC_CBS:
		return stmmac_tc_setup_cbs(priv, priv, type_data);
5862 5863
	case TC_SETUP_QDISC_TAPRIO:
		return stmmac_tc_setup_taprio(priv, priv, type_data);
5864 5865
	case TC_SETUP_QDISC_ETF:
		return stmmac_tc_setup_etf(priv, priv, type_data);
5866 5867 5868 5869 5870
	default:
		return -EOPNOTSUPP;
	}
}

5871 5872 5873
static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
			       struct net_device *sb_dev)
{
5874 5875 5876
	int gso = skb_shinfo(skb)->gso_type;

	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5877
		/*
5878
		 * There is no way to determine the number of TSO/USO
5879
		 * capable Queues. Let's use always the Queue 0
5880
		 * because if TSO/USO is supported then at least this
5881 5882 5883 5884 5885 5886 5887 5888
		 * one will be capable.
		 */
		return 0;
	}

	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
}

5889 5890 5891 5892 5893 5894 5895 5896 5897
static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
{
	struct stmmac_priv *priv = netdev_priv(ndev);
	int ret = 0;

	ret = eth_mac_addr(ndev, addr);
	if (ret)
		return ret;

5898
	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5899 5900 5901 5902

	return ret;
}

5903
#ifdef CONFIG_DEBUG_FS
5904 5905
static struct dentry *stmmac_fs_dir;

5906
static void sysfs_display_ring(void *head, int size, int extend_desc,
5907
			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5908 5909
{
	int i;
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5910 5911
	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
	struct dma_desc *p = (struct dma_desc *)head;
5912
	dma_addr_t dma_addr;
5913

5914 5915
	for (i = 0; i < size; i++) {
		if (extend_desc) {
5916 5917 5918
			dma_addr = dma_phy_addr + i * sizeof(*ep);
			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, &dma_addr,
5919 5920 5921 5922
				   le32_to_cpu(ep->basic.des0),
				   le32_to_cpu(ep->basic.des1),
				   le32_to_cpu(ep->basic.des2),
				   le32_to_cpu(ep->basic.des3));
5923 5924
			ep++;
		} else {
5925 5926 5927
			dma_addr = dma_phy_addr + i * sizeof(*p);
			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, &dma_addr,
5928 5929
				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5930 5931
			p++;
		}
5932 5933
		seq_printf(seq, "\n");
	}
5934
}
5935

5936
static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5937 5938 5939
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);
5940
	u32 rx_count = priv->plat->rx_queues_to_use;
5941
	u32 tx_count = priv->plat->tx_queues_to_use;
5942 5943
	u32 queue;

5944 5945 5946
	if ((dev->flags & IFF_UP) == 0)
		return 0;

5947 5948 5949 5950 5951 5952 5953 5954
	for (queue = 0; queue < rx_count; queue++) {
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

		seq_printf(seq, "RX Queue %d:\n", queue);

		if (priv->extend_desc) {
			seq_printf(seq, "Extended descriptor ring:\n");
			sysfs_display_ring((void *)rx_q->dma_erx,
5955
					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5956 5957 5958
		} else {
			seq_printf(seq, "Descriptor ring:\n");
			sysfs_display_ring((void *)rx_q->dma_rx,
5959
					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5960 5961
		}
	}
5962

5963 5964 5965 5966 5967 5968 5969 5970
	for (queue = 0; queue < tx_count; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

		seq_printf(seq, "TX Queue %d:\n", queue);

		if (priv->extend_desc) {
			seq_printf(seq, "Extended descriptor ring:\n");
			sysfs_display_ring((void *)tx_q->dma_etx,
5971
					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5972
		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5973 5974
			seq_printf(seq, "Descriptor ring:\n");
			sysfs_display_ring((void *)tx_q->dma_tx,
5975
					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5976
		}
5977 5978 5979 5980
	}

	return 0;
}
5981
DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5982

5983
static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5984 5985 5986 5987
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

5988
	if (!priv->hw_cap_support) {
5989 5990 5991 5992 5993 5994 5995 5996
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

5997
	seq_printf(seq, "\t10/100 Mbps: %s\n",
5998
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5999
	seq_printf(seq, "\t1000 Mbps: %s\n",
6000
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6001
	seq_printf(seq, "\tHalf duplex: %s\n",
6002 6003 6004 6005 6006
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6007
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6019
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6020
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6021
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6022 6023 6024 6025
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6026 6027 6028 6029 6030 6031 6032 6033 6034
	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
			   (priv->dma_cap.rx_coe) ? "Y" : "N");
	} else {
		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	}
6035 6036 6037 6038 6039 6040
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
6041 6042 6043 6044
	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
		   priv->dma_cap.number_rx_queues);
	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
		   priv->dma_cap.number_tx_queues);
6045 6046
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
		   priv->dma_cap.pps_out_num);
	seq_printf(seq, "\tSafety Features: %s\n",
		   priv->dma_cap.asp ? "Y" : "N");
	seq_printf(seq, "\tFlexible RX Parser: %s\n",
		   priv->dma_cap.frpsel ? "Y" : "N");
	seq_printf(seq, "\tEnhanced Addressing: %d\n",
		   priv->dma_cap.addr64);
	seq_printf(seq, "\tReceive Side Scaling: %s\n",
		   priv->dma_cap.rssen ? "Y" : "N");
	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
		   priv->dma_cap.vlhash ? "Y" : "N");
	seq_printf(seq, "\tSplit Header: %s\n",
		   priv->dma_cap.sphen ? "Y" : "N");
	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
		   priv->dma_cap.vlins ? "Y" : "N");
	seq_printf(seq, "\tDouble VLAN: %s\n",
		   priv->dma_cap.dvlan ? "Y" : "N");
	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
		   priv->dma_cap.l3l4fnum);
	seq_printf(seq, "\tARP Offloading: %s\n",
		   priv->dma_cap.arpoffsel ? "Y" : "N");
6073 6074 6075 6076 6077 6078
	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
		   priv->dma_cap.estsel ? "Y" : "N");
	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
		   priv->dma_cap.fpesel ? "Y" : "N");
	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
		   priv->dma_cap.tbssel ? "Y" : "N");
6079 6080
	return 0;
}
6081
DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6082

6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
/* Use network device events to rename debugfs file entries.
 */
static int stmmac_device_event(struct notifier_block *unused,
			       unsigned long event, void *ptr)
{
	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
	struct stmmac_priv *priv = netdev_priv(dev);

	if (dev->netdev_ops != &stmmac_netdev_ops)
		goto done;

	switch (event) {
	case NETDEV_CHANGENAME:
		if (priv->dbgfs_dir)
			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
							 priv->dbgfs_dir,
							 stmmac_fs_dir,
							 dev->name);
		break;
	}
done:
	return NOTIFY_DONE;
}

static struct notifier_block stmmac_notifier = {
	.notifier_call = stmmac_device_event,
};

6111
static void stmmac_init_fs(struct net_device *dev)
6112
{
6113 6114
	struct stmmac_priv *priv = netdev_priv(dev);

6115 6116
	rtnl_lock();

6117 6118
	/* Create per netdev entries */
	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6119 6120

	/* Entry to report DMA RX/TX rings */
6121 6122
	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
			    &stmmac_rings_status_fops);
6123

6124
	/* Entry to report the DMA HW features */
6125 6126
	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
			    &stmmac_dma_cap_fops);
6127

6128
	rtnl_unlock();
6129 6130
}

6131
static void stmmac_exit_fs(struct net_device *dev)
6132
{
6133 6134 6135
	struct stmmac_priv *priv = netdev_priv(dev);

	debugfs_remove_recursive(priv->dbgfs_dir);
6136
}
6137
#endif /* CONFIG_DEBUG_FS */
6138

6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
static u32 stmmac_vid_crc32_le(__le16 vid_le)
{
	unsigned char *data = (unsigned char *)&vid_le;
	unsigned char data_byte = 0;
	u32 crc = ~0x0;
	u32 temp = 0;
	int i, bits;

	bits = get_bitmask_order(VLAN_VID_MASK);
	for (i = 0; i < bits; i++) {
		if ((i % 8) == 0)
			data_byte = data[i / 8];

		temp = ((crc & 1) ^ data_byte) & 1;
		crc >>= 1;
		data_byte >>= 1;

		if (temp)
			crc ^= 0xedb88320;
	}

	return crc;
}

static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
{
	u32 crc, hash = 0;
Jose Abreu's avatar
Jose Abreu committed
6166
	__le16 pmatch = 0;
6167 6168
	int count = 0;
	u16 vid = 0;
6169 6170 6171 6172 6173

	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
		__le16 vid_le = cpu_to_le16(vid);
		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
		hash |= (1 << crc);
6174 6175 6176 6177 6178 6179 6180
		count++;
	}

	if (!priv->dma_cap.vlhash) {
		if (count > 2) /* VID = 0 always passes filter */
			return -EOPNOTSUPP;

Jose Abreu's avatar
Jose Abreu committed
6181
		pmatch = cpu_to_le16(vid);
6182
		hash = 0;
6183 6184
	}

Jose Abreu's avatar
Jose Abreu committed
6185
	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
}

static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
	struct stmmac_priv *priv = netdev_priv(ndev);
	bool is_double = false;
	int ret;

	if (be16_to_cpu(proto) == ETH_P_8021AD)
		is_double = true;

	set_bit(vid, priv->active_vlans);
	ret = stmmac_vlan_update(priv, is_double);
	if (ret) {
		clear_bit(vid, priv->active_vlans);
		return ret;
	}

6204 6205 6206 6207 6208
	if (priv->hw->num_vlan) {
		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
		if (ret)
			return ret;
	}
6209

6210
	return 0;
6211 6212 6213 6214 6215 6216
}

static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
	struct stmmac_priv *priv = netdev_priv(ndev);
	bool is_double = false;
6217
	int ret;
6218

6219 6220 6221 6222 6223 6224
	ret = pm_runtime_get_sync(priv->device);
	if (ret < 0) {
		pm_runtime_put_noidle(priv->device);
		return ret;
	}

6225 6226 6227 6228
	if (be16_to_cpu(proto) == ETH_P_8021AD)
		is_double = true;

	clear_bit(vid, priv->active_vlans);
6229 6230 6231 6232

	if (priv->hw->num_vlan) {
		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
		if (ret)
6233
			goto del_vlan_error;
6234
	}
6235

6236 6237 6238 6239 6240 6241
	ret = stmmac_vlan_update(priv, is_double);

del_vlan_error:
	pm_runtime_put(priv->device);

	return ret;
6242 6243
}

6244 6245 6246 6247 6248 6249 6250
static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	switch (bpf->command) {
	case XDP_SETUP_PROG:
		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6251 6252 6253
	case XDP_SETUP_XSK_POOL:
		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
					     bpf->xsk.queue_id);
6254 6255 6256 6257 6258
	default:
		return -EOPNOTSUPP;
	}
}

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
			   struct xdp_frame **frames, u32 flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int cpu = smp_processor_id();
	struct netdev_queue *nq;
	int i, nxmit = 0;
	int queue;

	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
		return -ENETDOWN;

	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
		return -EINVAL;

	queue = stmmac_xdp_get_tx_queue(priv, cpu);
	nq = netdev_get_tx_queue(priv->dev, queue);

	__netif_tx_lock(nq, cpu);
	/* Avoids TX time-out as we are sharing with slow path */
	nq->trans_start = jiffies;

	for (i = 0; i < num_frames; i++) {
		int res;

		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
		if (res == STMMAC_XDP_CONSUMED)
			break;

		nxmit++;
	}

	if (flags & XDP_XMIT_FLUSH) {
		stmmac_flush_tx_descriptors(priv, queue);
		stmmac_tx_timer_arm(priv, queue);
	}

	__netif_tx_unlock(nq);

	return nxmit;
}

6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
	spin_unlock_irqrestore(&ch->lock, flags);

	stmmac_stop_rx_dma(priv, queue);
	__free_dma_rx_desc_resources(priv, queue);
}

void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;
	u32 buf_size;
	int ret;

	ret = __alloc_dma_rx_desc_resources(priv, queue);
	if (ret) {
		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
		return;
	}

	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
	if (ret) {
		__free_dma_rx_desc_resources(priv, queue);
		netdev_err(priv->dev, "Failed to init RX desc.\n");
		return;
	}

	stmmac_clear_rx_descriptors(priv, queue);

	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
			    rx_q->dma_rx_phy, rx_q->queue_index);

	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
			     sizeof(struct dma_desc));
	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
			       rx_q->rx_tail_addr, rx_q->queue_index);

	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
		stmmac_set_dma_bfsize(priv, priv->ioaddr,
				      buf_size,
				      rx_q->queue_index);
	} else {
		stmmac_set_dma_bfsize(priv, priv->ioaddr,
				      priv->dma_buf_sz,
				      rx_q->queue_index);
	}

	stmmac_start_rx_dma(priv, queue);

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
	spin_unlock_irqrestore(&ch->lock, flags);
}

6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
	spin_unlock_irqrestore(&ch->lock, flags);

	stmmac_stop_tx_dma(priv, queue);
	__free_dma_tx_desc_resources(priv, queue);
}

void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;
	int ret;

	ret = __alloc_dma_tx_desc_resources(priv, queue);
	if (ret) {
		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
		return;
	}

	ret = __init_dma_tx_desc_rings(priv, queue);
	if (ret) {
		__free_dma_tx_desc_resources(priv, queue);
		netdev_err(priv->dev, "Failed to init TX desc.\n");
		return;
	}

	stmmac_clear_tx_descriptors(priv, queue);

	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
			    tx_q->dma_tx_phy, tx_q->queue_index);

	if (tx_q->tbs & STMMAC_TBS_AVAIL)
		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);

	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
			       tx_q->tx_tail_addr, tx_q->queue_index);

	stmmac_start_tx_dma(priv, queue);

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
	spin_unlock_irqrestore(&ch->lock, flags);
}

6415 6416 6417 6418
int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct stmmac_rx_queue *rx_q;
6419
	struct stmmac_tx_queue *tx_q;
6420 6421 6422 6423 6424 6425 6426 6427 6428
	struct stmmac_channel *ch;

	if (test_bit(STMMAC_DOWN, &priv->state) ||
	    !netif_carrier_ok(priv->dev))
		return -ENETDOWN;

	if (!stmmac_xdp_is_enabled(priv))
		return -ENXIO;

6429 6430
	if (queue >= priv->plat->rx_queues_to_use ||
	    queue >= priv->plat->tx_queues_to_use)
6431 6432 6433
		return -EINVAL;

	rx_q = &priv->rx_queue[queue];
6434
	tx_q = &priv->tx_queue[queue];
6435 6436
	ch = &priv->channel[queue];

6437
	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6438 6439
		return -ENXIO;

6440
	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6441 6442 6443
		/* EQoS does not have per-DMA channel SW interrupt,
		 * so we schedule RX Napi straight-away.
		 */
6444 6445
		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
			__napi_schedule(&ch->rxtx_napi);
6446 6447 6448 6449 6450
	}

	return 0;
}

6451 6452 6453 6454 6455
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
6456
	.ndo_fix_features = stmmac_fix_features,
6457
	.ndo_set_features = stmmac_set_features,
6458
	.ndo_set_rx_mode = stmmac_set_rx_mode,
6459 6460
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
6461
	.ndo_setup_tc = stmmac_setup_tc,
6462
	.ndo_select_queue = stmmac_select_queue,
6463 6464 6465
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
6466
	.ndo_set_mac_address = stmmac_set_mac_address,
6467 6468
	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6469
	.ndo_bpf = stmmac_bpf,
6470
	.ndo_xdp_xmit = stmmac_xdp_xmit,
6471
	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6472 6473
};

6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
static void stmmac_reset_subtask(struct stmmac_priv *priv)
{
	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
		return;
	if (test_bit(STMMAC_DOWN, &priv->state))
		return;

	netdev_err(priv->dev, "Reset adapter.\n");

	rtnl_lock();
	netif_trans_update(priv->dev);
	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
		usleep_range(1000, 2000);

	set_bit(STMMAC_DOWN, &priv->state);
	dev_close(priv->dev);
6490
	dev_open(priv->dev, NULL);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
	clear_bit(STMMAC_DOWN, &priv->state);
	clear_bit(STMMAC_RESETING, &priv->state);
	rtnl_unlock();
}

static void stmmac_service_task(struct work_struct *work)
{
	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
			service_task);

	stmmac_reset_subtask(priv);
	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
}

6505 6506
/**
 *  stmmac_hw_init - Init the MAC device
6507
 *  @priv: driver private structure
6508 6509 6510 6511
 *  Description: this function is to configure the MAC device according to
 *  some platform parameters or the HW capability register. It prepares the
 *  driver to use either ring or chain modes and to setup either enhanced or
 *  normal descriptors.
6512 6513 6514
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
6515
	int ret;
6516

6517 6518 6519
	/* dwmac-sun8i only work in chain mode */
	if (priv->plat->has_sun8i)
		chain_mode = 1;
6520
	priv->chain_mode = chain_mode;
6521

6522 6523 6524 6525
	/* Initialize HW Interface */
	ret = stmmac_hwif_init(priv);
	if (ret)
		return ret;
6526

6527 6528 6529
	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
6530
		dev_info(priv->device, "DMA HW capability register supported\n");
6531 6532 6533 6534 6535 6536 6537 6538

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
6539
		priv->hw->pmt = priv->plat->pmt;
6540 6541 6542 6543 6544 6545
		if (priv->dma_cap.hash_tb_sz) {
			priv->hw->multicast_filter_bins =
					(BIT(priv->dma_cap.hash_tb_sz) << 5);
			priv->hw->mcast_bits_log2 =
					ilog2(priv->hw->multicast_filter_bins);
		}
6546

6547 6548 6549 6550 6551 6552
		/* TXCOE doesn't work in thresh DMA mode */
		if (priv->plat->force_thresh_dma_mode)
			priv->plat->tx_coe = 0;
		else
			priv->plat->tx_coe = priv->dma_cap.tx_coe;

Alexandre TORGUE's avatar
Alexandre TORGUE committed
6553 6554
		/* In case of GMAC4 rx_coe is from HW cap register. */
		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6555 6556 6557 6558 6559 6560

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

6561 6562 6563
	} else {
		dev_info(priv->device, "No HW DMA feature register supported\n");
	}
6564

6565 6566
	if (priv->plat->rx_coe) {
		priv->hw->rx_csum = priv->plat->rx_coe;
6567
		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6568
		if (priv->synopsys_id < DWMAC_CORE_4_00)
6569
			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6570
	}
6571
	if (priv->plat->tx_coe)
6572
		dev_info(priv->device, "TX Checksum insertion supported\n");
6573 6574

	if (priv->plat->pmt) {
6575
		dev_info(priv->device, "Wake-Up On Lan supported\n");
6576 6577 6578
		device_set_wakeup_capable(priv->device, 1);
	}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
6579
	if (priv->dma_cap.tsoen)
6580
		dev_info(priv->device, "TSO supported\n");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6581

6582 6583 6584
	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;

6585 6586 6587 6588 6589 6590 6591
	/* Run HW quirks, if any */
	if (priv->hwif_quirks) {
		ret = priv->hwif_quirks(priv);
		if (ret)
			return ret;
	}

6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
	/* Rx Watchdog is available in the COREs newer than the 3.40.
	 * In some case, for example on bugged HW this feature
	 * has to be disable and this can be done by passing the
	 * riwt_off field from the platform.
	 */
	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
		priv->use_riwt = 1;
		dev_info(priv->device,
			 "Enable RX Mitigation via HW Watchdog Timer\n");
	}

6604
	return 0;
6605 6606
}

6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
static void stmmac_napi_add(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 queue, maxq;

	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);

	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];

		ch->priv_data = priv;
		ch->index = queue;
6619
		spin_lock_init(&ch->lock);
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629

		if (queue < priv->plat->rx_queues_to_use) {
			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
				       NAPI_POLL_WEIGHT);
		}
		if (queue < priv->plat->tx_queues_to_use) {
			netif_tx_napi_add(dev, &ch->tx_napi,
					  stmmac_napi_poll_tx,
					  NAPI_POLL_WEIGHT);
		}
6630 6631 6632 6633 6634 6635
		if (queue < priv->plat->rx_queues_to_use &&
		    queue < priv->plat->tx_queues_to_use) {
			netif_napi_add(dev, &ch->rxtx_napi,
				       stmmac_napi_poll_rxtx,
				       NAPI_POLL_WEIGHT);
		}
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
	}
}

static void stmmac_napi_del(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 queue, maxq;

	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);

	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];

		if (queue < priv->plat->rx_queues_to_use)
			netif_napi_del(&ch->rx_napi);
		if (queue < priv->plat->tx_queues_to_use)
			netif_napi_del(&ch->tx_napi);
6653 6654 6655 6656
		if (queue < priv->plat->rx_queues_to_use &&
		    queue < priv->plat->tx_queues_to_use) {
			netif_napi_del(&ch->rxtx_napi);
		}
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
	}
}

int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret = 0;

	if (netif_running(dev))
		stmmac_release(dev);

	stmmac_napi_del(dev);

	priv->plat->rx_queues_to_use = rx_cnt;
	priv->plat->tx_queues_to_use = tx_cnt;

	stmmac_napi_add(dev);

	if (netif_running(dev))
		ret = stmmac_open(dev);

	return ret;
}

6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret = 0;

	if (netif_running(dev))
		stmmac_release(dev);

	priv->dma_rx_size = rx_size;
	priv->dma_tx_size = tx_size;

	if (netif_running(dev))
		ret = stmmac_open(dev);

	return ret;
}

6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
#define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
static void stmmac_fpe_lp_task(struct work_struct *work)
{
	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
						fpe_task);
	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
	bool *hs_enable = &fpe_cfg->hs_enable;
	bool *enable = &fpe_cfg->enable;
	int retries = 20;

	while (retries-- > 0) {
		/* Bail out immediately if FPE handshake is OFF */
		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
			break;

		if (*lo_state == FPE_STATE_ENTERING_ON &&
		    *lp_state == FPE_STATE_ENTERING_ON) {
			stmmac_fpe_configure(priv, priv->ioaddr,
					     priv->plat->tx_queues_to_use,
					     priv->plat->rx_queues_to_use,
					     *enable);

			netdev_info(priv->dev, "configured FPE\n");

			*lo_state = FPE_STATE_ON;
			*lp_state = FPE_STATE_ON;
			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
			break;
		}

		if ((*lo_state == FPE_STATE_CAPABLE ||
		     *lo_state == FPE_STATE_ENTERING_ON) &&
		     *lp_state != FPE_STATE_ON) {
			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
				    *lo_state, *lp_state);
			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
						MPACKET_VERIFY);
		}
		/* Sleep then retry */
		msleep(500);
	}

	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
}

void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
{
	if (priv->plat->fpe_cfg->hs_enable != enable) {
		if (enable) {
			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
						MPACKET_VERIFY);
		} else {
			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
		}

		priv->plat->fpe_cfg->hs_enable = enable;
	}
}

6760
/**
6761 6762
 * stmmac_dvr_probe
 * @device: device pointer
6763
 * @plat_dat: platform data pointer
6764
 * @res: stmmac resource pointer
6765 6766
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
6767
 * Return:
6768
 * returns 0 on success, otherwise errno.
6769
 */
6770 6771 6772
int stmmac_dvr_probe(struct device *device,
		     struct plat_stmmacenet_data *plat_dat,
		     struct stmmac_resources *res)
6773
{
6774 6775
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
6776
	u32 rxq;
6777
	int i, ret = 0;
6778

6779 6780
	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6781
	if (!ndev)
6782
		return -ENOMEM;
6783 6784 6785 6786 6787 6788

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
6789

6790
	stmmac_set_ethtool_ops(ndev);
6791 6792
	priv->pause = pause;
	priv->plat = plat_dat;
6793 6794
	priv->ioaddr = res->addr;
	priv->dev->base_addr = (unsigned long)res->addr;
6795
	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6796 6797 6798 6799

	priv->dev->irq = res->irq;
	priv->wol_irq = res->wol_irq;
	priv->lpi_irq = res->lpi_irq;
6800 6801 6802 6803 6804 6805
	priv->sfty_ce_irq = res->sfty_ce_irq;
	priv->sfty_ue_irq = res->sfty_ue_irq;
	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
		priv->rx_irq[i] = res->rx_irq[i];
	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
		priv->tx_irq[i] = res->tx_irq[i];
6806

6807
	if (!is_zero_ether_addr(res->mac))
6808
		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6809

6810
	dev_set_drvdata(device, priv->dev);
6811

6812 6813
	/* Verify driver arguments */
	stmmac_verify_args();
6814

6815 6816 6817 6818
	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
	if (!priv->af_xdp_zc_qps)
		return -ENOMEM;

6819 6820 6821 6822
	/* Allocate workqueue */
	priv->wq = create_singlethread_workqueue("stmmac_wq");
	if (!priv->wq) {
		dev_err(priv->device, "failed to create workqueue\n");
6823
		return -ENOMEM;
6824 6825 6826 6827
	}

	INIT_WORK(&priv->service_task, stmmac_service_task);

6828 6829 6830
	/* Initialize Link Partner FPE workqueue */
	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);

6831
	/* Override with kernel parameters if supplied XXX CRS XXX
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
6832 6833
	 * this needs to have multiple instances
	 */
6834 6835 6836
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

6837 6838
	if (priv->plat->stmmac_rst) {
		ret = reset_control_assert(priv->plat->stmmac_rst);
6839
		reset_control_deassert(priv->plat->stmmac_rst);
6840 6841 6842 6843 6844 6845
		/* Some reset controllers have only reset callback instead of
		 * assert + deassert callbacks pair.
		 */
		if (ret == -ENOTSUPP)
			reset_control_reset(priv->plat->stmmac_rst);
	}
6846

6847
	/* Init MAC and get the capabilities */
6848 6849
	ret = stmmac_hw_init(priv);
	if (ret)
6850
		goto error_hw_init;
6851

6852 6853 6854 6855 6856
	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
	 */
	if (priv->synopsys_id < DWMAC_CORE_5_20)
		priv->plat->dma_cfg->dche = false;

6857 6858
	stmmac_check_ether_addr(priv);

6859
	ndev->netdev_ops = &stmmac_netdev_ops;
6860

6861 6862
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6863

6864 6865 6866 6867 6868
	ret = stmmac_tc_init(priv, priv);
	if (!ret) {
		ndev->hw_features |= NETIF_F_HW_TC;
	}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
6869
	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6870
		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6871 6872
		if (priv->plat->has_gmac4)
			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6873
		priv->tso = true;
6874
		dev_info(priv->device, "TSO feature enabled\n");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6875
	}
6876

6877 6878
	if (priv->dma_cap.sphen) {
		ndev->hw_features |= NETIF_F_GRO;
6879 6880
		priv->sph_cap = true;
		priv->sph = priv->sph_cap;
6881 6882 6883
		dev_info(priv->device, "SPH feature enabled\n");
	}

6884 6885 6886 6887 6888 6889 6890 6891
	/* The current IP register MAC_HW_Feature1[ADDR64] only define
	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
	 * So overwrite dma_cap.addr64 according to HW real design.
	 */
	if (priv->plat->addr64)
		priv->dma_cap.addr64 = priv->plat->addr64;

6892 6893 6894 6895 6896 6897
	if (priv->dma_cap.addr64) {
		ret = dma_set_mask_and_coherent(device,
				DMA_BIT_MASK(priv->dma_cap.addr64));
		if (!ret) {
			dev_info(priv->device, "Using %d bits DMA width\n",
				 priv->dma_cap.addr64);
6898 6899 6900 6901 6902 6903 6904

			/*
			 * If more than 32 bits can be addressed, make sure to
			 * enable enhanced addressing mode.
			 */
			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
				priv->plat->dma_cfg->eame = true;
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
		} else {
			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
			if (ret) {
				dev_err(priv->device, "Failed to set DMA Mask\n");
				goto error_hw_init;
			}

			priv->dma_cap.addr64 = 32;
		}
	}

6916 6917
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6918 6919
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
6920
	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6921 6922 6923 6924
	if (priv->dma_cap.vlhash) {
		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
	}
6925 6926 6927 6928 6929
	if (priv->dma_cap.vlins) {
		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
		if (priv->dma_cap.dvlan)
			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
	}
6930 6931 6932
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

6933 6934 6935 6936 6937 6938 6939 6940 6941
	/* Initialize RSS */
	rxq = priv->plat->rx_queues_to_use;
	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);

	if (priv->dma_cap.rssen && priv->plat->rss_en)
		ndev->features |= NETIF_F_RXHASH;

6942 6943
	/* MTU range: 46 - hw-specific max */
	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6944
	if (priv->plat->has_xgmac)
6945
		ndev->max_mtu = XGMAC_JUMBO_LEN;
6946 6947
	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
		ndev->max_mtu = JUMBO_LEN;
6948 6949
	else
		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6950 6951 6952 6953 6954
	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
	 */
	if ((priv->plat->maxmtu < ndev->max_mtu) &&
	    (priv->plat->maxmtu >= ndev->min_mtu))
6955
		ndev->max_mtu = priv->plat->maxmtu;
6956
	else if (priv->plat->maxmtu < ndev->min_mtu)
6957 6958 6959
		dev_warn(priv->device,
			 "%s: warning: maxmtu having invalid value (%d)\n",
			 __func__, priv->plat->maxmtu);
6960

6961 6962 6963
	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

6964
	/* Setup channels NAPI */
6965
	stmmac_napi_add(ndev);
6966

6967
	mutex_init(&priv->lock);
6968

6969 6970 6971 6972 6973 6974
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
6975
	if (priv->plat->clk_csr >= 0)
6976
		priv->clk_csr = priv->plat->clk_csr;
6977 6978
	else
		stmmac_clk_csr_set(priv);
6979

6980 6981
	stmmac_check_pcs_mode(priv);

6982 6983 6984 6985
	pm_runtime_get_noresume(device);
	pm_runtime_set_active(device);
	pm_runtime_enable(device);

6986
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
6987
	    priv->hw->pcs != STMMAC_PCS_RTBI) {
6988 6989 6990
		/* MDIO bus Registration */
		ret = stmmac_mdio_register(ndev);
		if (ret < 0) {
6991 6992 6993
			dev_err(priv->device,
				"%s: MDIO bus (id: %d) registration failed",
				__func__, priv->plat->bus_id);
6994 6995
			goto error_mdio_register;
		}
6996 6997
	}

6998 6999 7000 7001 7002 7003
	ret = stmmac_phy_setup(priv);
	if (ret) {
		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
		goto error_phy_setup;
	}

7004
	ret = register_netdev(ndev);
7005
	if (ret) {
7006 7007
		dev_err(priv->device, "%s: ERROR %i registering the device\n",
			__func__, ret);
7008 7009
		goto error_netdev_register;
	}
7010

7011 7012 7013 7014 7015
	if (priv->plat->serdes_powerup) {
		ret = priv->plat->serdes_powerup(ndev,
						 priv->plat->bsp_priv);

		if (ret < 0)
7016
			goto error_serdes_powerup;
7017 7018
	}

7019
#ifdef CONFIG_DEBUG_FS
7020
	stmmac_init_fs(ndev);
7021 7022
#endif

7023 7024 7025 7026 7027
	/* Let pm_runtime_put() disable the clocks.
	 * If CONFIG_PM is not enabled, the clocks will stay powered.
	 */
	pm_runtime_put(device);

7028
	return ret;
7029

7030 7031
error_serdes_powerup:
	unregister_netdev(ndev);
7032
error_netdev_register:
7033 7034
	phylink_destroy(priv->phylink);
error_phy_setup:
7035
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7036 7037
	    priv->hw->pcs != STMMAC_PCS_RTBI)
		stmmac_mdio_unregister(ndev);
7038
error_mdio_register:
7039
	stmmac_napi_del(ndev);
7040
error_hw_init:
7041
	destroy_workqueue(priv->wq);
7042
	stmmac_bus_clks_config(priv, false);
7043
	bitmap_free(priv->af_xdp_zc_qps);
7044

7045
	return ret;
7046
}
7047
EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7048 7049 7050

/**
 * stmmac_dvr_remove
7051
 * @dev: device pointer
7052
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7053
 * changes the link status, releases the DMA descriptor rings.
7054
 */
7055
int stmmac_dvr_remove(struct device *dev)
7056
{
7057
	struct net_device *ndev = dev_get_drvdata(dev);
7058
	struct stmmac_priv *priv = netdev_priv(ndev);
7059

7060
	netdev_info(priv->dev, "%s: removing driver", __func__);
7061

7062
	stmmac_stop_all_dma(priv);
7063 7064 7065
	stmmac_mac_set(priv, priv->ioaddr, false);
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
7066

7067 7068 7069
	/* Serdes power down needs to happen after VLAN filter
	 * is deleted that is triggered by unregister_netdev().
	 */
7070 7071 7072
	if (priv->plat->serdes_powerdown)
		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);

7073 7074 7075
#ifdef CONFIG_DEBUG_FS
	stmmac_exit_fs(ndev);
#endif
7076
	phylink_destroy(priv->phylink);
7077 7078
	if (priv->plat->stmmac_rst)
		reset_control_assert(priv->plat->stmmac_rst);
7079 7080
	pm_runtime_put(dev);
	pm_runtime_disable(dev);
7081
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7082
	    priv->hw->pcs != STMMAC_PCS_RTBI)
7083
		stmmac_mdio_unregister(ndev);
7084
	destroy_workqueue(priv->wq);
7085
	mutex_destroy(&priv->lock);
7086
	bitmap_free(priv->af_xdp_zc_qps);
7087 7088 7089

	return 0;
}
7090
EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7091

7092 7093
/**
 * stmmac_suspend - suspend callback
7094
 * @dev: device pointer
7095 7096 7097 7098
 * Description: this is the function to suspend the device and it is called
 * by the platform driver to stop the network queue, release the resources,
 * program the PMT register (for WoL), clean and release driver resources.
 */
7099
int stmmac_suspend(struct device *dev)
7100
{
7101
	struct net_device *ndev = dev_get_drvdata(dev);
7102
	struct stmmac_priv *priv = netdev_priv(ndev);
7103
	u32 chan;
7104
	int ret;
7105

7106
	if (!ndev || !netif_running(ndev))
7107 7108
		return 0;

7109
	phylink_mac_change(priv->phylink, false);
7110

7111
	mutex_lock(&priv->lock);
7112

7113
	netif_device_detach(ndev);
7114

7115
	stmmac_disable_all_queues(priv);
7116

7117
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7118
		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7119

7120 7121 7122 7123 7124
	if (priv->eee_enabled) {
		priv->tx_path_in_lpi_mode = false;
		del_timer_sync(&priv->eee_ctrl_timer);
	}

7125
	/* Stop TX/RX DMA */
7126
	stmmac_stop_all_dma(priv);
7127

7128 7129 7130
	if (priv->plat->serdes_powerdown)
		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);

7131
	/* Enable Power down mode by programming the PMT regs */
7132
	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7133
		stmmac_pmt(priv, priv->hw, priv->wolopts);
7134 7135
		priv->irq_wake = 1;
	} else {
7136
		mutex_unlock(&priv->lock);
7137
		rtnl_lock();
7138 7139
		if (device_may_wakeup(priv->device))
			phylink_speed_down(priv->phylink, false);
7140 7141
		phylink_stop(priv->phylink);
		rtnl_unlock();
7142
		mutex_lock(&priv->lock);
7143

7144
		stmmac_mac_set(priv, priv->ioaddr, false);
7145
		pinctrl_pm_select_sleep_state(priv->device);
7146
		/* Disable clock in case of PWM is off */
7147
		clk_disable_unprepare(priv->plat->clk_ptp_ref);
7148
		ret = pm_runtime_force_suspend(dev);
7149 7150
		if (ret) {
			mutex_unlock(&priv->lock);
7151
			return ret;
7152
		}
7153
	}
7154

7155
	mutex_unlock(&priv->lock);
7156

7157 7158 7159 7160 7161 7162 7163 7164 7165
	if (priv->dma_cap.fpesel) {
		/* Disable FPE */
		stmmac_fpe_configure(priv, priv->ioaddr,
				     priv->plat->tx_queues_to_use,
				     priv->plat->rx_queues_to_use, false);

		stmmac_fpe_handshake(priv, false);
	}

7166
	priv->speed = SPEED_UNKNOWN;
7167 7168
	return 0;
}
7169
EXPORT_SYMBOL_GPL(stmmac_suspend);
7170

7171 7172
/**
 * stmmac_reset_queues_param - reset queue parameters
7173
 * @priv: device pointer
7174 7175 7176 7177
 */
static void stmmac_reset_queues_param(struct stmmac_priv *priv)
{
	u32 rx_cnt = priv->plat->rx_queues_to_use;
7178
	u32 tx_cnt = priv->plat->tx_queues_to_use;
7179 7180 7181 7182 7183 7184 7185 7186 7187
	u32 queue;

	for (queue = 0; queue < rx_cnt; queue++) {
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

		rx_q->cur_rx = 0;
		rx_q->dirty_rx = 0;
	}

7188 7189 7190 7191 7192
	for (queue = 0; queue < tx_cnt; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

		tx_q->cur_tx = 0;
		tx_q->dirty_tx = 0;
7193
		tx_q->mss = 0;
7194 7195

		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7196
	}
7197 7198
}

7199 7200
/**
 * stmmac_resume - resume callback
7201
 * @dev: device pointer
7202 7203 7204
 * Description: when resume this function is invoked to setup the DMA and CORE
 * in a usable state.
 */
7205
int stmmac_resume(struct device *dev)
7206
{
7207
	struct net_device *ndev = dev_get_drvdata(dev);
7208
	struct stmmac_priv *priv = netdev_priv(ndev);
7209
	int ret;
7210

7211
	if (!netif_running(ndev))
7212 7213 7214 7215 7216 7217
		return 0;

	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
7218 7219
	 * from another devices (e.g. serial console).
	 */
7220
	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7221
		mutex_lock(&priv->lock);
7222
		stmmac_pmt(priv, priv->hw, 0);
7223
		mutex_unlock(&priv->lock);
7224
		priv->irq_wake = 0;
7225
	} else {
7226
		pinctrl_pm_select_default_state(priv->device);
7227
		/* enable the clk previously disabled */
7228 7229 7230
		ret = pm_runtime_force_resume(dev);
		if (ret)
			return ret;
7231 7232
		if (priv->plat->clk_ptp_ref)
			clk_prepare_enable(priv->plat->clk_ptp_ref);
7233 7234 7235 7236
		/* reset the phy so that it's ready */
		if (priv->mii)
			stmmac_mdio_reset(priv->mii);
	}
7237

7238 7239 7240 7241 7242 7243 7244 7245
	if (priv->plat->serdes_powerup) {
		ret = priv->plat->serdes_powerup(ndev,
						 priv->plat->bsp_priv);

		if (ret < 0)
			return ret;
	}

7246 7247 7248 7249 7250 7251 7252 7253
	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
		rtnl_lock();
		phylink_start(priv->phylink);
		/* We may have called phylink_speed_down before */
		phylink_speed_up(priv->phylink);
		rtnl_unlock();
	}

7254
	rtnl_lock();
7255
	mutex_lock(&priv->lock);
7256

7257
	stmmac_reset_queues_param(priv);
7258

7259
	stmmac_free_tx_skbufs(priv);
7260 7261
	stmmac_clear_descriptors(priv);

7262
	stmmac_hw_setup(ndev, false);
7263
	stmmac_init_coalesce(priv);
7264
	stmmac_set_rx_mode(ndev);
7265

7266 7267
	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);

7268
	stmmac_enable_all_queues(priv);
7269

7270
	mutex_unlock(&priv->lock);
7271
	rtnl_unlock();
7272

7273
	phylink_mac_change(priv->phylink, true);
7274

7275 7276
	netif_device_attach(ndev);

7277 7278
	return 0;
}
7279
EXPORT_SYMBOL_GPL(stmmac_resume);
7280

7281 7282 7283 7284 7285 7286 7287 7288
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
7289
		if (!strncmp(opt, "debug:", 6)) {
7290
			if (kstrtoint(opt + 6, 0, &debug))
7291 7292
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
7293
			if (kstrtoint(opt + 8, 0, &phyaddr))
7294 7295
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
7296
			if (kstrtoint(opt + 7, 0, &buf_sz))
7297 7298
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
7299
			if (kstrtoint(opt + 3, 0, &tc))
7300 7301
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
7302
			if (kstrtoint(opt + 9, 0, &watchdog))
7303 7304
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7305
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7306 7307
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
7308
			if (kstrtoint(opt + 6, 0, &pause))
7309
				goto err;
7310
		} else if (!strncmp(opt, "eee_timer:", 10)) {
7311 7312
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
7313 7314 7315
		} else if (!strncmp(opt, "chain_mode:", 11)) {
			if (kstrtoint(opt + 11, 0, &chain_mode))
				goto err;
7316
		}
7317 7318
	}
	return 0;
7319 7320 7321 7322

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
7323 7324 7325
}

__setup("stmmaceth=", stmmac_cmdline_opt);
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
7326
#endif /* MODULE */
7327

7328 7329 7330 7331
static int __init stmmac_init(void)
{
#ifdef CONFIG_DEBUG_FS
	/* Create debugfs main directory if it doesn't exist yet */
7332
	if (!stmmac_fs_dir)
7333
		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7334
	register_netdevice_notifier(&stmmac_notifier);
7335 7336 7337 7338 7339 7340 7341 7342
#endif

	return 0;
}

static void __exit stmmac_exit(void)
{
#ifdef CONFIG_DEBUG_FS
7343
	unregister_netdevice_notifier(&stmmac_notifier);
7344 7345 7346 7347 7348 7349 7350
	debugfs_remove_recursive(stmmac_fs_dir);
#endif
}

module_init(stmmac_init)
module_exit(stmmac_exit)

7351 7352 7353
MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");