- 08 Nov, 2021 2 commits
-
-
Kirill Smelkov authored
Remove outdated TODO because test_wcfs_watch_before_create passes this days. It was fixed after ΔFtail was taught about epochs and the fix was reflected in kirr/wendelin.core@63ae8326. Amends 10f7153a.
-
Kirill Smelkov authored
Fix how unpatched ZODB4 is reported to lack required patch: Before: Traceback (most recent call last): File "/home/kirr/src/wendelin/wendelin.core/lib/tests/test_zodb.py", line 251, in test_zconn_at assert zconn_at(conn1) == at0 File "/home/kirr/src/wendelin/wendelin.core/lib/zodb.py", line 162, in zconn_at assert 'conn:MVCC-via-loadBefore-only' in ZODB.nxd_patches, \ AttributeError: 'module' object has no attribute 'nxd_patches' After: Traceback (most recent call last): File "/home/kirr/src/wendelin/wendelin.core/lib/tests/test_zodb.py", line 251, in test_zconn_at assert zconn_at(conn1) == at0 File "/home/kirr/src/wendelin/wendelin.core/lib/zodb.py", line 163, in zconn_at "ZODB!1") File "/home/kirr/src/wendelin/wendelin.core/lib/zodb.py", line 191, in _zassertHasNXDPatch (zmajor, patch, details_link)) AssertionError: ZODB4 is not patched with required Nexedi patch 'conn:MVCC-via-loadBefore-only' See ZODB!1 for details Fixes 1f866c00 (lib/zodb: Teach zconn_at to work on ZODB4).
-
- 28 Oct, 2021 28 commits
-
-
Kirill Smelkov authored
It is not possible for WCFS to access data of in-RAM storage of another process. But without explicit explanation the error message is confusing - it was something like: NotImplementedError: don't know how to extract zurl from <ZODB.MappingStorage.MappingStorage object at 0x7f28f04cea10> which suggests it was just not implemented.
-
Kirill Smelkov authored
By using WCFS as mmap-overlay for base data(*). WCFS-mode is still opt-in with default remaining to use old full user-space virtual memory manager mode as initially introduced in 2015. Wendelin.core should be draftly usable in WCFS mode now. This patch is organized as follows: - file_zodb.cpp provides mmap-overlay operations for WCFS implemented via WCFS client library. - file_zodb.py is adjusted accordingly to use WCFS if requested. Low-level things specific to gluing to file_zodb.cpp are moved to _file_zodb.pyx. - the rest of the changes are drive-by by main ones. (*) see the following patches for what is mmap-overlay: - fae045cc (bigfile/virtmem: Introduce "mmap overlay" mode) - 23362204 (bigfile/py: Allow PyBigFile backend to expose "mmap overlay" functionality) Some preliminary history: 01916f09 X Draft demo that reading data through wcfs works fd58082a X Fix build on old GCC f622e751 X tests: Stop wcfs spawned during tests f118617b X tests: Don't try to stop wcfs that is already exited
-
Kirill Smelkov authored
Provide integration with virtmem, so that WCFS Mapping can be associated and managed under virtmem VMA. In other words provide support so that WCFS can be used as ZBigFile backend in "mmap overlay" mode (see fae045cc "bigfile/virtmem: Introduce "mmap overlay" mode" for description of mmap-overlay mode). We'll need this functionality for ZBigFile + WCFS client integration. Virtmem integration will be tested via running whole wendelin.core functional testsuite in wcfs-mode after the next patch. Quoting added description: ---- 8< ---- Integration with wendelin.core virtmem layer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This client package can be used standalone, but additionally provides integration with wendelin.core userspace virtual memory manager: when a Mapping is created, it can be associated as serving base layer for a particular virtmem VMA via FileH.mmap(vma=...). In that case, since virtmem itself adds another layer of dirty pages over read-only base provided by Mapping(+) ┌──┐ ┌──┐ │RW│ │RW│ ← virtmem VMA dirty pages └──┘ └──┘ + VMA base = X@at view provided by Mapping: ___ /@revA/bigfile/X __ /@revB/bigfile/X _ /@revC/bigfile/X + ... ─── ───── ────────────────────────── ───── /head/bigfile/X the Mapping will interact with virtmem layer to coordinate updates to mapping virtual memory. How it works ~~~~~~~~~~~~ Wcfs client integrates with virtmem layer to support virtmem handle dirtying pages of read-only base-layer that wcfs client provides via isolated Mapping. For wcfs-backed bigfiles every virtmem VMA is interlinked with Mapping: VMA -> BigFileH -> ZBigFile -----> Z ↑↓ O Mapping -> FileH -> wcfs server --> DB When a page is write-accessed, virtmem mmaps in a page of RAM in place of accessed virtual memory, copies base-layer content provided by Mapping into there, and marks that page as read-write. Upon receiving pin message, the pinner consults virtmem, whether corresponding page was already dirtied in virtmem's BigFileH (call to __fileh_page_isdirty), and if it was, the pinner does not remmap Mapping part to wcfs/@revX/f and just leaves dirty page in its place, remembering pin information in fileh._pinned. Once dirty pages are no longer needed (either after discard/abort or writeout/commit), virtmem asks wcfs client to remmap corresponding regions of Mapping in its place again via calls to Mapping.remmap_blk for previously dirtied blocks. The scheme outlined above does not need to split Mapping upon dirtying an inner page. See bigfile_ops interface (wendelin/bigfile/file.h) that explains base-layer and overlaying from virtmem point of view. For wcfs this interface is provided by small wcfs client wrapper in bigfile/file_zodb.cpp. (+) see bigfile_ops interface (wendelin/bigfile/file.h) that gives virtmem point of view on layering. ---------------------------------------- Some preliminary history: f330bd2f X wcfs/client: Overview += interaction with virtmem layer
-
Kirill Smelkov authored
For ZBigFile + WCFS client integration we'll need to open WCFS connections that observer database at the same state as current ZODB connection. Later that WCFS connection needs to adjust its on-WCFS view in accordance to how ZODB connection adjusts its one. Wczsync provides a function to do so: pywconnOf(zconn) will open WCFS connection and maintain it in sync with ZODB connection zconn. Some preliminary history: 8bf8f23b X bigfile/_file_zodb: Fix logic around ZSync usage 571cb737 fixup! X bigfile/_file_zodb: Fix logic around ZSync usage a9a82d5a X bigfile/_file_zodb: Fix ZSync to close not only wconn, but also wconn.wc through which wconn was created cf92937f X wcfs: Move wconn<->zconn sync functionality into wcfs.client._wczsync 7203d7ab X wcfs: Fix ZSync to close wconn on zdb.close, even if zconn stays alive
-
Kirill Smelkov authored
In 3bd82127 (lib/zodb: Add zconn_at draft (ZODB5 only)) we added zconn_at function to find out as of which state a ZODB connection is viewing the database. That was ZODB5-only however. Let's add support for ZODB4 now - by requiring ZODB4-wc2 - a version of ZODB4 with MVCC backported from ZODB5: nexedi/ZODB!1 This makes wendelin.core to work on either ZODB5 or ZODB4-wc2, but not plain ZODB4. However as zconn_at will be used only for WCFS-integration, non-wcfs mode will continue to work on all ZODB5, ZODB4-wc2 and plain ZODB4. ZBigFile + WCFS client integration will use zconn_at to open WCFS connection that corresponds to ZODB connection. Preliminary history: 1c3b7750 X zconn_at for ZODB4
-
Kirill Smelkov authored
Add patch to ZODB.Connection to support callback on after database is closed. ZBigFile + WCFS client integration will use this callback to close WCFS connection when corresponding ZODB.DB is closed. Preliminary history: kirr/wendelin.core@a26d9659 X lib/zodb: Connection += onShutdownCallback
-
Kirill Smelkov authored
In 959ae2d0 (lib/zodb: Add patch to ZODB.Connection to support callback on connection DB view change) we added patch for ZODB.Connection to support callback when database view of the connection changes. At that time the patch was working for ZODB5 and ZODB4 was TODO. Let's add support for ZODB4 (both ZODB4 and ZODB4-wc2) now. As a reminder: ZBigFile + WCFS client integration will use this callback to keep WCFS connection in sync with ZODB connection. Preliminary history: 533a4cfa X onResyncCallback for ZODB4
-
Kirill Smelkov authored
This patch logically continues previous change `bigfile/virtmem: Introduce "mmap overlay" mode` and exposes mmap-overlay functionality to Python: if PyBigFile backend provides .blkmmapper PyCapsule the mmap-related methods will be extracted from it and passed on through to virtmem - see _bigfile.h for details. ZBigFile will use this to hook into using WCFS.
-
Kirill Smelkov authored
with the intention to later use WCFS through it. Before this patch virtmem had only one mode: a BigFile backend was providing loadblk and storeblk methods, and on every block access loadblk was called to load block data into allocated RAM page. However with WCFS virtmem won't be needed to do anything to load data - because loading from head/bigfile/f mmaped through OS will be handled by OS directly. Thus for wcfs, that leaves virtmem only to handle dirtying and writeout. -> Introduce "mmap overlay" mode into virtmem to handle WCFS-like BigFile backends - that can provide read-only base layer suitable for mmapping. This patch is organized as follows: - fileh_open is added flags argument to indicate which mode to use for opened fileh. BigFileH is added .mmap_overlay bitfield correspondingly. (virtmem.h) - struct bigfile_ops is extended with 3 optional methods that a BigFile backend might provide to support mmap-overlay mode: * mmap_setup_read, * remmap_blk_read, and * munmap (see file.h changes for documentation of this new interface) - if opened with MMAP_OVERLAY flag, virtmem is using those methods to organize VMA views backed by read-only base mmap layer and writeout for such VMAs (virtmem.c) - a test is added to exercise MMAP_OVERLAY virtmem mode (test_virtmem.c) - everything else, including bigfile.py, is switched to use DONT_MMAP_OVERLAY unconditionally for now. In internal comments inside virtmem new mode is interchangeable called "mmap overlay" and "wcfs", even though wcfs is not hooked to be used mmap-overlaying yet. Some preliminary history: fb6932a2 X Split PAGE_LOADED -> PAGE_LOADED, PAGE_LOADED_FOR_WRITE 4a20a573 X Settled on what should happen after writeout for wcfs case f084ff9b X Transition to all VMA under 1 fileh to be either all based on wcfs or all based on !wcfs
-
Kirill Smelkov authored
This patch follows-up on previous patch, that added server-side part of isolation protocol handling, and adds client package that takes care about WCFS isolation protocol details and provides to clients simple interface to isolated view of bigfile data on WCFS similar to regular files: given a particular revision of database @at, it provides synthetic read-only bigfile memory mappings with data corresponding to @at state, but using /head/bigfile/* most of the time to build and maintain the mappings. The patch is organized as follows: - wcfs.h and wcfs.cpp brings in usage documentation, internal overview and the main part of the implementation. - wcfs/client/client_test.py is tests. - The rest of the changes in wcfs/client/ are to support the implementation and tests. Quoting package documentation for the reference: ---- 8< ---- Package wcfs provides WCFS client. This client package takes care about WCFS isolation protocol details and provides to clients simple interface to isolated view of bigfile data on WCFS similar to regular files: given a particular revision of database @at, it provides synthetic read-only bigfile memory mappings with data corresponding to @at state, but using /head/bigfile/* most of the time to build and maintain the mappings. For its data a mapping to bigfile X mostly reuses kernel cache for /head/bigfile/X with amount of data not associated with kernel cache for /head/bigfile/X being proportional to δ(bigfile/X, at..head). In the usual case where many client workers simultaneously serve requests, their database views are a bit outdated, but close to head, which means that in practice the kernel cache for /head/bigfile/* is being used almost 100% of the time. A mapping for bigfile X@at is built from OS-level memory mappings of on-WCFS files as follows: ___ /@revA/bigfile/X __ /@revB/bigfile/X _ /@revC/bigfile/X + ... ─── ───── ────────────────────────── ───── /head/bigfile/X where @revR mmaps are being dynamically added/removed by this client package to maintain X@at data view according to WCFS isolation protocol(*). API overview - `WCFS` represents filesystem-level connection to wcfs server. - `Conn` represents logical connection that provides view of data on wcfs filesystem as of particular database state. - `FileH` represent isolated file view under Conn. - `Mapping` represents one memory mapping of FileH. A path from WCFS to Mapping is as follows: WCFS.connect(at) -> Conn Conn.open(foid) -> FileH FileH.mmap([blk_start +blk_len)) -> Mapping A connection can be resynced to another database view via Conn.resync(at'). Documentation for classes provides more thorough overview and API details. -------- (*) see wcfs.go documentation for WCFS isolation protocol overview and details. . Wcfs client organization ~~~~~~~~~~~~~~~~~~~~~~~~ Wcfs client provides to its users isolated bigfile views backed by data on WCFS filesystem. In the absence of Isolation property, wcfs client would reduce to just directly using OS-level file wcfs/head/f for a bigfile f. On the other hand there is a simple, but inefficient, way to support isolation: for @at database view of bigfile f - directly use OS-level file wcfs/@at/f. The latter works, but is very inefficient because OS-cache for f data is not shared in between two connections with @at1 and @at2 views. The cache is also lost when connection view of the database is resynced on transaction boundary. To support isolation efficiently, wcfs client uses wcfs/head/f most of the time, but injects wcfs/@revX/f parts into mappings to maintain f@at view driven by pin messages that wcfs server sends to client in accordance to WCFS isolation protocol(*). Wcfs server sends pin messages synchronously triggered by access to mmaped memory. That means that a client thread, that is accessing wcfs/head/f mmap, is completely blocked while wcfs server sends pins and waits to receive acks from all clients. In other words on-client handling of pins has to be done in separate thread, because wcfs server can also send pins to client that triggered the access. Wcfs client implements pins handling in so-called "pinner" thread(+). The pinner thread receives pin requests from wcfs server via watchlink handle opened through wcfs/head/watch. For every pin request the pinner finds corresponding Mappings and injects wcfs/@revX/f parts via Mapping._remmapblk appropriately. The same watchlink handle is used to send client-originated requests to wcfs server. The requests are sent to tell wcfs that client wants to observe a particular bigfile as of particular revision, or to stop watching it. Such requests originate from regular client threads - not pinner - via entry points like Conn.open, Conn.resync and FileH.close. Every FileH maintains fileh._pinned {} with currently pinned blk -> rev. This dict is updated by pinner driven by pin messages, and is used when new fileh Mapping is created (FileH.mmap). In wendelin.core a bigfile has semantic that it is infinite in size and reads as all zeros beyond region initialized with data. Memory-mapping of OS-level files can also go beyond file size, however accessing memory corresponding to file region after file.size triggers SIGBUS. To preserve wendelin.core semantic wcfs client mmaps-in zeros for Mapping regions after wcfs/head/f.size. For simplicity it is assumed that bigfiles only grow and never shrink. It is indeed currently so, but will have to be revisited if/when wendelin.core adds bigfile truncation. Wcfs client restats wcfs/head/f at every transaction boundary (Conn.resync) and remembers f.size in FileH._headfsize for use during one transaction(%). -------- (*) see wcfs.go documentation for WCFS isolation protocol overview and details. (+) currently, for simplicity, there is one pinner thread for each connection. In the future, for efficiency, it might be reworked to be one pinner thread that serves all connections simultaneously. (%) see _headWait comments on how this has to be reworked. Wcfs client locking organization Wcfs client needs to synchronize regular user threads vs each other and vs pinner. A major lock Conn.atMu protects updates to changes to Conn's view of the database. Whenever atMu.W is taken - Conn.at is changing (Conn.resync), and contrary whenever atMu.R is taken - Conn.at is stable (roughly speaking Conn.resync is not running). Similarly to wcfs.go(*) several locks that protect internal data structures are minor to Conn.atMu - they need to be taken only under atMu.R (to synchronize e.g. multiple fileh open running simultaneously), but do not need to be taken at all if atMu.W is taken. In data structures such locks are noted as follows sync::Mutex xMu; // atMu.W | atMu.R + xMu After atMu, Conn.filehMu protects registry of opened file handles (Conn._filehTab), and FileH.mmapMu protects registry of created Mappings (FileH.mmaps) and FileH.pinned. Several locks are RWMutex instead of just Mutex not only to allow more concurrency, but, in the first place for correctness: pinner thread being core element in handling WCFS isolation protocol, is effectively invoked synchronously from other threads via messages coming through wcfs server. For example Conn.resync sends watch request to wcfs server and waits for the answer. Wcfs server, in turn, might send corresponding pin messages to the pinner and _wait_ for the answer before answering to resync: - - - - - - | .···|·····. ----> = request pinner <------.↓ <···· = response | | wcfs resync -------^↓ | `····|····· - - - - - - client process This creates the necessity to use RWMutex for locks that pinner and other parts of the code could be using at the same time in synchronous scenarios similar to the above. This locks are: - Conn.atMu - Conn.filehMu Note that FileH.mmapMu is regular - not RW - mutex, since nothing in wcfs client calls into wcfs server via watchlink with mmapMu held. The ordering of locks is: Conn.atMu > Conn.filehMu > FileH.mmapMu The pinner takes the following locks: - wconn.atMu.R - wconn.filehMu.R - fileh.mmapMu (to read .mmaps + write .pinned) (*) see "Wcfs locking organization" in wcfs.go Handling of fork When a process calls fork, OS copies its memory and creates child process with only 1 thread. That child inherits file descriptors and memory mappings from parent. To correctly continue using Conn, FileH and Mappings, the child must recreate pinner thread and reconnect to wcfs via reopened watchlink. The reason here is that without reconnection - by using watchlink file descriptor inherited from parent - the child would interfere into parent-wcfs exchange and neither parent nor child could continue normal protocol communication with WCFS. For simplicity, since fork is seldomly used for things besides followup exec, wcfs client currently takes straightforward approach by disabling mappings and detaching from WCFS server in the child right after fork. This ensures that there is no interference into parent-wcfs exchange should child decide not to exec and to continue running in the forked thread. Without this protection the interference might come even automatically via e.g. Python GC -> PyFileH.__del__ -> FileH.close -> message to WCFS. ---------------------------------------- Some preliminary history: a8fa9178 X wcfs: move client tests into client/ 990afac1 X wcfs/client: Package overview (draft) 3f83469c X wcfs: client: Handle fork 0ed6b8b6 fixup! X wcfs: client: Handle fork 24378c46 X wcfs: client: Provide Conn.at()
-
Kirill Smelkov authored
Via custom isolation protocol that both server and clients must cooperatively follow. This is the core change that enables file cache to be practically shared while each client can still be provided with isolated view of the database. This patch brings only server changes, tests + the minimum client bits to support the tests. The client library, that will implement isolation protocol on client side, will come next. This patch is organized as follows: - wcfs.go brings in description of the protocol, overview of how server implements that protocol and the implementation itself. See also notes.txt - wcfs_test.py brings in tests for server implementation. tWCFS._abort_ontimeout had to be moved into nogil mode into wcfs_test.pyx to avoid deadlock on the GIL (see comments in wcfs_test.pyx for details). - files added in wcfs/client/ are needed to provide client-side implementation of WatchLink - the message exchange protocol over opened head/watch file - for tests. Client-side watchlink implementation lives in wcfs/client/wcfs_watchlink.{h,cpp}. The other additions in wcfs/client/ are to support that and to expose the WatchLink to Python. Client-side bits are done right in C++ because upcoming WCFS client library will be implemented in C++ to work in nogil mode in order to avoid deadlock on the GIL because client-side pinner thread might be woken-up synchronously by WCFS server at any moment, including when another client thread already holds the GIL and is paused by WCFS. Some preliminary history: 9b4a42a3 X invalidation design draftly settled 27d91d47 X δFtail settled c27c1940 X mmap over under pagefault to this mmapping works d36b171f X ptrace when client is under pagefault or syscall won't work c1f5bb19 X notes on why lazy-invalidate approach was taken 4fbdd270 X Proof that that it is possible to change mmapping while under pagefault to it 33e0dfce X ΔTail draftly done 12628943 X make sure "bye" is always processed immediately - even if a handleWatch is currently blocked af0a64cb X test for "bye" canceling blocked handlers 996dc6a8 X Fix race in test 43915fe9 X wcfs: Don't forbid simultaneous watch requests 941dc54b X wcfs: threading.Lock -> sync.Mutex d75b2304 X wcfs: Move _abort_ontimeout to pyx/nogil 79234659 X Notes on why eagier invalidation was rejected f05271b1 X Test that sysread(/head/watch) can be interrupted 5ba816da X restore test_wcfs_watch_robust after f05271b1. 4bd88564 X "Invalidation protocol" -> "Isolation protocol" f7b54ca4 X avoid fmt::vsprintf (now compils again with latest pygolang@master) 0a8fcd9d X wcfs/client: Move EOF -> pygolang 153e02e6 X test_wcfs_watch_setup and test_wcfs_watch_setup_ahead work again 17f98edc X wcfs: client: os: Factor syserr -> string into _sysErrString 7b0c301c X wcfs: tests: Fix tFile.assertBlk not to segfault on a test failure b74dda09 X Start switching Track from Track(key) to Track(keycov) 8b5d8523 X Move tracking of which blocks were accessed from wcfs to ΔFtail
-
Kirill Smelkov authored
Use ΔFtail.Track on every READ, and query accumulated ΔFtail upon receiving ZODB invalidation to query it about which blocks of which files have been changed. Then invalidate those blocks in OS file cache. See added documentation to wcfs.go and notes.txt for details. Now the filesystem is no longer stale: it provides view of data that is uptodate wrt changes on ZODB storage. Some preliminary history: kirr/wendelin.core@9b4a42a3 X invalidation design draftly settled kirr/wendelin.core@27d91d47 X δFtail settled kirr/wendelin.core@33e0dfce X ΔTail draftly done kirr/wendelin.core@822366a7 X keeping fd to root opened prevents the filesystem from being unmounted kirr/wendelin.core@89ad3a79 X Don't keep ZBigFile activated during whole current transaction kirr/wendelin.core@245511ac X Give pointer on from where to get nxd-fuse.ko kirr/wendelin.core@d1cd128c X Hit FUSE-related deadlock kirr/wendelin.core@d134ee44 X FUSE lookup deadlock should be hopefully fixed kirr/wendelin.core@0e60e9ff X wcfs: Don't noise ZWatcher trace logs with "select ..." kirr/wendelin.core@bf9a7405 X No longer rely on ZODB cache invariant for invalidations
-
Kirill Smelkov authored
FileSock is bidirectional channel associated with opened file. FileSock provides streaming write/read operations for filesystem server that are correspondingly matched with read/write operations on filesystem user side. WCFS will use FileSock to implement exchange over .wcfs/zhead and, later, head/watch files. Some preliminary history: kirr/wendelin.core@b17aeb8c X Change FileSock to use xio.Pipe which is io.Pipe + support for IO cancellation
-
Kirill Smelkov authored
ΔFtail builds on ΔBtail and provides ZBigFile-level history that WCFS will use to compute which blocks of a ZBigFile need to be invalidated in OS file cache given raw ZODB changes on ZODB invalidation message. It also will be used by WCFS to implement isolation protocol, where on every FUSE READ request WCFS will query ΔFtail to find out revision of corresponding file block. Quoting ΔFtail documentation: ---- 8< ---- ΔFtail provides ZBigFile-level history tail. It translates ZODB object-level changes to information about which blocks of which ZBigFile were modified, and provides service to query that information. ΔFtail class documentation ~~~~~~~~~~~~~~~~~~~~~~~~~~ ΔFtail represents tail of revisional changes to files. It semantically consists of []δF ; rev ∈ (tail, head] where δF represents a change in files space δF: .rev↑ {} file -> {}blk | EPOCH Only files and blocks explicitly requested to be tracked are guaranteed to be present. In particular a block that was not explicitly requested to be tracked, even if it was changed in δZ, is not guaranteed to be present in δF. After file epoch (file creation, deletion, or any other change to file object) previous track requests for that file become forgotten and have no further effect. ΔFtail provides the following operations: .Track(file, blk, path, zblk) - add file and block reached via BTree path to tracked set. .Update(δZ) -> δF - update files δ tail given raw ZODB changes .ForgetPast(revCut) - forget changes ≤ revCut .SliceByRev(lo, hi) -> []δF - query for all files changes with rev ∈ (lo, hi] .SliceByFileRev(file, lo, hi) -> []δfile - query for changes of a file with rev ∈ (lo, hi] .BlkRevAt(file, #blk, at) -> blkrev - query for what is last revision that changed file[#blk] as of @at database state. where δfile represents a change to one file δfile: .rev↑ {}blk | EPOCH See also zodb.ΔTail and xbtree.ΔBtail Concurrency ΔFtail is safe to use in single-writer / multiple-readers mode. That is at any time there should be either only sole writer, or, potentially several simultaneous readers. The table below classifies operations: Writers: Update, ForgetPast Readers: Track + all queries (SliceByRev, SliceByFileRev, BlkRevAt) Note that, in particular, it is correct to run multiple Track and queries requests simultaneously. ΔFtail organization ~~~~~~~~~~~~~~~~~~~ ΔFtail leverages: - ΔBtail to track changes to ZBigFile.blktab BTree, and - ΔZtail to track changes to ZBlk objects and to ZBigFile object itself. then every query merges ΔBtail and ΔZtail data on the fly to provide ZBigFile-level result. Merging on the fly, contrary to computing and maintaining vδF data, is done to avoid complexity of recomputing vδF when tracking set changes. Most of ΔFtail complexity is, thus, located in ΔBtail, which implements BTree diff and handles complexity of recomputing vδB when set of tracked blocks changes after new track requests. Changes to ZBigFile object indicate epochs. Epochs could be: - file creation or deletion, - change of ZBigFile.blksize, - change of ZBigFile.blktab to point to another BTree. Epochs represent major changes to file history where file is assumed to change so dramatically, that practically it can be considered to be a "whole" change. In particular, WCFS, upon seeing a ZBigFile epoch, invalidates all data in corresponding OS-level cache for the file. The only historical data, that ΔFtail maintains by itself, is history of epochs. That history does not need to be recomputed when more blocks become tracked and is thus easy to maintain. It also can be maintained only in ΔFtail because ΔBtail and ΔZtail does not "know" anything about ZBigFile. Concurrency In order to allow multiple Track and queries requests to be served in parallel, ΔFtail bases its concurrency promise on ΔBtail guarantees + snapshot-style access for vδE and ztrackInBlk in queries: 1. Track calls ΔBtail.Track and quickly updates .byFile, .byRoot and _RootTrack indices under a lock. 2. BlkRevAt queries ΔBtail.GetAt and then combines retrieved information about zblk with vδE and δZ. 3. SliceByFileRev queries ΔBtail.SliceByRootRev and then merges retrieved vδT data with vδZ, vδE and ztrackInBlk. 4. In queries vδE is retrieved/built in snapshot style similarly to how vδT is built in ΔBtail. Note that vδE needs to be built only the first time, and does not need to be further rebuilt, so the logic in ΔFtail is simpler compared to ΔBtail. 5. for ztrackInBlk - that is used by SliceByFileRev query - an atomic snapshot is retrieved for objects of interest. This allows to hold δFtail.mu lock for relatively brief time without blocking other parallel Track/queries requests for long. Combined this organization allows non-overlapping queries/track-requests to run simultaneously. (This property is essential to WCFS because otherwise WCFS would not be able to serve several non-overlapping READ requests to one file in parallel.) See also "Concurrency" in ΔBtail organization for more details. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some preliminary history: kirr/wendelin.core@ef74aebc X ΔFtail: Keep reference to ZBigFile via Oid, not via *ZBigFile kirr/wendelin.core@bf9a7405 X No longer rely on ZODB cache invariant for invalidations kirr/wendelin.core@46340069 X found by Random kirr/wendelin.core@e7b598c6 X start of ΔFtail.SliceByFileRev rework to function via merging δB and δZ histories on the fly kirr/wendelin.core@59c83009 X ΔFtail.SliceByFileRoot tests started to work draftly after "on-the-fly" rework kirr/wendelin.core@210e9b07 X Fix ΔBtail.SliceByRootRev (lo,hi] handling kirr/wendelin.core@bf3ace66 X ΔFtail: Rebuild vδE after first track kirr/wendelin.core@46624787 X ΔFtail: `go test -failfast -short -v -run Random -randseed=1626793016249041295` discovered problems kirr/wendelin.core@786dd336 X Size no longer tracks [0,∞) since we start tracking when zfile is non-empty kirr/wendelin.core@4f707117 X test that shows problem of SliceByRootRev where untracked blocks are not added uniformly into whole history kirr/wendelin.core@c0b7e4c3 X ΔFtail.SliceByFileRev: Fix untracked entries to be present uniformly in result kirr/wendelin.core@aac37c11 X zdata: Introduce T to start removing duplication in tests kirr/wendelin.core@bf411aa9 X zdata: Deduplicate zfile loading kirr/wendelin.core@b74dda09 X Start switching Track from Track(key) to Track(keycov) kirr/wendelin.core@aa0288ce X Switch SliceByRootRev to vδTSnapForTracked kirr/wendelin.core@588a512a X zdata: Switch SliceByFileRev not to clone Zinblk kirr/wendelin.core@8b5d8523 X Move tracking of which blocks were accessed from wcfs to ΔFtail kirr/wendelin.core@30f5ddc7 ΔFtail += .Epoch in δf kirr/wendelin.core@22f5f096 X Rework ΔFtail so that BlkRevAt works with ZBigFile checkout from any at ∈ (tail, head] kirr/wendelin.core@0853cc9f X ΔFtail + tests kirr/wendelin.core@124688f9 X ΔFtail fixes kirr/wendelin.core@d85bb82c ΔFtail concurrency
-
Kirill Smelkov authored
ΔBtail provides BTree-level history tail that WCFS - via ΔFtail - will use to compute which blocks of a ZBigFile need to be invalidated in OS file cache given raw ZODB changes on ZODB invalidation message. It also will be used by WCFS to implement isolation protocol, where on every FUSE READ request WCFS will query ΔBtail - again via ΔFtail - to find out revision of corresponding file block. Quoting ΔBtail documentation: ---- 8< ---- ΔBtail provides BTree-level history tail. It translates ZODB object-level changes to information about which keys of which BTree were modified, and provides service to query that information. ΔBtail class documentation ~~~~~~~~~~~~~~~~~~~~~~~~~~ ΔBtail represents tail of revisional changes to BTrees. It semantically consists of []δB ; rev ∈ (tail, head] where δB represents a change in BTrees space δB: .rev↑ {} root -> {}(key, δvalue) It covers only changes to keys from tracked subset of BTrees parts. In particular a key that was not explicitly requested to be tracked, even if it was changed in δZ, is not guaranteed to be present in δB. ΔBtail provides the following operations: .Track(path) - start tracking tree nodes and keys; root=path[0], keys=path[-1].(lo,hi] .Update(δZ) -> δB - update BTree δ tail given raw ZODB changes .ForgetPast(revCut) - forget changes ≤ revCut .SliceByRev(lo, hi) -> []δB - query for all trees changes with rev ∈ (lo, hi] .SliceByRootRev(root, lo, hi) -> []δT - query for changes of a tree with rev ∈ (lo, hi] .GetAt(root, key, at) -> (value, rev) - get root[key] @at assuming root[key] ∈ tracked where δT represents a change to one tree δT: .rev↑ {}(key, δvalue) An example for tracked set is a set of visited BTree paths. There is no requirement that tracked set belongs to only one single BTree. See also zodb.ΔTail and zdata.ΔFtail Concurrency ΔBtail is safe to use in single-writer / multiple-readers mode. That is at any time there should be either only sole writer, or, potentially several simultaneous readers. The table below classifies operations: Writers: Update, ForgetPast Readers: Track + all queries (SliceByRev, SliceByRootRev, GetAt) Note that, in particular, it is correct to run multiple Track and queries requests simultaneously. ΔBtail organization ~~~~~~~~~~~~~~~~~~~ ΔBtail keeps raw ZODB history in ΔZtail and uses BTree-diff algorithm(*) to turn δZ into BTree-level diff. For each tracked BTree a separate ΔTtail is maintained with tree-level history in ΔTtail.vδT . Because it is very computationally expensive(+) to find out for an object to which BTree it belongs, ΔBtail cannot provide full BTree-level history given just ΔZtail with δZ changes. Due to this ΔBtail requires help from users, which are expected to call ΔBtail.Track(treepath) to let ΔBtail know that such and such ZODB objects constitute a path from root of a tree to some of its leaf. After Track call the objects from the path and tree keys, that are covered by leaf node, become tracked: from now-on ΔBtail will detect and provide BTree-level changes caused by any change of tracked tree objects or tracked keys. This guarantee can be provided because ΔBtail now knows that such and such objects belong to a particular tree. To manage knowledge which tree part is tracked ΔBtail uses PPTreeSubSet. This data-structure represents so-called PP-connected set of tree nodes: simply speaking it builds on some leafs and then includes parent(leaf), parent(parent(leaf)), etc. In other words it's a "parent"-closure of the leafs. The property of being PP-connected means that starting from any node from such set, it is always possible to reach root node by traversing .parent links, and that every intermediate node went-through during traversal also belongs to the set. A new Track request potentially grows tracked keys coverage. Due to this, on a query, ΔBtail needs to recompute potentially whole vδT of the affected tree. This recomputation is managed by "vδTSnapForTracked*" and "_rebuild" functions and uses the same treediff algorithm, that Update is using, but modulo PPTreeSubSet corresponding to δ key coverage. Update also potentially needs to rebuild whole vδT history, not only append new δT, because a change to tracked tree nodes can result in growth of tracked key coverage. Queries are relatively straightforward code that work on vδT snapshot. The main complexity, besides BTree-diff algorithm, lies in recomputing vδT when set of tracked keys changes, and in handling that recomputation in such a way that multiple Track and queries requests could be all served in parallel. Concurrency In order to allow multiple Track and queries requests to be served in parallel ΔBtail employs special organization of vδT rebuild process where complexity of concurrency is reduced to math on merging updates to vδT and trackSet, and on key range lookup: 1. vδT is managed under read-copy-update (RCU) discipline: before making any vδT change the mutator atomically clones whole vδT and applies its change to the clone. This way a query, once it retrieves vδT snapshot, does not need to further synchronize with vδT mutators, and can rely on that retrieved vδT snapshot will remain immutable. 2. a Track request goes through 3 states: "new", "handle-in-progress" and "handled". At each state keys/nodes of the Track are maintained in: - ΔTtail.ktrackNew and .trackNew for "new", - ΔTtail.krebuildJobs for "handle-in-progress", and - ΔBtail.trackSet for "handled". trackSet keeps nodes, and implicitly keys, from all handled Track requests. For all keys, covered by trackSet, vδT is fully computed. a new Track(keycov, path) is remembered in ktrackNew and trackNew to be further processed when a query should need keys from keycov. vδT is not yet providing data for keycov keys. when a Track request starts to be processed, its keys and nodes are moved from ktrackNew/trackNew into krebuildJobs. vδT is not yet providing data for requested-to-be-tracked keys. all trackSet, trackNew/ktrackNew and krebuildJobs are completely disjoint: trackSet ^ trackNew = ø trackSet ^ krebuildJobs = ø trackNew ^ krebuildJobs = ø 3. when a query is served, it needs to retrieve vδT snapshot that takes related previous Track requests into account. Retrieving such snapshots is implemented in vδTSnapForTracked*() family of functions: there it checks ktrackNew/trackNew, and if those sets overlap with query's keys of interest, run vδT rebuild for keys queued in ktrackNew. the main part of that rebuild can be run without any locks, because it does not use nor modify any ΔBtail data, and for δ(vδT) it just computes a fresh full vδT build modulo retrieved ktrackNew. Only after that computation is complete, ΔBtail is locked again to quickly merge in δ(vδT) update back into vδT. This organization is based on the fact that vδT/(T₁∪T₂) = vδT/T₁ | vδT/T₂ ( i.e. vδT computed for tracked set being union of T₁ and T₂ is the same as merge of vδT computed for tracked set T₁ and vδT computed for tracked set T₂ ) and that trackSet | (δPP₁|δPP₂) = (trackSet|δPP₁) | (trackSet|δPP₂) ( i.e. tracking set updated for union of δPP₁ and δPP₂ is the same as union of tracking set updated with δPP₁ and tracking set updated with δPP₂ ) these merge properties allow to run computation for δ(vδT) and δ(trackSet) independently and with ΔBtail unlocked, which in turn enables running several Track/queries in parallel. 4. while vδT rebuild is being run, krebuildJobs keeps corresponding keycov entry to indicate in-progress rebuild. Should a query need vδT for keys from that job, it first waits for corresponding job(s) to complete. Explained rebuild organization allows non-overlapping queries/track-requests to run simultaneously. (This property is essential to WCFS because otherwise WCFS would not be able to serve several non-overlapping READ requests to one file in parallel.) -------- (*) implemented in treediff.go (+) full database scan ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some preliminary history: 877e64a9 X wcfs: Fix tests to pass again c32055fc X wcfs/xbtree: ΔBtail tests += ø -> Tree; Tree -> ø 78f2f88b X wcfs/xbtree: Fix treediff(a, ø) 5324547c X wcfs/xbtree: root(a) must stay in trackSet even after treediff(a,ø) f65f775b X wcfs/xbtree: treediff(ø, b) c75b1c6f X wcfs/xbtree: Start killing holeIdx 0fa06cbd X kadj must be taken into account as kadj^δZ ef5e5183 X treediff ret += δtkeycov f30826a6 X another bug in δtkeyconv computation 0917380e X wcfs: assert that keycov only grow 502e05c2 X found why TestΔBTailAllStructs was not effective to find δtkeycov bugs 450ba707 X Fix rebuild with ø @at2 f60528c9 X ΔBtail.Clone had bug that it was aliasing klon and orig data 9d20f8e8 X treediff: Fix BUG while computing AB coverage ddb28043 X rebuild: Don't return nil for empty ΔPPTreeSubSet - that leads to SIGSEGV 324241eb X rebuild: tests: Don't reflect.DeepEqual in inner loop 8f6e2b1e X rebuild: tests: Don't access ZODB in XGetδKV 2c0b4793 X rebuild: tests: Don't access ZODB in xtrackKeys 8f0e37f2 X rebuild: tests: Precompute kadj10·kadj21 271d953d X rebuild: tests: Move ΔBtail.Clone test out of hot inner loop into separate test a87cc6de X rebuild: tests: Don't recompute trackSet(keys1R2) several times 01433e96 X rebuild: tests: Don't compute keyCover in trackSet 7371f9c5 X rebuild: tests: Inline _assertTrack 3e9164b3 X rebuild: tests: Don't exercise keys from keys2 that already became tracked after Track(keys1) + Update e9c4b619 X rebuild: tests: Random testing d0fe680a X δbtail += ForgetPast 210e9b07 X Fix ΔBtail.SliceByRootRev (lo,hi] handling 855ab4b8 X ΔBtail: Goodbye .KVAtTail 2f5582e6 X ΔBtail: Tweak tests to run faster in normal mode cf352737 X random testing found another failing test for rebuild... 7f7e34e0 X wcfs/xbtree: Fix update not to add duplicate extra point if rebuild - called by Update - already added it 6ad0052c X ΔBtail.Track: No need to return error aafcacdf X xbtree: GetAt test 784a6761 X xbtree: Fix KAdj definition after treediff was reworked this summer to base decisions on node keycoverage instead of particular node keys 0bb1c22e X xbtree: Verify that ForgetPast clones vδT on trim a8945cbf X Start reworking rebuild routines not to modify data inplace b74dda09 X Start switching Track from Track(key) to Track(keycov) dea85e87 X Switch GetAt to vδTSnapForTrackedKey aa0288ce X Switch SliceByRootRev to vδTSnapForTracked c4366b14 X xbtree: tests: Also verify state of ΔTtail.ktrackNew b98706ad X Track should be nop if keycov/path is already in krebuildJobs e141848a X test.go ↑ timeout 10m -> 20m 423f77be X wcfs: Goodby holeIdx 37c2e806 X wcfs: Teach treediff to compute not only δtrack (set of nodes), but also δ for track-key coverage 52c72dbb X ΔBtail.rebuild started to work draftly c9f13fc7 X Get rebuild tests to run in a sane time; Add proper random-based testing for rebuild c7f1e3c9 X xbtree: Factor testing infrastructure bits into xbtree/xbtreetest 7602c1f4 ΔBtail concurrency
-
Kirill Smelkov authored
This algorithm will be internally used by ΔBtail in the next patch. The algorithm would be simple, if we would need to diff two trees completely. However in ΔBtail only subpart of BTree nodes are tracked(*) and the diff has to work modulo that tracking set. No tests now because ΔBtail tests will cover treediff functionality as well. Some preliminary history: kirr/wendelin.core@78f2f88b X wcfs/xbtree: Fix treediff(a, ø) kirr/wendelin.core@5324547c X wcfs/xbtree: root(a) must stay in trackSet even after treediff(a,ø) kirr/wendelin.core@f65f775b X wcfs/xbtree: treediff(ø, b) kirr/wendelin.core@c75b1c6f X wcfs/xbtree: Start killing holeIdx kirr/wendelin.core@ef5e5183 X treediff ret += δtkeycov kirr/wendelin.core@9d20f8e8 X treediff: Fix BUG while computing AB coverage kirr/wendelin.core@ddb28043 X rebuild: Don't return nil for empty ΔPPTreeSubSet - that leads to SIGSEGV kirr/wendelin.core@f68398c9 X wcfs: Move treediff into its own file (*) because full BTree scan is needed to discover all of its nodes. Quoting treediff documentation: ---- 8< ---- treediff provides diff for BTrees Use δZConnectTracked + treediff to compute BTree-diff caused by δZ: δZConnectTracked(δZ, trackSet) -> δZTC, δtopsByRoot treediff(root, δtops, δZTC, trackSet, zconn{Old,New}) -> δT, δtrack, δtkeycov δZConnectTracked computes BTree-connected closure of δZ modulo tracked set and also returns δtopsByRoot to indicate which tree objects were changed and in which subtree parts. With that information one can call treediff for each changed root to compute BTree-diff and δ for trackSet itself. BTree diff algorithm diffT, diffB and δMerge constitute the diff algorithm implementation. diff(A,B) works on pair of A and B whole key ranges splitted into regions covered by tree nodes. The splitting represents current state of recursion into corresponding tree. If a node in particular key range is Bucket, that bucket contributes to δ- in case of A, and to δ+ in case of B. If a node in particular key range is Tree, the algorithm may want to expand that tree node into its children and to recourse into some of the children. There are two phases: - Phase 1 expands A top->down driven by δZTC, adds reached buckets to δ-, and queues key regions of those buckets to be processed on B. - Phase 2 starts processing from queued key regions, expands them on B and adds reached buckets to δ+. Then it iterates to reach consistency in between A and B because processing buckets on B side may increase δ key coverage, and so corresponding key ranges has to be again processed on A. Which in turn may increase δ key coverage again, and needs to be processed on B side, etc... The final δ is merge of δ- and δ+. diffT has more detailed explanation of phase 1 and phase 2 logic.
-
Kirill Smelkov authored
This data structures will be used in ΔBtail to maintain sef of tracked BTree nodes, and to represent δ to such set. Some preliminary history: 78f2f88b X wcfs/xbtree: Fix treediff(a, ø) 5324547c X wcfs/xbtree: root(a) must stay in trackSet even after treediff(a,ø) f65f775b X wcfs/xbtree: treediff(ø, b) 66bc41ce X Fix bug in PPTreeSubSet.Difference - it was always leaving root node alive ddb28043 X rebuild: Don't return nil for empty ΔPPTreeSubSet - that leads to SIGSEGV a87cc6de X rebuild: tests: Don't recompute trackSet(keys1R2) several times Quoting PPTreeSubSet and ΔPPTreeSubSet documentation: ---- 8< ---- PPTreeSubSet represents PP-connected subset of tree node objects. It is PP(xleafs) where PP(node) maps node to {node, node.parent, node.parent,parent, ...} up to top root from where the node is reached. The nodes in the set are represented by their Oid. Usually PPTreeSubSet is built as PP(some-leafs), but in general the starting nodes are arbitrary. PPTreeSubSet can also have many root nodes, thus not necessarily representing a subset of a single tree. Usual set operations are provided: Union, Difference and Intersection. Nodes can be added into the set via AddPath. Path is reverse operation - it returns path to tree node given its oid. Every node in the set comes with .parent pointer. ~~~~ ΔPPTreeSubSet represents a change to PPTreeSubSet. It can be applied via PPTreeSubSet.ApplyΔ . The result B of applying δ to A is: B = A.xDifference(δ.Del).xUnion(δ.Add) (*) (*) NOTE δ.Del and δ.Add might have their leafs starting from non-leaf nodes in A/B. This situation arises when δ represents a change in path to particular node, but that node itself does not change, for example: c* c / \ / 41* 42 41 | | | \ 22 43 46 43 | | | 44 22 44 Here nodes {c, 41} are changed, node 42 is unlinked, and node 46 is added. Nodes 43 and 44 stay unchanged. δ.Del = c-42-43 | c-41-22 δ.Add = c-41-43 | c-41-46-22 The second component with "-22" builds from leaf, but the first component with "-43" builds from non-leaf node. ΔnchildNonLeafs = {43: +1} Only complete result of applying all - xfixup(-1, ΔnchildNonLeafs) - δ.Del, - δ.Add, and - xfixup(+1, ΔnchildNonLeafs) produces correctly PP-connected set.
-
Kirill Smelkov authored
RangedMap is Key->VALUE map with adjacent keys mapped to the same value coalesced into Ranges. RangedKeySet is set of Keys with adjacent keys coalesced into Ranges. This data structures will be needed for ΔBtail. For now the implementation is simple since it keeps whole map in a linear slice because both RangedMap and RangedKeySet will be used in ΔBtail to keep something proportional to δ of a change, which is assumed to be small or medium most of the time. Some preliminary history: 6ea5920a X xbtree: Less copy/garbage in RangedKeySet ops 3ecacd99 X need to keep Value first so that sizeof(set-entry) = sizeof(KeyRange) a5b9b19b X SetRange draftly works ed2de0de X Tests for Get 3b7b69e6 X fixes for empty set/range 6972f999 X xbtree/blib: RangedMap, RangedSet += IntersectsRange, Intersection 57be0126 X RangedMap - like RangedSet but for dict
-
Kirill Smelkov authored
Add treeenv.go that combines Treegen and client side access to ZODB with committed trees as extension to testing.T . The environment allows to easily see which tree update was committed, what is the difference in terms of KV, what is the state of updated tree and state of pointed-to ZBlk objects. This will be used to test upcoming ΔBtail and ΔFtail. Main functionality is in treeenv.go; the other added files are to support that. Some preliminary history: f07502fc X xbtreetest: Teach T & Commit to automatically provide At in symbolic form 0d62b05e X Adjust to btree.VGet & friends signature change to include keycov in visit callback 588a512a X zdata: Switch SliceByFileRev not to clone Zinblk e9c4b619 X rebuild: tests: Random testing 43090ac7 X tests: Factor-out tree-test-env into tTreeEnv d4a523b2 X δbtail: tests: Run much faster with live ZODB cache 271d953d X rebuild: tests: Move ΔBtail.Clone test out of hot inner loop into separate test c32055fc X wcfs/xbtree: ΔBtail tests += ø -> Tree; Tree -> ø 5324547c X wcfs/xbtree: root(a) must stay in trackSet even after treediff(a,ø) 8f6e2b1e X rebuild: tests: Don't access ZODB in XGetδKV
-
Kirill Smelkov authored
Lacking generics we have set.go.in and instantiation for Set[int64], set[string], Set[Oid] and Set[Tid] - that will be used in follow-up patches. The set.go.in itself is mostly a generalized copy from git-backup: https://lab.nexedi.com/kirr/git-backup/blob/c9db60e8/set.go
-
Kirill Smelkov authored
treegen.go and treegen.py together provide a way - to commit a particular BTree topology into ZODB, and - to generate set of random tree topologies that all correspond to particular {k->v} dict. this will be used in upcoming ΔBtail and ΔFtail tests. See treegen.py documentation for details. Some preliminary history: kirr/wendelin.core@9eca74ec X Teach AllStructs to emit topologies with values kirr/wendelin.core@1b962f03 X Restructure: found bug that it was not marking objects as modified kirr/wendelin.core@2139af2c X treegen: Verify that tree actually saved to storage is what was requested kirr/wendelin.core@b5e39d4a X wcfs/treegen: allstructs: Do not keep all tree structures in memory kirr/wendelin.core@e9c4b619 X rebuild: tests: Random testing kirr/wendelin.core@c32055fc X wcfs/xbtree: ΔBtail tests += ø -> Tree; Tree -> ø kirr/wendelin.core@4300d88a X wcfs/xbtreetest/treegen.py: Fix it on ZODB4
-
Kirill Smelkov authored
This will be the place to keep BTree-related utilities. For now it provides only type aliases since Go lacks generics.
-
Kirill Smelkov authored
To handle invalidations, WCFS will need to detect changes to both ZBlk objects and to ZBigFile.blktab BTree that is mapping file blocks to ZBlk objects. And with BTree detecting changes is much more complex, because when a BTree changes, it might be rebalanced, or keys migrated from one tree/bucket node to another tree/bucket node. In other words a BTree change might be not only a change to a {}key->value dictionary, but also a change to BTree topology. Because there are many BTree topologies that correspond to the same {}key->value state, a change from kv₁ to kv₂, even if kv₁ and kv₂ are close to each other, might be accompanied by a dramatic change to topology of the tree. This creates a need for thoroughly testing the BTree difference algorithm because many of BTree topologies changes are tricky, and if a simple algorithm works on relatively stable topology updates, it does not necessarily mean that that same algorithm will continue to work correctly in the general case. So, as a preparatory step, here comes xbtree.py package, that can be used to inspect tree topologies, to create trees with specified topology and to manipulate topology of an existing tree. This package will be used in tests for upcoming ΔBtail. For debugging, and also since those tests will involve both Go and Python parts, it creates the need to be able to specify and exchange topology of a tree via compact string. This package also defines so called "topology encoding" to do so. Some preliminar history: kirr/wendelin.core@fb56193f X fix metric to keep Z <- N order stable over key^ kirr/wendelin.core@809304d1 X "B:" indicates ø bucket with k&b, "B" - ø bucket with only keys kirr/wendelin.core@9eca74ec X Teach AllStructs to emit topologies with values kirr/wendelin.core@1b962f03 X Restructure: found bug that it was not marking objects as modified kirr/wendelin.core@9181c5d9 X Restructure; verify that it marks as changed only modifed nodes kirr/wendelin.core@e9902c4a X improve `xbtree topoview` For the reference xbtree.py package documentation is quoted below. ---- 8< ---- Package xbtree provides utilities for inspecting/manipulating internal structure of integer-keyed BTrees. It will be primarily used to help verify ΔBTail in WCFS. - `Tree` represents a tree node. - `Bucket` represents a bucket node. - `StructureOf` returns internal structure of ZODB BTree represented as Tree and Bucket nodes. - `Restructure` reorganizes ZODB BTree instance according to specified topology structure. - `AllStructs` generates all possible BTree topology structures with given keys. Topology encoding ----------------- Topology encoding provides way to represent structure of a Tree as path-like string. TopoEncode converts Tree into its topology-encoded representation, while TopoDecode decodes topology-encoded string back into Tree. The following example illustrates topology encoding represented by string "T3/T-T/B1-T5/B-B7,8,9": [ 3 ] T3/ represents Tree([3]) / \ [ ] [ ] T-T/ represents two empty Tree([]) ↓ ↓ |1|[ 5 ] B1-T5/ represent Bucket([1]) and Tree([5]) / \ || |7|8|9| B-B7,8,9 represents empty Bucket([]) and Bucket([7,8,9]) Topology encoding specification: A Tree is encoded by level-order traversal, delimiting layers with "/". Inside a layer Tree and Bucket nodes are signalled as "T<keys>" ; Tree "B<keys>" ; Bucket with only keys "B<keys+values>" ; Bucket with keys and values Keys are represented as ","-delimited list of integers. For example Tree or Bucket with [1,3,5] keys are represented as "T1,3,5" ; Tree([1,3,5]) "B1,3,5" ; Bucket([1,3,5]) Keys+values are represented as ","-delimited list of "<key>:<value>" pairs. For example Bucket corresponding to {1:1, 2:4, 3:9} is represented as "B1:1,2:4,3:9" ; Bucket([1,2,3], [1,4,9]) Empty keys+values are represented as ":" - an empty Bucket for key->value mapping is represented as "B:" ; Bucket([], []) Nodes inside one layer are delimited with "-". For example a layer consisting of an empty Tree, a Tree with [1,3] keys, and Bucket with [4,5] keys is represented as "T-T1,3-B4,5" ; layer with Tree([]), Tree([1,3]) and Bucket([4,5]) A layer consists of nodes that are followed by node-node links from upper layer in left-to-right order. Visualization ------------- The following visualization utilities are provided to help understand BTrees better: - `topoview` displays BTree structure given its topology-encoded representation. - `Tree.graphviz` returns Tree graph representation in dot language.
-
Kirill Smelkov authored
For WCFS to be efficient it will have to carefully preserve OS cache on file invalidations. As preparatory step establish infrastructure for verifying state of OS file cache and start asserting on OS cache state in a couple of places. See comments added to tFile constructor that describe how OS cache state verification is setup. Some preliminary history: kirr/wendelin.core@8293025b X Thoughts on how to avoid readahead touching pages of neighbour block kirr/wendelin.core@3054e4a3 X not touching neighbour block works via setting MADV_RANDOM in last 1/4 of every block kirr/wendelin.core@18362227 X #5 access still triggers read to #4 ? kirr/wendelin.core@17dbf94e X Provide mlock2 fallback for Ubuntu kirr/wendelin.core@d134c0b9 X wcfs: test: try to live with only hard memlock limit adjusted kirr/wendelin.core@c2423296 X Fix mlock2 build on Debian 8
-
Kirill Smelkov authored
Provide filesystem view of in-ZODB ZBigFiles, but do not implement support for invalidations nor isolation protocol yet. In particular, because ZODB invalidations are not yet handled, the filesystem does not update its data in accordance with ZODB updates, and instead provides stale data view that corresponds to the state of ZODB at the time when wcfs was mounted. The main parts of this patch are: - wcfs/wcfs.go is filesystem implementation itself together with overview. - wcfs/__init__.py is python wrapper to spawn and interoperate with that filesystem. - wcfs/wcfs_test.py is tests. Some preliminary history: kirr/wendelin.core@fe7efb94 X start of wcfs kirr/wendelin.core@878b2787 X draft loading kirr/wendelin.core@d58c71e8 X don't overalign end by 1 blksize if end is already aligned kirr/wendelin.core@29c9f13d X readBlk: Fix thinko in already case kirr/wendelin.core@59552328 X wcfs: Care to disable OS polling on us kirr/wendelin.core@c00d94c7 X workaround lack of exception chaining on Python2 with xdefer kirr/wendelin.core@0398e23d X bytearray turned out to be copying data kirr/wendelin.core@7a837040 X print wcfs.py py-level traceback on SIGBUS (e.g. wcfs.go aborting due to bug/panic) kirr/wendelin.core@661b871f X make sure tests don't get stuck even if wcfs gets killed -9 ... kirr/wendelin.core@2c043d29 X More effort to unmount failed wcfs.go kirr/wendelin.core@1ccc4478 X Use `with gil` + regular py code instead of PyGILState_Ensure/PyGILState_Release/PyRun_SimpleString kirr/wendelin.core@5dc9c791 X wcfs: Kill xdefer kirr/wendelin.core@91e9eba8 X wcfs: test: Register tFile to tDB early kirr/wendelin.core@a7138fef X wcfs: mkdir /tmp/wcfs with sticky bit kirr/wendelin.core@1eec76d0 X wcfs: try to set sticky for /tmp/wcfs even if the directory already exists kirr/wendelin.core@c2c35851 X wcfs: tests: Factor-out waiting for a general condition to become true into waitfor kirr/wendelin.core@78f36993 X wcfs: test: Fix thinko in getting /sys/fs/fuse/connection/<X> for wcfs kirr/wendelin.core@bc9eb16f X wcfs: tests: Don't use testmntpt everywhere kirr/wendelin.core@6dec74e7 X wcfs: tests: Split tDB into -> tDB + tWCFS kirr/wendelin.core@3a6bd764 X wcfs: tests: Run `fusermount -u` the second time if we had to kill wcfs kirr/wendelin.core@112720f3 X wcfs: tests: Print which files are still opened on wcfs if `fusermount -u` fails kirr/wendelin.core@bb40185b X wcfs: Take $WENDELIN_CORE_WCFS_OPTIONS into account not only from under join kirr/wendelin.core@03a9ef33 X wcfs: Remove credentials from zurl when computing wcfs mountpoint kirr/wendelin.core@68ee5bdc X wcfs: lsof tweaks kirr/wendelin.core@21671879 X wcfs: Teach entrypoint frontend to handle subcommands: serve, status, stop kirr/wendelin.core@b0642b80 X wcfs: Switch mountpoints from /tmp/wcfs/* to /dev/shm/* kirr/wendelin.core@b0ca031f X wcfs: Teach join/serve to start successfully even after unclean wcfs shutdown kirr/wendelin.core@5bfa8cf8 X wcfs: Add start to spawn a Server that can be later stopped (draft) kirr/wendelin.core@5fcec261 X wcfs: Run fusermount and friends with /bin:/usr/bin always on path kirr/wendelin.core@669d7a20 fixup! X wcfs: Run fusermount and friends with /bin:/usr/bin always on path kirr/wendelin.core@6b22f8c4 X wcfs: Teach start to start successfully even after unclean wcfs shutdown kirr/wendelin.core@15389db0 X wcfs: Tune _fuse_unmount to include `fusermount -u` error message into raised exception kirr/wendelin.core@153c002a X wcfs: _fuse_unmount: Try first `kill -TERM` before `kill -QUIT` wcfs kirr/wendelin.core@3244f3a6 X wcfs: lsof +D misbehaves - don't use it kirr/wendelin.core@a126e709 X wcfs: Put client log into its own logger kirr/wendelin.core@ac303d1e X wcfs: tests: -v -> show only wcfs.py logs verbosely kirr/wendelin.core@d671a9e9 X wcfs: Give more time to stop wcfs server
-
Kirill Smelkov authored
Add functionality to load objects from ZODB as saved by py wendelin.core. Mostly straightforward code. The main part is in zblk.go . Contrary to python implementation, go can load ZBlk1's subobjects in parallel, which, given scalable ZODB storage, can be significantly faster compared to serially loading all ZData subobjects as py code does. TODO test wrt data saved by Python3. Some preliminary history: 878b2787 X draft loading bf9a7405 X No longer rely on ZODB cache invariant for invalidations 0d62b05e X Adjust to btree.VGet & friends signature change to include keycov in visit callback b74dda09 X Start switching Track from Track(key) to Track(keycov)
-
Kirill Smelkov authored
Add initial stub for WCFS program and tests. WCFS functionality will be added step-by-step in follow-up commits. Some preliminary history: 0ae88a32 X .nxdtest: Verify Go bits with GOMAXPROCS=1,2,`nproc` 23528eb4 X wcfs: make it to use go modules for dependencies
-
Kirill Smelkov authored
In 6637d216 (lib/zodb: Add zstor_2zurl - way to convert a ZODB storage into URL to access it) we added zstor_2zurl function to convert a ZODB storage client object into an URL to access the storage. At that time the function knew how to understand FileStorage only. Let's add support for other storages that WCFS will need to support now. NEO URI scheme matches the one currently used on ZODB/go side. It semantically needs nexedi/neoppod!18 to be also applied to NEO/py side, but we do not care for now that that patch is not merged (yet, or forever) because extracted ZURL is used only with WCFS which uses NEO/go. NEO support also depends on custom patch to remember SSL credentials on NEO Client: neo@a2f192cb Some preliminary history: 5cb39463 fixup! X wcfs/zeo started to work locally 1cf3b228 X zstor_2zurl += NEO 7f8fa32a X lib/zodb: zstor_2zurl += NEO/SSL support e26524df X wcfs, lib/zodb: DemoStorage support
-
- 25 Oct, 2021 8 commits
-
-
Kirill Smelkov authored
Upcoming libwcfs (C++ part of WCFS client) will need to use virtmem code and link to libvirtmem.
-
Kirill Smelkov authored
Manaully, because there is no automatic dependency tracking in setuptools... Dependency tracking is needed to avoid miscompilation after incremental update under SlapOS/buildout/testnode/... when e.g. only .h was changed.
-
Kirill Smelkov authored
This is similar to e870781d (Top-level in-tree import redirector) but for upcoming pyx modules.
-
Kirill Smelkov authored
Soon we are going to split virtmem code into its own DSO to which bigfile extension will link. As plain setuptools does not support such dynamic linking, we are going to use setuptools_dso instead. But more: some of our upcoming extensions and DSOs will need to use Cython and C++ parts of Pygolang. Prepare that and use Extensions and DSO from golang.pyx.build to support that right from the start.
-
Kirill Smelkov authored
Currently we have only one extension wendelin.bigfile._bigfile, but we are going to add more both python extensions and non-python DSOs. Start preparing to that by factoring-out common code.
-
Kirill Smelkov authored
lib/tests/testprog/zloadrace.py:90:1 'ZODB.FileStorage.FileStorage' imported but unused This amends commit c37a989d.
-
Kirill Smelkov authored
Do what we can do without gdb and then tail to regular segmentation fault. With core file gdb can still be used, but it is handy if we already can get traceback of the crash into the log automatically. TODO better use https://github.com/ianlancetaylor/libbacktrace because backtrace_symbols often does not provide symbolic information. We do not do this now because libbacktrace is not always automatically installed.
-
Kirill Smelkov authored
This makes sure that those programs are always built afresh instead being stuck at outdated build. This is needed because corresponding test .c file includes many other .c files and we don't implement dependency tracking.
-
- 01 Apr, 2021 2 commits
-
-
Kirill Smelkov authored
Else, e.g. after a failing test, that closed its storage and DB, but not all Connections, another test, just by starting new transaction, would invoke synchronization on that unclosed connection, which will try to access closed storage and likely fail. Fixes e.g. https://nexedijs.erp5.net/#/test_result_module/20210401-31B27B3D/5 Crash scenariou is the same as described in 5a5ed2c7 (tests: Force-close ZODB connections in teardown, that testing code forgot to explicitly close). Only now we try to isolate tests from each other not only for different modules, but also for tests inside the same module.
-
Kirill Smelkov authored
The tests verify that there is no concurrency bugs around load, Connection.open and invalidations. See e.g. https://github.com/zopefoundation/ZODB/issues/290 https://github.com/zopefoundation/ZEO/issues/155 By including the tests into wendelin.core, we will have CI coverage for all supported storages (FileStorage, ZEO, NEO), and for all supported ZODB (currently ZODB4, ZODB4-wc2 and ZODB5). ZEO5 is know to currently fail zloadrace. However, even though ZODB#290 was fixed, ZEO5 turned out to also fail on zopenrace: def test_zodb_zopenrace(): # exercises ZODB.Connection + particular storage implementation > zopenrace.main() lib/tests/test_zodb.py:382: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ <decorator-gen-1>:2: in main ??? ../../tools/go/pygolang/golang/__init__.py:103: in _ return f(*argv, **kw) lib/tests/testprog/zopenrace.py:115: in main test(zstor) <decorator-gen-2>:2: in test ??? ../../tools/go/pygolang/golang/__init__.py:103: in _ return f(*argv, **kw) lib/tests/testprog/zopenrace.py:201: in test wg.wait() golang/_sync.pyx:246: in golang._sync.PyWorkGroup.wait ??? golang/_sync.pyx:226: in golang._sync.PyWorkGroup.go.pyrunf ??? lib/tests/testprog/zopenrace.py:165: in T1 t1() _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ def t1(): transaction.begin() zconn = db.open() root = zconn.root() obj1 = root['obj1'] obj2 = root['obj2'] # obj1 - reload it from zstor # obj2 - get it from zconn cache obj1._p_invalidate() # both objects must have the same values i1 = obj1.i i2 = obj2.i if i1 != i2: > raise AssertionError("T1: obj1.i (%d) != obj2.i (%d)" % (i1, i2)) E AssertionError: T1: obj1.i (3) != obj2.i (2) lib/tests/testprog/zopenrace.py:156: AssertionError
-