svm.c 130 KB
Newer Older
1 2 3 4 5 6
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * AMD SVM support
 *
 * Copyright (C) 2006 Qumranet, Inc.
7
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
17 18 19

#define pr_fmt(fmt) "SVM: " fmt

20 21
#include <linux/kvm_host.h>

22
#include "irq.h"
23
#include "mmu.h"
24
#include "kvm_cache_regs.h"
25
#include "x86.h"
26
#include "cpuid.h"
27
#include "pmu.h"
Avi Kivity's avatar
Avi Kivity committed
28

29
#include <linux/module.h>
30
#include <linux/mod_devicetable.h>
31
#include <linux/kernel.h>
32 33
#include <linux/vmalloc.h>
#include <linux/highmem.h>
Alexey Dobriyan's avatar
Alexey Dobriyan committed
34
#include <linux/sched.h>
35
#include <linux/trace_events.h>
36
#include <linux/slab.h>
37

38
#include <asm/apic.h>
39
#include <asm/perf_event.h>
40
#include <asm/tlbflush.h>
Avi Kivity's avatar
Avi Kivity committed
41
#include <asm/desc.h>
42
#include <asm/debugreg.h>
43
#include <asm/kvm_para.h>
44
#include <asm/vgtod.h>
45

46
#include <asm/virtext.h>
47
#include "trace.h"
48

49 50
#define __ex(x) __kvm_handle_fault_on_reboot(x)

51 52 53
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");

54 55 56 57 58 59
static const struct x86_cpu_id svm_cpu_id[] = {
	X86_FEATURE_MATCH(X86_FEATURE_SVM),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);

60 61 62 63 64 65
#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1

#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3

66 67 68 69
#define SVM_FEATURE_NPT            (1 <<  0)
#define SVM_FEATURE_LBRV           (1 <<  1)
#define SVM_FEATURE_SVML           (1 <<  2)
#define SVM_FEATURE_NRIP           (1 <<  3)
70 71 72 73
#define SVM_FEATURE_TSC_RATE       (1 <<  4)
#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
74
#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
75

76 77
#define SVM_AVIC_DOORBELL	0xc001011b

78 79 80 81
#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */

82 83
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))

84
#define TSC_RATIO_RSVD          0xffffff0000000000ULL
85 86
#define TSC_RATIO_MIN		0x0000000000000001ULL
#define TSC_RATIO_MAX		0x000000ffffffffffULL
87

88
#define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
89 90 91 92 93 94 95

/*
 * 0xff is broadcast, so the max index allowed for physical APIC ID
 * table is 0xfe.  APIC IDs above 0xff are reserved.
 */
#define AVIC_MAX_PHYSICAL_ID_COUNT	255

96 97 98 99
#define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
#define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
#define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF

100 101
static bool erratum_383_found __read_mostly;

102 103 104 105 106 107
static const u32 host_save_user_msrs[] = {
#ifdef CONFIG_X86_64
	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
	MSR_FS_BASE,
#endif
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
108
	MSR_TSC_AUX,
109 110 111 112 113 114
};

#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)

struct kvm_vcpu;

115 116 117
struct nested_state {
	struct vmcb *hsave;
	u64 hsave_msr;
118
	u64 vm_cr_msr;
119 120 121 122 123 124 125
	u64 vmcb;

	/* These are the merged vectors */
	u32 *msrpm;

	/* gpa pointers to the real vectors */
	u64 vmcb_msrpm;
126
	u64 vmcb_iopm;
127

128 129 130
	/* A VMEXIT is required but not yet emulated */
	bool exit_required;

131
	/* cache for intercepts of the guest */
132
	u32 intercept_cr;
133
	u32 intercept_dr;
134 135 136
	u32 intercept_exceptions;
	u64 intercept;

137 138
	/* Nested Paging related state */
	u64 nested_cr3;
139 140
};

141 142 143
#define MSRPM_OFFSETS	16
static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;

144 145 146 147 148 149
/*
 * Set osvw_len to higher value when updated Revision Guides
 * are published and we know what the new status bits are
 */
static uint64_t osvw_len = 4, osvw_status;

150 151 152 153 154 155 156 157
struct vcpu_svm {
	struct kvm_vcpu vcpu;
	struct vmcb *vmcb;
	unsigned long vmcb_pa;
	struct svm_cpu_data *svm_data;
	uint64_t asid_generation;
	uint64_t sysenter_esp;
	uint64_t sysenter_eip;
158
	uint64_t tsc_aux;
159 160 161 162

	u64 next_rip;

	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
163
	struct {
164 165 166
		u16 fs;
		u16 gs;
		u16 ldt;
167 168
		u64 gs_base;
	} host;
169 170 171

	u32 *msrpm;

172 173
	ulong nmi_iret_rip;

174
	struct nested_state nested;
175 176

	bool nmi_singlestep;
177 178 179

	unsigned int3_injected;
	unsigned long int3_rip;
180
	u32 apf_reason;
181

182 183
	/* cached guest cpuid flags for faster access */
	bool nrips_enabled	: 1;
184

185
	u32 ldr_reg;
186 187
	struct page *avic_backing_page;
	u64 *avic_physical_id_cache;
188
	bool avic_is_running;
189 190
};

191 192 193 194 195 196 197 198
#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)

#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)

199 200 201
static DEFINE_PER_CPU(u64, current_tsc_ratio);
#define TSC_RATIO_DEFAULT	0x0100000000ULL

202 203
#define MSR_INVALID			0xffffffffU

204
static const struct svm_direct_access_msrs {
205 206 207
	u32 index;   /* Index of the MSR */
	bool always; /* True if intercept is always on */
} direct_access_msrs[] = {
Brian Gerst's avatar
Brian Gerst committed
208
	{ .index = MSR_STAR,				.always = true  },
209 210 211 212 213 214 215 216 217 218 219 220 221 222
	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
#ifdef CONFIG_X86_64
	{ .index = MSR_GS_BASE,				.always = true  },
	{ .index = MSR_FS_BASE,				.always = true  },
	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
	{ .index = MSR_LSTAR,				.always = true  },
	{ .index = MSR_CSTAR,				.always = true  },
	{ .index = MSR_SYSCALL_MASK,			.always = true  },
#endif
	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
	{ .index = MSR_INVALID,				.always = false },
223 224
};

225 226 227 228
/* enable NPT for AMD64 and X86 with PAE */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
static bool npt_enabled = true;
#else
229
static bool npt_enabled;
230
#endif
231

232 233
/* allow nested paging (virtualized MMU) for all guests */
static int npt = true;
234
module_param(npt, int, S_IRUGO);
235

236 237
/* allow nested virtualization in KVM/SVM */
static int nested = true;
238 239
module_param(nested, int, S_IRUGO);

240 241
/* enable / disable AVIC */
static int avic;
242
#ifdef CONFIG_X86_LOCAL_APIC
243
module_param(avic, int, S_IRUGO);
244
#endif
245

246
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
247
static void svm_flush_tlb(struct kvm_vcpu *vcpu);
248
static void svm_complete_interrupts(struct vcpu_svm *svm);
249

250
static int nested_svm_exit_handled(struct vcpu_svm *svm);
251
static int nested_svm_intercept(struct vcpu_svm *svm);
252 253 254 255
static int nested_svm_vmexit(struct vcpu_svm *svm);
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
				      bool has_error_code, u32 error_code);

256
enum {
257 258
	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
			    pause filter count */
259
	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
260
	VMCB_ASID,	 /* ASID */
261
	VMCB_INTR,	 /* int_ctl, int_vector */
262
	VMCB_NPT,        /* npt_en, nCR3, gPAT */
263
	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
264
	VMCB_DR,         /* DR6, DR7 */
265
	VMCB_DT,         /* GDT, IDT */
266
	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
267
	VMCB_CR2,        /* CR2 only */
268
	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
269 270 271 272
	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
			  * AVIC PHYSICAL_TABLE pointer,
			  * AVIC LOGICAL_TABLE pointer
			  */
273 274 275
	VMCB_DIRTY_MAX,
};

276 277
/* TPR and CR2 are always written before VMRUN */
#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
278

279 280
#define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static inline void mark_all_dirty(struct vmcb *vmcb)
{
	vmcb->control.clean = 0;
}

static inline void mark_all_clean(struct vmcb *vmcb)
{
	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
			       & ~VMCB_ALWAYS_DIRTY_MASK;
}

static inline void mark_dirty(struct vmcb *vmcb, int bit)
{
	vmcb->control.clean &= ~(1 << bit);
}

297 298
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
299
	return container_of(vcpu, struct vcpu_svm, vcpu);
300 301
}

302 303 304 305 306 307
static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
{
	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
	mark_dirty(svm->vmcb, VMCB_AVIC);
}

308 309 310 311 312 313 314 315 316 317 318
static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 *entry = svm->avic_physical_id_cache;

	if (!entry)
		return false;

	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
}

319 320 321 322 323
static void recalc_intercepts(struct vcpu_svm *svm)
{
	struct vmcb_control_area *c, *h;
	struct nested_state *g;

324 325
	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);

326 327 328 329 330 331 332
	if (!is_guest_mode(&svm->vcpu))
		return;

	c = &svm->vmcb->control;
	h = &svm->nested.hsave->control;
	g = &svm->nested;

333
	c->intercept_cr = h->intercept_cr | g->intercept_cr;
334
	c->intercept_dr = h->intercept_dr | g->intercept_dr;
335 336 337 338
	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
	c->intercept = h->intercept | g->intercept;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
{
	if (is_guest_mode(&svm->vcpu))
		return svm->nested.hsave;
	else
		return svm->vmcb;
}

static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_cr |= (1U << bit);

	recalc_intercepts(svm);
}

static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_cr &= ~(1U << bit);

	recalc_intercepts(svm);
}

static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	return vmcb->control.intercept_cr & (1U << bit);
}

372
static inline void set_dr_intercepts(struct vcpu_svm *svm)
373 374 375
{
	struct vmcb *vmcb = get_host_vmcb(svm);

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
		| (1 << INTERCEPT_DR1_READ)
		| (1 << INTERCEPT_DR2_READ)
		| (1 << INTERCEPT_DR3_READ)
		| (1 << INTERCEPT_DR4_READ)
		| (1 << INTERCEPT_DR5_READ)
		| (1 << INTERCEPT_DR6_READ)
		| (1 << INTERCEPT_DR7_READ)
		| (1 << INTERCEPT_DR0_WRITE)
		| (1 << INTERCEPT_DR1_WRITE)
		| (1 << INTERCEPT_DR2_WRITE)
		| (1 << INTERCEPT_DR3_WRITE)
		| (1 << INTERCEPT_DR4_WRITE)
		| (1 << INTERCEPT_DR5_WRITE)
		| (1 << INTERCEPT_DR6_WRITE)
		| (1 << INTERCEPT_DR7_WRITE);
392 393 394 395

	recalc_intercepts(svm);
}

396
static inline void clr_dr_intercepts(struct vcpu_svm *svm)
397 398 399
{
	struct vmcb *vmcb = get_host_vmcb(svm);

400
	vmcb->control.intercept_dr = 0;
401 402 403 404

	recalc_intercepts(svm);
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_exceptions |= (1U << bit);

	recalc_intercepts(svm);
}

static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept_exceptions &= ~(1U << bit);

	recalc_intercepts(svm);
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
static inline void set_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept |= (1ULL << bit);

	recalc_intercepts(svm);
}

static inline void clr_intercept(struct vcpu_svm *svm, int bit)
{
	struct vmcb *vmcb = get_host_vmcb(svm);

	vmcb->control.intercept &= ~(1ULL << bit);

	recalc_intercepts(svm);
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static inline void enable_gif(struct vcpu_svm *svm)
{
	svm->vcpu.arch.hflags |= HF_GIF_MASK;
}

static inline void disable_gif(struct vcpu_svm *svm)
{
	svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
}

static inline bool gif_set(struct vcpu_svm *svm)
{
	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
}

456
static unsigned long iopm_base;
457 458 459 460

struct kvm_ldttss_desc {
	u16 limit0;
	u16 base0;
461 462
	unsigned base1:8, type:5, dpl:2, p:1;
	unsigned limit1:4, zero0:3, g:1, base2:8;
463 464 465 466 467 468 469
	u32 base3;
	u32 zero1;
} __attribute__((packed));

struct svm_cpu_data {
	int cpu;

Avi Kivity's avatar
Avi Kivity committed
470 471 472
	u64 asid_generation;
	u32 max_asid;
	u32 next_asid;
473 474 475 476 477 478 479 480 481 482 483 484
	struct kvm_ldttss_desc *tss_desc;

	struct page *save_area;
};

static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);

struct svm_init_data {
	int cpu;
	int r;
};

485
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
486

487
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
488 489 490
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
static u32 svm_msrpm_offset(u32 msr)
{
	u32 offset;
	int i;

	for (i = 0; i < NUM_MSR_MAPS; i++) {
		if (msr < msrpm_ranges[i] ||
		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
			continue;

		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */

		/* Now we have the u8 offset - but need the u32 offset */
		return offset / 4;
	}

	/* MSR not in any range */
	return MSR_INVALID;
}

512 513 514 515
#define MAX_INST_SIZE 15

static inline void clgi(void)
{
516
	asm volatile (__ex(SVM_CLGI));
517 518 519 520
}

static inline void stgi(void)
{
521
	asm volatile (__ex(SVM_STGI));
522 523 524 525
}

static inline void invlpga(unsigned long addr, u32 asid)
{
526
	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
527 528
}

529 530 531 532 533 534 535 536 537
static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
	return PT64_ROOT_LEVEL;
#else
	return PT32E_ROOT_LEVEL;
#endif
}

538 539
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
540
	vcpu->arch.efer = efer;
541
	if (!npt_enabled && !(efer & EFER_LMA))
542
		efer &= ~EFER_LME;
543

544
	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
545
	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
546 547 548 549 550 551 552 553
}

static int is_external_interrupt(u32 info)
{
	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}

554
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
555 556 557 558 559
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 ret = 0;

	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
560 561
		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
	return ret;
562 563 564 565 566 567 568 569 570 571 572 573 574
}

static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (mask == 0)
		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
	else
		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;

}

575 576
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
577 578
	struct vcpu_svm *svm = to_svm(vcpu);

579
	if (svm->vmcb->control.next_rip != 0) {
580
		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
581
		svm->next_rip = svm->vmcb->control.next_rip;
582
	}
583

584
	if (!svm->next_rip) {
585
		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
586 587
				EMULATE_DONE)
			printk(KERN_DEBUG "%s: NOP\n", __func__);
588 589
		return;
	}
590 591 592
	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
		       __func__, kvm_rip_read(vcpu), svm->next_rip);
593

594
	kvm_rip_write(vcpu, svm->next_rip);
595
	svm_set_interrupt_shadow(vcpu, 0);
596 597
}

598
static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
599 600
				bool has_error_code, u32 error_code,
				bool reinject)
601 602 603
{
	struct vcpu_svm *svm = to_svm(vcpu);

604 605 606 607
	/*
	 * If we are within a nested VM we'd better #VMEXIT and let the guest
	 * handle the exception
	 */
608 609
	if (!reinject &&
	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
610 611
		return;

612
	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);

		/*
		 * For guest debugging where we have to reinject #BP if some
		 * INT3 is guest-owned:
		 * Emulate nRIP by moving RIP forward. Will fail if injection
		 * raises a fault that is not intercepted. Still better than
		 * failing in all cases.
		 */
		skip_emulated_instruction(&svm->vcpu);
		rip = kvm_rip_read(&svm->vcpu);
		svm->int3_rip = rip + svm->vmcb->save.cs.base;
		svm->int3_injected = rip - old_rip;
	}

628 629 630 631 632 633 634
	svm->vmcb->control.event_inj = nr
		| SVM_EVTINJ_VALID
		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
		| SVM_EVTINJ_TYPE_EXEPT;
	svm->vmcb->control.event_inj_err = error_code;
}

635 636 637 638 639 640
static void svm_init_erratum_383(void)
{
	u32 low, high;
	int err;
	u64 val;

641
	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
		return;

	/* Use _safe variants to not break nested virtualization */
	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
	if (err)
		return;

	val |= (1ULL << 47);

	low  = lower_32_bits(val);
	high = upper_32_bits(val);

	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);

	erratum_383_found = true;
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
static void svm_init_osvw(struct kvm_vcpu *vcpu)
{
	/*
	 * Guests should see errata 400 and 415 as fixed (assuming that
	 * HLT and IO instructions are intercepted).
	 */
	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
	vcpu->arch.osvw.status = osvw_status & ~(6ULL);

	/*
	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
	 * all osvw.status bits inside that length, including bit 0 (which is
	 * reserved for erratum 298), are valid. However, if host processor's
	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
	 * be conservative here and therefore we tell the guest that erratum 298
	 * is present (because we really don't know).
	 */
	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
		vcpu->arch.osvw.status |= 1;
}

680 681
static int has_svm(void)
{
682
	const char *msg;
683

684
	if (!cpu_has_svm(&msg)) {
685
		printk(KERN_INFO "has_svm: %s\n", msg);
686 687 688 689 690 691
		return 0;
	}

	return 1;
}

692
static void svm_hardware_disable(void)
693
{
694 695 696 697
	/* Make sure we clean up behind us */
	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);

698
	cpu_svm_disable();
699 700

	amd_pmu_disable_virt();
701 702
}

703
static int svm_hardware_enable(void)
704 705
{

706
	struct svm_cpu_data *sd;
707
	uint64_t efer;
708
	struct desc_ptr gdt_descr;
709 710 711
	struct desc_struct *gdt;
	int me = raw_smp_processor_id();

712 713 714 715
	rdmsrl(MSR_EFER, efer);
	if (efer & EFER_SVME)
		return -EBUSY;

716
	if (!has_svm()) {
717
		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
718
		return -EINVAL;
719
	}
720 721
	sd = per_cpu(svm_data, me);
	if (!sd) {
722
		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
723
		return -EINVAL;
724 725
	}

726 727 728
	sd->asid_generation = 1;
	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
	sd->next_asid = sd->max_asid + 1;
729

730
	native_store_gdt(&gdt_descr);
731
	gdt = (struct desc_struct *)gdt_descr.address;
732
	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
733

734
	wrmsrl(MSR_EFER, efer | EFER_SVME);
735

736
	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
737

738 739
	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
740
		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
741 742
	}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

	/*
	 * Get OSVW bits.
	 *
	 * Note that it is possible to have a system with mixed processor
	 * revisions and therefore different OSVW bits. If bits are not the same
	 * on different processors then choose the worst case (i.e. if erratum
	 * is present on one processor and not on another then assume that the
	 * erratum is present everywhere).
	 */
	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
		uint64_t len, status = 0;
		int err;

		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
		if (!err)
			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
						      &err);

		if (err)
			osvw_status = osvw_len = 0;
		else {
			if (len < osvw_len)
				osvw_len = len;
			osvw_status |= status;
			osvw_status &= (1ULL << osvw_len) - 1;
		}
	} else
		osvw_status = osvw_len = 0;

773 774
	svm_init_erratum_383();

775 776
	amd_pmu_enable_virt();

777
	return 0;
778 779
}

780 781
static void svm_cpu_uninit(int cpu)
{
782
	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
783

784
	if (!sd)
785 786 787
		return;

	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
788 789
	__free_page(sd->save_area);
	kfree(sd);
790 791
}

792 793
static int svm_cpu_init(int cpu)
{
794
	struct svm_cpu_data *sd;
795 796
	int r;

797 798
	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
	if (!sd)
799
		return -ENOMEM;
800 801
	sd->cpu = cpu;
	sd->save_area = alloc_page(GFP_KERNEL);
802
	r = -ENOMEM;
803
	if (!sd->save_area)
804 805
		goto err_1;

806
	per_cpu(svm_data, cpu) = sd;
807 808 809 810

	return 0;

err_1:
811
	kfree(sd);
812 813 814 815
	return r;

}

816 817 818 819 820 821 822 823 824 825 826
static bool valid_msr_intercept(u32 index)
{
	int i;

	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
		if (direct_access_msrs[i].index == index)
			return true;

	return false;
}

827 828
static void set_msr_interception(u32 *msrpm, unsigned msr,
				 int read, int write)
829
{
830 831 832
	u8 bit_read, bit_write;
	unsigned long tmp;
	u32 offset;
833

834 835 836 837 838 839
	/*
	 * If this warning triggers extend the direct_access_msrs list at the
	 * beginning of the file
	 */
	WARN_ON(!valid_msr_intercept(msr));

840 841 842 843 844 845 846 847 848 849 850
	offset    = svm_msrpm_offset(msr);
	bit_read  = 2 * (msr & 0x0f);
	bit_write = 2 * (msr & 0x0f) + 1;
	tmp       = msrpm[offset];

	BUG_ON(offset == MSR_INVALID);

	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);

	msrpm[offset] = tmp;
851 852
}

853
static void svm_vcpu_init_msrpm(u32 *msrpm)
854 855 856
{
	int i;

857 858
	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));

859 860 861 862 863 864
	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
		if (!direct_access_msrs[i].always)
			continue;

		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
	}
865 866
}

867 868 869 870 871 872 873 874
static void add_msr_offset(u32 offset)
{
	int i;

	for (i = 0; i < MSRPM_OFFSETS; ++i) {

		/* Offset already in list? */
		if (msrpm_offsets[i] == offset)
875
			return;
876 877 878 879 880 881 882 883 884

		/* Slot used by another offset? */
		if (msrpm_offsets[i] != MSR_INVALID)
			continue;

		/* Add offset to list */
		msrpm_offsets[i] = offset;

		return;
885
	}
886 887 888 889 890

	/*
	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
	 * increase MSRPM_OFFSETS in this case.
	 */
891
	BUG();
892 893
}

894
static void init_msrpm_offsets(void)
895
{
896
	int i;
897

898 899 900 901 902 903 904 905 906 907
	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));

	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
		u32 offset;

		offset = svm_msrpm_offset(direct_access_msrs[i].index);
		BUG_ON(offset == MSR_INVALID);

		add_msr_offset(offset);
	}
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static void svm_enable_lbrv(struct vcpu_svm *svm)
{
	u32 *msrpm = svm->msrpm;

	svm->vmcb->control.lbr_ctl = 1;
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
}

static void svm_disable_lbrv(struct vcpu_svm *svm)
{
	u32 *msrpm = svm->msrpm;

	svm->vmcb->control.lbr_ctl = 0;
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
}

932 933 934 935
static __init int svm_hardware_setup(void)
{
	int cpu;
	struct page *iopm_pages;
936
	void *iopm_va;
937 938 939 940 941 942
	int r;

	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);

	if (!iopm_pages)
		return -ENOMEM;
943 944 945

	iopm_va = page_address(iopm_pages);
	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
946 947
	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;

948 949
	init_msrpm_offsets();

950 951 952
	if (boot_cpu_has(X86_FEATURE_NX))
		kvm_enable_efer_bits(EFER_NX);

Alexander Graf's avatar
Alexander Graf committed
953 954 955
	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
		kvm_enable_efer_bits(EFER_FFXSR);

956 957
	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
		kvm_has_tsc_control = true;
958 959
		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
		kvm_tsc_scaling_ratio_frac_bits = 32;
960 961
	}

962 963
	if (nested) {
		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
964
		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
965 966
	}

Zachary Amsden's avatar
Zachary Amsden committed
967
	for_each_possible_cpu(cpu) {
968 969
		r = svm_cpu_init(cpu);
		if (r)
970
			goto err;
971
	}
972

973
	if (!boot_cpu_has(X86_FEATURE_NPT))
974 975
		npt_enabled = false;

976 977 978 979 980
	if (npt_enabled && !npt) {
		printk(KERN_INFO "kvm: Nested Paging disabled\n");
		npt_enabled = false;
	}

981
	if (npt_enabled) {
982
		printk(KERN_INFO "kvm: Nested Paging enabled\n");
983
		kvm_enable_tdp();
984 985
	} else
		kvm_disable_tdp();
986

987 988 989 990 991 992 993 994
	if (avic) {
		if (!npt_enabled ||
		    !boot_cpu_has(X86_FEATURE_AVIC) ||
		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC))
			avic = false;
		else
			pr_info("AVIC enabled\n");
	}
995

996 997
	return 0;

998
err:
999 1000 1001 1002 1003 1004 1005
	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
	iopm_base = 0;
	return r;
}

static __exit void svm_hardware_unsetup(void)
{
1006 1007
	int cpu;

Zachary Amsden's avatar
Zachary Amsden committed
1008
	for_each_possible_cpu(cpu)
1009 1010
		svm_cpu_uninit(cpu);

1011
	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1012
	iopm_base = 0;
1013 1014 1015 1016 1017 1018
}

static void init_seg(struct vmcb_seg *seg)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1019
		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	seg->limit = 0xffff;
	seg->base = 0;
}

static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | type;
	seg->limit = 0xffff;
	seg->base = 0;
}

1032 1033 1034 1035 1036 1037 1038
static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return svm->vmcb->control.tsc_offset;
}

1039 1040 1041 1042 1043
static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 g_tsc_offset = 0;

1044
	if (is_guest_mode(vcpu)) {
1045 1046 1047
		g_tsc_offset = svm->vmcb->control.tsc_offset -
			       svm->nested.hsave->control.tsc_offset;
		svm->nested.hsave->control.tsc_offset = offset;
1048 1049 1050 1051
	} else
		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
					   svm->vmcb->control.tsc_offset,
					   offset);
1052 1053

	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1054 1055

	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1056 1057
}

1058
static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
Zachary Amsden's avatar
Zachary Amsden committed
1059 1060 1061 1062
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.tsc_offset += adjustment;
1063
	if (is_guest_mode(vcpu))
Zachary Amsden's avatar
Zachary Amsden committed
1064
		svm->nested.hsave->control.tsc_offset += adjustment;
1065 1066 1067 1068 1069
	else
		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
				     svm->vmcb->control.tsc_offset - adjustment,
				     svm->vmcb->control.tsc_offset);

1070
	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
Zachary Amsden's avatar
Zachary Amsden committed
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static void avic_init_vmcb(struct vcpu_svm *svm)
{
	struct vmcb *vmcb = svm->vmcb;
	struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
	phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
	phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
	phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);

	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
	svm->vcpu.arch.apicv_active = true;
}

1089
static void init_vmcb(struct vcpu_svm *svm)
1090
{
1091 1092
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct vmcb_save_area *save = &svm->vmcb->save;
1093

1094
	svm->vcpu.fpu_active = 1;
1095
	svm->vcpu.arch.hflags = 0;
1096

1097 1098 1099 1100 1101 1102
	set_cr_intercept(svm, INTERCEPT_CR0_READ);
	set_cr_intercept(svm, INTERCEPT_CR3_READ);
	set_cr_intercept(svm, INTERCEPT_CR4_READ);
	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1103 1104
	if (!kvm_vcpu_apicv_active(&svm->vcpu))
		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1105

1106
	set_dr_intercepts(svm);
1107

1108 1109 1110
	set_exception_intercept(svm, PF_VECTOR);
	set_exception_intercept(svm, UD_VECTOR);
	set_exception_intercept(svm, MC_VECTOR);
1111
	set_exception_intercept(svm, AC_VECTOR);
1112
	set_exception_intercept(svm, DB_VECTOR);
1113

1114 1115 1116 1117
	set_intercept(svm, INTERCEPT_INTR);
	set_intercept(svm, INTERCEPT_NMI);
	set_intercept(svm, INTERCEPT_SMI);
	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
Avi Kivity's avatar
Avi Kivity committed
1118
	set_intercept(svm, INTERCEPT_RDPMC);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	set_intercept(svm, INTERCEPT_CPUID);
	set_intercept(svm, INTERCEPT_INVD);
	set_intercept(svm, INTERCEPT_HLT);
	set_intercept(svm, INTERCEPT_INVLPG);
	set_intercept(svm, INTERCEPT_INVLPGA);
	set_intercept(svm, INTERCEPT_IOIO_PROT);
	set_intercept(svm, INTERCEPT_MSR_PROT);
	set_intercept(svm, INTERCEPT_TASK_SWITCH);
	set_intercept(svm, INTERCEPT_SHUTDOWN);
	set_intercept(svm, INTERCEPT_VMRUN);
	set_intercept(svm, INTERCEPT_VMMCALL);
	set_intercept(svm, INTERCEPT_VMLOAD);
	set_intercept(svm, INTERCEPT_VMSAVE);
	set_intercept(svm, INTERCEPT_STGI);
	set_intercept(svm, INTERCEPT_CLGI);
	set_intercept(svm, INTERCEPT_SKINIT);
	set_intercept(svm, INTERCEPT_WBINVD);
	set_intercept(svm, INTERCEPT_MONITOR);
	set_intercept(svm, INTERCEPT_MWAIT);
1138
	set_intercept(svm, INTERCEPT_XSETBV);
1139 1140

	control->iopm_base_pa = iopm_base;
1141
	control->msrpm_base_pa = __pa(svm->msrpm);
1142 1143 1144 1145 1146 1147 1148 1149 1150
	control->int_ctl = V_INTR_MASKING_MASK;

	init_seg(&save->es);
	init_seg(&save->ss);
	init_seg(&save->ds);
	init_seg(&save->fs);
	init_seg(&save->gs);

	save->cs.selector = 0xf000;
1151
	save->cs.base = 0xffff0000;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/* Executable/Readable Code Segment */
	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
	save->cs.limit = 0xffff;

	save->gdtr.limit = 0xffff;
	save->idtr.limit = 0xffff;

	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);

1163
	svm_set_efer(&svm->vcpu, 0);
Mike Day's avatar
Mike Day committed
1164
	save->dr6 = 0xffff0ff0;
1165
	kvm_set_rflags(&svm->vcpu, 2);
1166
	save->rip = 0x0000fff0;
1167
	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1168

1169
	/*
1170
	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1171
	 * It also updates the guest-visible cr0 value.
1172
	 */
1173
	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1174
	kvm_mmu_reset_context(&svm->vcpu);
1175

1176
	save->cr4 = X86_CR4_PAE;
1177
	/* rdx = ?? */
1178 1179 1180 1181

	if (npt_enabled) {
		/* Setup VMCB for Nested Paging */
		control->nested_ctl = 1;
1182
		clr_intercept(svm, INTERCEPT_INVLPG);
1183
		clr_exception_intercept(svm, PF_VECTOR);
1184 1185
		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1186
		save->g_pat = svm->vcpu.arch.pat;
1187 1188 1189
		save->cr3 = 0;
		save->cr4 = 0;
	}
1190
	svm->asid_generation = 0;
1191

1192
	svm->nested.vmcb = 0;
1193 1194
	svm->vcpu.arch.hflags = 0;

1195
	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1196
		control->pause_filter_count = 3000;
1197
		set_intercept(svm, INTERCEPT_PAUSE);
1198 1199
	}

1200 1201 1202
	if (avic)
		avic_init_vmcb(svm);

1203 1204
	mark_all_dirty(svm->vmcb);

1205
	enable_gif(svm);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

}

static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
{
	u64 *avic_physical_id_table;
	struct kvm_arch *vm_data = &vcpu->kvm->arch;

	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
		return NULL;

	avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);

	return &avic_physical_id_table[index];
}

/**
 * Note:
 * AVIC hardware walks the nested page table to check permissions,
 * but does not use the SPA address specified in the leaf page
 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
 * field of the VMCB. Therefore, we set up the
 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
 */
static int avic_init_access_page(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	int ret;

	if (kvm->arch.apic_access_page_done)
		return 0;

	ret = x86_set_memory_region(kvm,
				    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
				    APIC_DEFAULT_PHYS_BASE,
				    PAGE_SIZE);
	if (ret)
		return ret;

	kvm->arch.apic_access_page_done = true;
	return 0;
}

static int avic_init_backing_page(struct kvm_vcpu *vcpu)
{
	int ret;
	u64 *entry, new_entry;
	int id = vcpu->vcpu_id;
	struct vcpu_svm *svm = to_svm(vcpu);

	ret = avic_init_access_page(vcpu);
	if (ret)
		return ret;

	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
		return -EINVAL;

	if (!svm->vcpu.arch.apic->regs)
		return -EINVAL;

	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);

	/* Setting AVIC backing page address in the phy APIC ID table */
	entry = avic_get_physical_id_entry(vcpu, id);
	if (!entry)
		return -EINVAL;

	new_entry = READ_ONCE(*entry);
	new_entry = (page_to_phys(svm->avic_backing_page) &
		     AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
		     AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
	WRITE_ONCE(*entry, new_entry);

	svm->avic_physical_id_cache = entry;

	return 0;
}

static void avic_vm_destroy(struct kvm *kvm)
{
	struct kvm_arch *vm_data = &kvm->arch;

	if (vm_data->avic_logical_id_table_page)
		__free_page(vm_data->avic_logical_id_table_page);
	if (vm_data->avic_physical_id_table_page)
		__free_page(vm_data->avic_physical_id_table_page);
}

static int avic_vm_init(struct kvm *kvm)
{
	int err = -ENOMEM;
	struct kvm_arch *vm_data = &kvm->arch;
	struct page *p_page;
	struct page *l_page;

	if (!avic)
		return 0;

	/* Allocating physical APIC ID table (4KB) */
	p_page = alloc_page(GFP_KERNEL);
	if (!p_page)
		goto free_avic;

	vm_data->avic_physical_id_table_page = p_page;
	clear_page(page_address(p_page));

	/* Allocating logical APIC ID table (4KB) */
	l_page = alloc_page(GFP_KERNEL);
	if (!l_page)
		goto free_avic;

	vm_data->avic_logical_id_table_page = l_page;
	clear_page(page_address(l_page));

	return 0;

free_avic:
	avic_vm_destroy(kvm);
	return err;
1325 1326
}

1327 1328 1329 1330 1331 1332
/**
 * This function is called during VCPU halt/unhalt.
 */
static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
{
	u64 entry;
1333
	int h_physical_id = kvm_cpu_get_apicid(vcpu->cpu);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!kvm_vcpu_apicv_active(vcpu))
		return;

	svm->avic_is_running = is_run;

	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
	if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
		return;

	entry = READ_ONCE(*(svm->avic_physical_id_cache));
	WARN_ON(is_run == !!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK));

	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
	if (is_run)
		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
}

static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	u64 entry;
	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
1358
	int h_physical_id = kvm_cpu_get_apicid(cpu);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!kvm_vcpu_apicv_active(vcpu))
		return;

	if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
		return;

	entry = READ_ONCE(*(svm->avic_physical_id_cache));
	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);

	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);

	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
	if (svm->avic_is_running)
		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;

	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
}

static void avic_vcpu_put(struct kvm_vcpu *vcpu)
{
	u64 entry;
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!kvm_vcpu_apicv_active(vcpu))
		return;

	entry = READ_ONCE(*(svm->avic_physical_id_cache));
	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1391 1392
}

1393
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1394 1395
{
	struct vcpu_svm *svm = to_svm(vcpu);
1396 1397
	u32 dummy;
	u32 eax = 1;
1398

1399 1400 1401 1402 1403 1404
	if (!init_event) {
		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
					   MSR_IA32_APICBASE_ENABLE;
		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
	}
1405
	init_vmcb(svm);
1406

1407 1408
	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1409 1410 1411

	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1412 1413
}

1414
static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1415
{
1416
	struct vcpu_svm *svm;
1417
	struct page *page;
1418
	struct page *msrpm_pages;
Alexander Graf's avatar
Alexander Graf committed
1419
	struct page *hsave_page;
Alexander Graf's avatar
Alexander Graf committed
1420
	struct page *nested_msrpm_pages;
1421
	int err;
1422

1423
	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1424 1425 1426 1427 1428 1429 1430 1431 1432
	if (!svm) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
	if (err)
		goto free_svm;

1433
	err = -ENOMEM;
1434
	page = alloc_page(GFP_KERNEL);
1435
	if (!page)
1436
		goto uninit;
1437

1438 1439
	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
	if (!msrpm_pages)
1440
		goto free_page1;
Alexander Graf's avatar
Alexander Graf committed
1441 1442 1443

	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
	if (!nested_msrpm_pages)
1444
		goto free_page2;
1445

Alexander Graf's avatar
Alexander Graf committed
1446 1447
	hsave_page = alloc_page(GFP_KERNEL);
	if (!hsave_page)
1448 1449
		goto free_page3;

1450 1451 1452 1453 1454 1455
	if (avic) {
		err = avic_init_backing_page(&svm->vcpu);
		if (err)
			goto free_page4;
	}

1456 1457 1458 1459 1460
	/* We initialize this flag to true to make sure that the is_running
	 * bit would be set the first time the vcpu is loaded.
	 */
	svm->avic_is_running = true;

1461
	svm->nested.hsave = page_address(hsave_page);
Alexander Graf's avatar
Alexander Graf committed
1462

1463 1464 1465
	svm->msrpm = page_address(msrpm_pages);
	svm_vcpu_init_msrpm(svm->msrpm);

1466
	svm->nested.msrpm = page_address(nested_msrpm_pages);
1467
	svm_vcpu_init_msrpm(svm->nested.msrpm);
Alexander Graf's avatar
Alexander Graf committed
1468

1469 1470 1471 1472
	svm->vmcb = page_address(page);
	clear_page(svm->vmcb);
	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
	svm->asid_generation = 0;
1473
	init_vmcb(svm);
1474

1475 1476
	svm_init_osvw(&svm->vcpu);

1477
	return &svm->vcpu;
1478

1479 1480
free_page4:
	__free_page(hsave_page);
1481 1482 1483 1484 1485 1486
free_page3:
	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
free_page2:
	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
free_page1:
	__free_page(page);
1487 1488 1489
uninit:
	kvm_vcpu_uninit(&svm->vcpu);
free_svm:
1490
	kmem_cache_free(kvm_vcpu_cache, svm);
1491 1492
out:
	return ERR_PTR(err);
1493 1494 1495 1496
}

static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
1497 1498
	struct vcpu_svm *svm = to_svm(vcpu);

1499
	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1500
	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1501 1502
	__free_page(virt_to_page(svm->nested.hsave));
	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1503
	kvm_vcpu_uninit(vcpu);
1504
	kmem_cache_free(kvm_vcpu_cache, svm);
1505 1506
}

1507
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1508
{
1509
	struct vcpu_svm *svm = to_svm(vcpu);
1510
	int i;
1511 1512

	if (unlikely(cpu != vcpu->cpu)) {
1513
		svm->asid_generation = 0;
1514
		mark_all_dirty(svm->vmcb);
1515
	}
1516

1517 1518 1519
#ifdef CONFIG_X86_64
	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
#endif
1520 1521 1522 1523
	savesegment(fs, svm->host.fs);
	savesegment(gs, svm->host.gs);
	svm->host.ldt = kvm_read_ldt();

1524
	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1525
		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1526

1527 1528 1529 1530 1531 1532
	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
			__this_cpu_write(current_tsc_ratio, tsc_ratio);
			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
		}
1533
	}
1534 1535

	avic_vcpu_load(vcpu, cpu);
1536 1537 1538 1539
}

static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
1540
	struct vcpu_svm *svm = to_svm(vcpu);
1541 1542
	int i;

1543 1544
	avic_vcpu_put(vcpu);

1545
	++vcpu->stat.host_state_reload;
1546 1547 1548
	kvm_load_ldt(svm->host.ldt);
#ifdef CONFIG_X86_64
	loadsegment(fs, svm->host.fs);
1549
	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1550
	load_gs_index(svm->host.gs);
1551
#else
1552
#ifdef CONFIG_X86_32_LAZY_GS
1553
	loadsegment(gs, svm->host.gs);
1554
#endif
1555
#endif
1556
	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1557
		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1558 1559
}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	avic_set_running(vcpu, false);
}

static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	avic_set_running(vcpu, true);
}

1570 1571
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
1572
	return to_svm(vcpu)->vmcb->save.rflags;
1573 1574 1575 1576
}

static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
1577 1578 1579 1580 1581
       /*
        * Any change of EFLAGS.VM is accompained by a reload of SS
        * (caused by either a task switch or an inter-privilege IRET),
        * so we do not need to update the CPL here.
        */
1582
	to_svm(vcpu)->vmcb->save.rflags = rflags;
1583 1584
}

1585 1586 1587 1588 1589
static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
{
	return 0;
}

Avi Kivity's avatar
Avi Kivity committed
1590 1591 1592 1593 1594
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
	switch (reg) {
	case VCPU_EXREG_PDPTR:
		BUG_ON(!npt_enabled);
1595
		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
Avi Kivity's avatar
Avi Kivity committed
1596 1597 1598 1599 1600 1601
		break;
	default:
		BUG();
	}
}

1602 1603
static void svm_set_vintr(struct vcpu_svm *svm)
{
1604
	set_intercept(svm, INTERCEPT_VINTR);
1605 1606 1607 1608
}

static void svm_clear_vintr(struct vcpu_svm *svm)
{
1609
	clr_intercept(svm, INTERCEPT_VINTR);
1610 1611
}

1612 1613
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
1614
	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	switch (seg) {
	case VCPU_SREG_CS: return &save->cs;
	case VCPU_SREG_DS: return &save->ds;
	case VCPU_SREG_ES: return &save->es;
	case VCPU_SREG_FS: return &save->fs;
	case VCPU_SREG_GS: return &save->gs;
	case VCPU_SREG_SS: return &save->ss;
	case VCPU_SREG_TR: return &save->tr;
	case VCPU_SREG_LDTR: return &save->ldtr;
	}
	BUG();
Al Viro's avatar
Al Viro committed
1627
	return NULL;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}

static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	return s->base;
}

static void svm_get_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	var->base = s->base;
	var->limit = s->limit;
	var->selector = s->selector;
	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	/*
	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
	 * However, the SVM spec states that the G bit is not observed by the
	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
	 * So let's synthesize a legal G bit for all segments, this helps
	 * running KVM nested. It also helps cross-vendor migration, because
	 * Intel's vmentry has a check on the 'G' bit.
	 */
	var->g = s->limit > 0xfffff;
1662

1663 1664
	/*
	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1665 1666 1667 1668
	 * for cross vendor migration purposes by "not present"
	 */
	var->unusable = !var->present || (var->type == 0);

1669 1670 1671 1672 1673 1674
	switch (seg) {
	case VCPU_SREG_TR:
		/*
		 * Work around a bug where the busy flag in the tr selector
		 * isn't exposed
		 */
1675
		var->type |= 0x2;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		break;
	case VCPU_SREG_DS:
	case VCPU_SREG_ES:
	case VCPU_SREG_FS:
	case VCPU_SREG_GS:
		/*
		 * The accessed bit must always be set in the segment
		 * descriptor cache, although it can be cleared in the
		 * descriptor, the cached bit always remains at 1. Since
		 * Intel has a check on this, set it here to support
		 * cross-vendor migration.
		 */
		if (!var->unusable)
			var->type |= 0x1;
		break;
1691
	case VCPU_SREG_SS:
1692 1693
		/*
		 * On AMD CPUs sometimes the DB bit in the segment
1694 1695 1696 1697 1698 1699
		 * descriptor is left as 1, although the whole segment has
		 * been made unusable. Clear it here to pass an Intel VMX
		 * entry check when cross vendor migrating.
		 */
		if (var->unusable)
			var->db = 0;
1700
		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1701
		break;
1702
	}
1703 1704
}

1705 1706 1707 1708 1709 1710 1711
static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;

	return save->cpl;
}

1712
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1713
{
1714 1715
	struct vcpu_svm *svm = to_svm(vcpu);

1716 1717
	dt->size = svm->vmcb->save.idtr.limit;
	dt->address = svm->vmcb->save.idtr.base;
1718 1719
}

1720
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1721
{
1722 1723
	struct vcpu_svm *svm = to_svm(vcpu);

1724 1725
	svm->vmcb->save.idtr.limit = dt->size;
	svm->vmcb->save.idtr.base = dt->address ;
1726
	mark_dirty(svm->vmcb, VMCB_DT);
1727 1728
}

1729
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1730
{
1731 1732
	struct vcpu_svm *svm = to_svm(vcpu);

1733 1734
	dt->size = svm->vmcb->save.gdtr.limit;
	dt->address = svm->vmcb->save.gdtr.base;
1735 1736
}

1737
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1738
{
1739 1740
	struct vcpu_svm *svm = to_svm(vcpu);

1741 1742
	svm->vmcb->save.gdtr.limit = dt->size;
	svm->vmcb->save.gdtr.base = dt->address ;
1743
	mark_dirty(svm->vmcb, VMCB_DT);
1744 1745
}

1746 1747 1748 1749
static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
}

1750 1751 1752 1753
static void svm_decache_cr3(struct kvm_vcpu *vcpu)
{
}

1754
static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1755 1756 1757
{
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static void update_cr0_intercept(struct vcpu_svm *svm)
{
	ulong gcr0 = svm->vcpu.arch.cr0;
	u64 *hcr0 = &svm->vmcb->save.cr0;

	if (!svm->vcpu.fpu_active)
		*hcr0 |= SVM_CR0_SELECTIVE_MASK;
	else
		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
			| (gcr0 & SVM_CR0_SELECTIVE_MASK);

1769
	mark_dirty(svm->vmcb, VMCB_CR);
1770 1771

	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1772 1773
		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1774
	} else {
1775 1776
		set_cr_intercept(svm, INTERCEPT_CR0_READ);
		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1777 1778 1779
	}
}

1780 1781
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
1782 1783
	struct vcpu_svm *svm = to_svm(vcpu);

1784
#ifdef CONFIG_X86_64
1785
	if (vcpu->arch.efer & EFER_LME) {
1786
		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1787
			vcpu->arch.efer |= EFER_LMA;
1788
			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1789 1790
		}

Mike Day's avatar
Mike Day committed
1791
		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1792
			vcpu->arch.efer &= ~EFER_LMA;
1793
			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1794 1795 1796
		}
	}
#endif
1797
	vcpu->arch.cr0 = cr0;
1798 1799 1800

	if (!npt_enabled)
		cr0 |= X86_CR0_PG | X86_CR0_WP;
1801 1802

	if (!vcpu->fpu_active)
1803
		cr0 |= X86_CR0_TS;
1804 1805 1806 1807 1808 1809 1810
	/*
	 * re-enable caching here because the QEMU bios
	 * does not do it - this results in some delay at
	 * reboot
	 */
	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1811
	svm->vmcb->save.cr0 = cr0;
1812
	mark_dirty(svm->vmcb, VMCB_CR);
1813
	update_cr0_intercept(svm);
1814 1815
}

1816
static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1817
{
1818
	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1819 1820
	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;

1821 1822 1823
	if (cr4 & X86_CR4_VMXE)
		return 1;

1824
	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1825
		svm_flush_tlb(vcpu);
1826

1827 1828 1829
	vcpu->arch.cr4 = cr4;
	if (!npt_enabled)
		cr4 |= X86_CR4_PAE;
1830
	cr4 |= host_cr4_mce;
1831
	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1832
	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1833
	return 0;
1834 1835 1836 1837 1838
}

static void svm_set_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
1839
	struct vcpu_svm *svm = to_svm(vcpu);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	s->base = var->base;
	s->limit = var->limit;
	s->selector = var->selector;
	if (var->unusable)
		s->attrib = 0;
	else {
		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
	}
1857 1858 1859 1860 1861 1862 1863 1864 1865

	/*
	 * This is always accurate, except if SYSRET returned to a segment
	 * with SS.DPL != 3.  Intel does not have this quirk, and always
	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
	 * would entail passing the CPL to userspace and back.
	 */
	if (seg == VCPU_SREG_SS)
		svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1866

1867
	mark_dirty(svm->vmcb, VMCB_SEG);
1868 1869
}

1870
static void update_bp_intercept(struct kvm_vcpu *vcpu)
1871
{
Jan Kiszka's avatar
Jan Kiszka committed
1872 1873
	struct vcpu_svm *svm = to_svm(vcpu);

1874
	clr_exception_intercept(svm, BP_VECTOR);
1875

Jan Kiszka's avatar
Jan Kiszka committed
1876 1877
	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1878
			set_exception_intercept(svm, BP_VECTOR);
Jan Kiszka's avatar
Jan Kiszka committed
1879 1880
	} else
		vcpu->guest_debug = 0;
1881 1882
}

1883
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1884
{
1885 1886 1887
	if (sd->next_asid > sd->max_asid) {
		++sd->asid_generation;
		sd->next_asid = 1;
1888
		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1889 1890
	}

1891 1892
	svm->asid_generation = sd->asid_generation;
	svm->vmcb->control.asid = sd->next_asid++;
1893 1894

	mark_dirty(svm->vmcb, VMCB_ASID);
1895 1896
}

Jan Kiszka's avatar
Jan Kiszka committed
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
{
	return to_svm(vcpu)->vmcb->save.dr6;
}

static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->save.dr6 = value;
	mark_dirty(svm->vmcb, VMCB_DR);
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	get_debugreg(vcpu->arch.db[0], 0);
	get_debugreg(vcpu->arch.db[1], 1);
	get_debugreg(vcpu->arch.db[2], 2);
	get_debugreg(vcpu->arch.db[3], 3);
	vcpu->arch.dr6 = svm_get_dr6(vcpu);
	vcpu->arch.dr7 = svm->vmcb->save.dr7;

	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
	set_dr_intercepts(svm);
}

1925
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1926
{
1927 1928
	struct vcpu_svm *svm = to_svm(vcpu);

1929
	svm->vmcb->save.dr7 = value;
1930
	mark_dirty(svm->vmcb, VMCB_DR);
1931 1932
}

1933
static int pf_interception(struct vcpu_svm *svm)
1934
{
1935
	u64 fault_address = svm->vmcb->control.exit_info_2;
1936
	u32 error_code;
1937
	int r = 1;
1938

1939 1940 1941
	switch (svm->apf_reason) {
	default:
		error_code = svm->vmcb->control.exit_info_1;
1942

1943 1944 1945
		trace_kvm_page_fault(fault_address, error_code);
		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1946 1947 1948
		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
			svm->vmcb->control.insn_bytes,
			svm->vmcb->control.insn_len);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		break;
	case KVM_PV_REASON_PAGE_NOT_PRESENT:
		svm->apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wait(fault_address);
		local_irq_enable();
		break;
	case KVM_PV_REASON_PAGE_READY:
		svm->apf_reason = 0;
		local_irq_disable();
		kvm_async_pf_task_wake(fault_address);
		local_irq_enable();
		break;
	}
	return r;
1964 1965
}

1966
static int db_interception(struct vcpu_svm *svm)
Jan Kiszka's avatar
Jan Kiszka committed
1967
{
1968 1969
	struct kvm_run *kvm_run = svm->vcpu.run;

Jan Kiszka's avatar
Jan Kiszka committed
1970
	if (!(svm->vcpu.guest_debug &
1971
	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1972
		!svm->nmi_singlestep) {
Jan Kiszka's avatar
Jan Kiszka committed
1973 1974 1975
		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
		return 1;
	}
1976

1977 1978
	if (svm->nmi_singlestep) {
		svm->nmi_singlestep = false;
1979 1980 1981 1982 1983 1984
		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
			svm->vmcb->save.rflags &=
				~(X86_EFLAGS_TF | X86_EFLAGS_RF);
	}

	if (svm->vcpu.guest_debug &
1985
	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1986 1987 1988 1989 1990 1991 1992 1993
		kvm_run->exit_reason = KVM_EXIT_DEBUG;
		kvm_run->debug.arch.pc =
			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
		kvm_run->debug.arch.exception = DB_VECTOR;
		return 0;
	}

	return 1;
Jan Kiszka's avatar
Jan Kiszka committed
1994 1995
}

1996
static int bp_interception(struct vcpu_svm *svm)
Jan Kiszka's avatar
Jan Kiszka committed
1997
{
1998 1999
	struct kvm_run *kvm_run = svm->vcpu.run;

Jan Kiszka's avatar
Jan Kiszka committed
2000 2001 2002 2003 2004 2005
	kvm_run->exit_reason = KVM_EXIT_DEBUG;
	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
	kvm_run->debug.arch.exception = BP_VECTOR;
	return 0;
}

2006
static int ud_interception(struct vcpu_svm *svm)
2007 2008 2009
{
	int er;

2010
	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2011
	if (er != EMULATE_DONE)
2012
		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2013 2014 2015
	return 1;
}

2016 2017 2018 2019 2020 2021
static int ac_interception(struct vcpu_svm *svm)
{
	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
	return 1;
}

Avi Kivity's avatar
Avi Kivity committed
2022
static void svm_fpu_activate(struct kvm_vcpu *vcpu)
2023
{
Avi Kivity's avatar
Avi Kivity committed
2024
	struct vcpu_svm *svm = to_svm(vcpu);
2025

2026
	clr_exception_intercept(svm, NM_VECTOR);
2027

Rusty Russell's avatar
Rusty Russell committed
2028
	svm->vcpu.fpu_active = 1;
2029
	update_cr0_intercept(svm);
Avi Kivity's avatar
Avi Kivity committed
2030
}
2031

Avi Kivity's avatar
Avi Kivity committed
2032 2033 2034
static int nm_interception(struct vcpu_svm *svm)
{
	svm_fpu_activate(&svm->vcpu);
2035
	return 1;
2036 2037
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static bool is_erratum_383(void)
{
	int err, i;
	u64 value;

	if (!erratum_383_found)
		return false;

	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
	if (err)
		return false;

	/* Bit 62 may or may not be set for this mce */
	value &= ~(1ULL << 62);

	if (value != 0xb600000000010015ULL)
		return false;

	/* Clear MCi_STATUS registers */
	for (i = 0; i < 6; ++i)
		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);

	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
	if (!err) {
		u32 low, high;

		value &= ~(1ULL << 2);
		low    = lower_32_bits(value);
		high   = upper_32_bits(value);

		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
	}

	/* Flush tlb to evict multi-match entries */
	__flush_tlb_all();

	return true;
}

2077
static void svm_handle_mce(struct vcpu_svm *svm)
2078
{
2079 2080 2081 2082 2083 2084 2085
	if (is_erratum_383()) {
		/*
		 * Erratum 383 triggered. Guest state is corrupt so kill the
		 * guest.
		 */
		pr_err("KVM: Guest triggered AMD Erratum 383\n");

2086
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2087 2088 2089 2090

		return;
	}

2091 2092 2093 2094 2095 2096 2097 2098
	/*
	 * On an #MC intercept the MCE handler is not called automatically in
	 * the host. So do it by hand here.
	 */
	asm volatile (
		"int $0x12\n");
	/* not sure if we ever come back to this point */

2099 2100 2101 2102 2103
	return;
}

static int mc_interception(struct vcpu_svm *svm)
{
2104 2105 2106
	return 1;
}

2107
static int shutdown_interception(struct vcpu_svm *svm)
2108
{
2109 2110
	struct kvm_run *kvm_run = svm->vcpu.run;

2111 2112 2113 2114
	/*
	 * VMCB is undefined after a SHUTDOWN intercept
	 * so reinitialize it.
	 */
2115
	clear_page(svm->vmcb);
2116
	init_vmcb(svm);
2117 2118 2119 2120 2121

	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
	return 0;
}

2122
static int io_interception(struct vcpu_svm *svm)
2123
{
2124
	struct kvm_vcpu *vcpu = &svm->vcpu;
Mike Day's avatar
Mike Day committed
2125
	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2126
	int size, in, string;
2127
	unsigned port;
2128

Rusty Russell's avatar
Rusty Russell committed
2129
	++svm->vcpu.stat.io_exits;
2130
	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2131
	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2132
	if (string || in)
2133
		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2134

2135 2136
	port = io_info >> 16;
	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2137
	svm->next_rip = svm->vmcb->control.exit_info_2;
2138
	skip_emulated_instruction(&svm->vcpu);
2139 2140

	return kvm_fast_pio_out(vcpu, size, port);
2141 2142
}

2143
static int nmi_interception(struct vcpu_svm *svm)
2144 2145 2146 2147
{
	return 1;
}

2148
static int intr_interception(struct vcpu_svm *svm)
2149 2150 2151 2152 2153
{
	++svm->vcpu.stat.irq_exits;
	return 1;
}

2154
static int nop_on_interception(struct vcpu_svm *svm)
2155 2156 2157 2158
{
	return 1;
}

2159
static int halt_interception(struct vcpu_svm *svm)
2160
{
2161
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
Rusty Russell's avatar
Rusty Russell committed
2162
	return kvm_emulate_halt(&svm->vcpu);
2163 2164
}

2165
static int vmmcall_interception(struct vcpu_svm *svm)
2166
{
2167
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2168
	return kvm_emulate_hypercall(&svm->vcpu);
2169 2170
}

2171 2172 2173 2174 2175 2176 2177
static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return svm->nested.nested_cr3;
}

2178 2179 2180 2181 2182 2183 2184
static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 cr3 = svm->nested.nested_cr3;
	u64 pdpte;
	int ret;

2185 2186
	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
				       offset_in_page(cr3) + index * 8, 8);
2187 2188 2189 2190 2191
	if (ret)
		return 0;
	return pdpte;
}

2192 2193 2194 2195 2196 2197
static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
				   unsigned long root)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.nested_cr3 = root;
2198
	mark_dirty(svm->vmcb, VMCB_NPT);
2199
	svm_flush_tlb(vcpu);
2200 2201
}

2202 2203
static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
				       struct x86_exception *fault)
2204 2205 2206
{
	struct vcpu_svm *svm = to_svm(vcpu);

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
		/*
		 * TODO: track the cause of the nested page fault, and
		 * correctly fill in the high bits of exit_info_1.
		 */
		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
		svm->vmcb->control.exit_code_hi = 0;
		svm->vmcb->control.exit_info_1 = (1ULL << 32);
		svm->vmcb->control.exit_info_2 = fault->address;
	}

	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
	svm->vmcb->control.exit_info_1 |= fault->error_code;

	/*
	 * The present bit is always zero for page structure faults on real
	 * hardware.
	 */
	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
		svm->vmcb->control.exit_info_1 &= ~1;
2227 2228 2229 2230

	nested_svm_vmexit(svm);
}

2231
static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2232
{
2233 2234
	WARN_ON(mmu_is_nested(vcpu));
	kvm_init_shadow_mmu(vcpu);
2235 2236
	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2237
	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2238 2239
	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
	vcpu->arch.mmu.shadow_root_level = get_npt_level();
2240
	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2241 2242 2243 2244 2245 2246 2247 2248
	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
}

static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
}

2249 2250
static int nested_svm_check_permissions(struct vcpu_svm *svm)
{
2251
	if (!(svm->vcpu.arch.efer & EFER_SVME)
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	    || !is_paging(&svm->vcpu)) {
		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
		return 1;
	}

	if (svm->vmcb->save.cpl) {
		kvm_inject_gp(&svm->vcpu, 0);
		return 1;
	}

       return 0;
}

2265 2266 2267
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
				      bool has_error_code, u32 error_code)
{
2268 2269
	int vmexit;

2270
	if (!is_guest_mode(&svm->vcpu))
2271
		return 0;
2272

2273 2274 2275 2276 2277
	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
	svm->vmcb->control.exit_code_hi = 0;
	svm->vmcb->control.exit_info_1 = error_code;
	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;

2278 2279 2280 2281 2282
	vmexit = nested_svm_intercept(svm);
	if (vmexit == NESTED_EXIT_DONE)
		svm->nested.exit_required = true;

	return vmexit;
2283 2284
}

2285 2286
/* This function returns true if it is save to enable the irq window */
static inline bool nested_svm_intr(struct vcpu_svm *svm)
2287
{
2288
	if (!is_guest_mode(&svm->vcpu))
2289
		return true;
2290

2291
	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2292
		return true;
2293

2294
	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2295
		return false;
2296

2297 2298 2299 2300 2301 2302 2303 2304
	/*
	 * if vmexit was already requested (by intercepted exception
	 * for instance) do not overwrite it with "external interrupt"
	 * vmexit.
	 */
	if (svm->nested.exit_required)
		return false;

2305 2306 2307
	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
	svm->vmcb->control.exit_info_1 = 0;
	svm->vmcb->control.exit_info_2 = 0;
2308

2309 2310 2311
	if (svm->nested.intercept & 1ULL) {
		/*
		 * The #vmexit can't be emulated here directly because this
Guo Chao's avatar
Guo Chao committed
2312
		 * code path runs with irqs and preemption disabled. A
2313 2314 2315 2316
		 * #vmexit emulation might sleep. Only signal request for
		 * the #vmexit here.
		 */
		svm->nested.exit_required = true;
2317
		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2318
		return false;
2319 2320
	}

2321
	return true;
2322 2323
}

2324 2325 2326
/* This function returns true if it is save to enable the nmi window */
static inline bool nested_svm_nmi(struct vcpu_svm *svm)
{
2327
	if (!is_guest_mode(&svm->vcpu))
2328 2329 2330 2331 2332 2333 2334 2335 2336
		return true;

	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
		return true;

	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
	svm->nested.exit_required = true;

	return false;
2337 2338
}

2339
static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2340 2341 2342
{
	struct page *page;

2343 2344
	might_sleep();

2345
	page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2346 2347 2348
	if (is_error_page(page))
		goto error;

2349 2350 2351
	*_page = page;

	return kmap(page);
2352 2353 2354 2355 2356 2357 2358

error:
	kvm_inject_gp(&svm->vcpu, 0);

	return NULL;
}

2359
static void nested_svm_unmap(struct page *page)
2360
{
2361
	kunmap(page);
2362 2363 2364
	kvm_release_page_dirty(page);
}

2365 2366
static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
{
2367 2368 2369
	unsigned port, size, iopm_len;
	u16 val, mask;
	u8 start_bit;
2370
	u64 gpa;
2371

2372 2373
	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
		return NESTED_EXIT_HOST;
2374

2375
	port = svm->vmcb->control.exit_info_1 >> 16;
2376 2377
	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
		SVM_IOIO_SIZE_SHIFT;
2378
	gpa  = svm->nested.vmcb_iopm + (port / 8);
2379 2380 2381 2382
	start_bit = port % 8;
	iopm_len = (start_bit + size > 8) ? 2 : 1;
	mask = (0xf >> (4 - size)) << start_bit;
	val = 0;
2383

2384
	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2385
		return NESTED_EXIT_DONE;
2386

2387
	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2388 2389
}

2390
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2391
{
2392 2393
	u32 offset, msr, value;
	int write, mask;
2394

2395
	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2396
		return NESTED_EXIT_HOST;
2397

2398 2399 2400 2401
	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
	offset = svm_msrpm_offset(msr);
	write  = svm->vmcb->control.exit_info_1 & 1;
	mask   = 1 << ((2 * (msr & 0xf)) + write);
2402

2403 2404
	if (offset == MSR_INVALID)
		return NESTED_EXIT_DONE;
2405

2406 2407
	/* Offset is in 32 bit units but need in 8 bit units */
	offset *= 4;
2408

2409
	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2410
		return NESTED_EXIT_DONE;
2411

2412
	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2413 2414
}

2415
static int nested_svm_exit_special(struct vcpu_svm *svm)
2416 2417
{
	u32 exit_code = svm->vmcb->control.exit_code;
2418

2419 2420 2421
	switch (exit_code) {
	case SVM_EXIT_INTR:
	case SVM_EXIT_NMI:
2422
	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2423 2424
		return NESTED_EXIT_HOST;
	case SVM_EXIT_NPF:
2425
		/* For now we are always handling NPFs when using them */
2426 2427 2428 2429
		if (npt_enabled)
			return NESTED_EXIT_HOST;
		break;
	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2430 2431
		/* When we're shadowing, trap PFs, but not async PF */
		if (!npt_enabled && svm->apf_reason == 0)
2432 2433
			return NESTED_EXIT_HOST;
		break;
2434 2435 2436
	case SVM_EXIT_EXCP_BASE + NM_VECTOR:
		nm_interception(svm);
		break;
2437 2438
	default:
		break;
2439 2440
	}

2441 2442 2443 2444 2445 2446
	return NESTED_EXIT_CONTINUE;
}

/*
 * If this function returns true, this #vmexit was already handled
 */
2447
static int nested_svm_intercept(struct vcpu_svm *svm)
2448 2449 2450 2451
{
	u32 exit_code = svm->vmcb->control.exit_code;
	int vmexit = NESTED_EXIT_HOST;

2452
	switch (exit_code) {
2453
	case SVM_EXIT_MSR:
2454
		vmexit = nested_svm_exit_handled_msr(svm);
2455
		break;
2456 2457 2458
	case SVM_EXIT_IOIO:
		vmexit = nested_svm_intercept_ioio(svm);
		break;
2459 2460 2461
	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
		if (svm->nested.intercept_cr & bit)
2462
			vmexit = NESTED_EXIT_DONE;
2463 2464
		break;
	}
2465 2466 2467
	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
		if (svm->nested.intercept_dr & bit)
2468
			vmexit = NESTED_EXIT_DONE;
2469 2470 2471 2472
		break;
	}
	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2473
		if (svm->nested.intercept_exceptions & excp_bits)
2474
			vmexit = NESTED_EXIT_DONE;
2475 2476 2477 2478
		/* async page fault always cause vmexit */
		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
			 svm->apf_reason != 0)
			vmexit = NESTED_EXIT_DONE;
2479 2480
		break;
	}
2481 2482 2483 2484
	case SVM_EXIT_ERR: {
		vmexit = NESTED_EXIT_DONE;
		break;
	}
2485 2486
	default: {
		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2487
		if (svm->nested.intercept & exit_bits)
2488
			vmexit = NESTED_EXIT_DONE;
2489 2490 2491
	}
	}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	return vmexit;
}

static int nested_svm_exit_handled(struct vcpu_svm *svm)
{
	int vmexit;

	vmexit = nested_svm_intercept(svm);

	if (vmexit == NESTED_EXIT_DONE)
2502 2503 2504
		nested_svm_vmexit(svm);

	return vmexit;
2505 2506
}

2507 2508 2509 2510 2511
static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
{
	struct vmcb_control_area *dst  = &dst_vmcb->control;
	struct vmcb_control_area *from = &from_vmcb->control;

2512
	dst->intercept_cr         = from->intercept_cr;
2513
	dst->intercept_dr         = from->intercept_dr;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	dst->intercept_exceptions = from->intercept_exceptions;
	dst->intercept            = from->intercept;
	dst->iopm_base_pa         = from->iopm_base_pa;
	dst->msrpm_base_pa        = from->msrpm_base_pa;
	dst->tsc_offset           = from->tsc_offset;
	dst->asid                 = from->asid;
	dst->tlb_ctl              = from->tlb_ctl;
	dst->int_ctl              = from->int_ctl;
	dst->int_vector           = from->int_vector;
	dst->int_state            = from->int_state;
	dst->exit_code            = from->exit_code;
	dst->exit_code_hi         = from->exit_code_hi;
	dst->exit_info_1          = from->exit_info_1;
	dst->exit_info_2          = from->exit_info_2;
	dst->exit_int_info        = from->exit_int_info;
	dst->exit_int_info_err    = from->exit_int_info_err;
	dst->nested_ctl           = from->nested_ctl;
	dst->event_inj            = from->event_inj;
	dst->event_inj_err        = from->event_inj_err;
	dst->nested_cr3           = from->nested_cr3;
	dst->lbr_ctl              = from->lbr_ctl;
}

2537
static int nested_svm_vmexit(struct vcpu_svm *svm)
2538
{
2539
	struct vmcb *nested_vmcb;
2540
	struct vmcb *hsave = svm->nested.hsave;
2541
	struct vmcb *vmcb = svm->vmcb;
2542
	struct page *page;
2543

2544 2545 2546 2547
	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
				       vmcb->control.exit_info_1,
				       vmcb->control.exit_info_2,
				       vmcb->control.exit_int_info,
2548 2549
				       vmcb->control.exit_int_info_err,
				       KVM_ISA_SVM);
2550

2551
	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2552 2553 2554
	if (!nested_vmcb)
		return 1;

2555 2556
	/* Exit Guest-Mode */
	leave_guest_mode(&svm->vcpu);
2557 2558
	svm->nested.vmcb = 0;

2559
	/* Give the current vmcb to the guest */
2560 2561 2562 2563 2564 2565 2566 2567
	disable_gif(svm);

	nested_vmcb->save.es     = vmcb->save.es;
	nested_vmcb->save.cs     = vmcb->save.cs;
	nested_vmcb->save.ss     = vmcb->save.ss;
	nested_vmcb->save.ds     = vmcb->save.ds;
	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
	nested_vmcb->save.idtr   = vmcb->save.idtr;
2568
	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2569
	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2570
	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2571
	nested_vmcb->save.cr2    = vmcb->save.cr2;
2572
	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2573
	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	nested_vmcb->save.rip    = vmcb->save.rip;
	nested_vmcb->save.rsp    = vmcb->save.rsp;
	nested_vmcb->save.rax    = vmcb->save.rax;
	nested_vmcb->save.dr7    = vmcb->save.dr7;
	nested_vmcb->save.dr6    = vmcb->save.dr6;
	nested_vmcb->save.cpl    = vmcb->save.cpl;

	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
	nested_vmcb->control.int_state         = vmcb->control.int_state;
	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2590 2591 2592

	if (svm->nrips_enabled)
		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

	/*
	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
	 * to make sure that we do not lose injected events. So check event_inj
	 * here and copy it to exit_int_info if it is valid.
	 * Exit_int_info and event_inj can't be both valid because the case
	 * below only happens on a VMRUN instruction intercept which has
	 * no valid exit_int_info set.
	 */
	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
		struct vmcb_control_area *nc = &nested_vmcb->control;

		nc->exit_int_info     = vmcb->control.event_inj;
		nc->exit_int_info_err = vmcb->control.event_inj_err;
	}

2609 2610 2611
	nested_vmcb->control.tlb_ctl           = 0;
	nested_vmcb->control.event_inj         = 0;
	nested_vmcb->control.event_inj_err     = 0;
2612 2613 2614 2615 2616 2617

	/* We always set V_INTR_MASKING and remember the old value in hflags */
	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;

	/* Restore the original control entries */
2618
	copy_vmcb_control_area(vmcb, hsave);
2619

2620 2621
	kvm_clear_exception_queue(&svm->vcpu);
	kvm_clear_interrupt_queue(&svm->vcpu);
2622

2623 2624
	svm->nested.nested_cr3 = 0;

2625 2626 2627 2628 2629 2630 2631
	/* Restore selected save entries */
	svm->vmcb->save.es = hsave->save.es;
	svm->vmcb->save.cs = hsave->save.cs;
	svm->vmcb->save.ss = hsave->save.ss;
	svm->vmcb->save.ds = hsave->save.ds;
	svm->vmcb->save.gdtr = hsave->save.gdtr;
	svm->vmcb->save.idtr = hsave->save.idtr;
2632
	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2633 2634 2635 2636 2637 2638 2639
	svm_set_efer(&svm->vcpu, hsave->save.efer);
	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
	if (npt_enabled) {
		svm->vmcb->save.cr3 = hsave->save.cr3;
		svm->vcpu.arch.cr3 = hsave->save.cr3;
	} else {
2640
		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2641 2642 2643 2644 2645 2646 2647 2648
	}
	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
	svm->vmcb->save.dr7 = 0;
	svm->vmcb->save.cpl = 0;
	svm->vmcb->control.exit_int_info = 0;

2649 2650
	mark_all_dirty(svm->vmcb);

2651
	nested_svm_unmap(page);
2652

2653
	nested_svm_uninit_mmu_context(&svm->vcpu);
2654 2655 2656 2657 2658
	kvm_mmu_reset_context(&svm->vcpu);
	kvm_mmu_load(&svm->vcpu);

	return 0;
}
Alexander Graf's avatar
Alexander Graf committed
2659

2660
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2661
{
2662 2663
	/*
	 * This function merges the msr permission bitmaps of kvm and the
Guo Chao's avatar
Guo Chao committed
2664
	 * nested vmcb. It is optimized in that it only merges the parts where
2665 2666
	 * the kvm msr permission bitmap may contain zero bits
	 */
Alexander Graf's avatar
Alexander Graf committed
2667
	int i;
2668

2669 2670
	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
		return true;
2671

2672 2673 2674
	for (i = 0; i < MSRPM_OFFSETS; i++) {
		u32 value, p;
		u64 offset;
2675

2676 2677
		if (msrpm_offsets[i] == 0xffffffff)
			break;
Alexander Graf's avatar
Alexander Graf committed
2678

2679 2680
		p      = msrpm_offsets[i];
		offset = svm->nested.vmcb_msrpm + (p * 4);
2681

2682
		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2683 2684 2685 2686
			return false;

		svm->nested.msrpm[p] = svm->msrpm[p] | value;
	}
Alexander Graf's avatar
Alexander Graf committed
2687

2688
	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2689 2690

	return true;
Alexander Graf's avatar
Alexander Graf committed
2691 2692
}

2693 2694 2695 2696 2697
static bool nested_vmcb_checks(struct vmcb *vmcb)
{
	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
		return false;

2698 2699 2700
	if (vmcb->control.asid == 0)
		return false;

2701 2702 2703
	if (vmcb->control.nested_ctl && !npt_enabled)
		return false;

2704 2705 2706
	return true;
}

2707
static bool nested_svm_vmrun(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2708
{
2709
	struct vmcb *nested_vmcb;
2710
	struct vmcb *hsave = svm->nested.hsave;
2711
	struct vmcb *vmcb = svm->vmcb;
2712
	struct page *page;
2713
	u64 vmcb_gpa;
Alexander Graf's avatar
Alexander Graf committed
2714

2715
	vmcb_gpa = svm->vmcb->save.rax;
Alexander Graf's avatar
Alexander Graf committed
2716

2717
	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2718 2719 2720
	if (!nested_vmcb)
		return false;

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	if (!nested_vmcb_checks(nested_vmcb)) {
		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
		nested_vmcb->control.exit_code_hi = 0;
		nested_vmcb->control.exit_info_1  = 0;
		nested_vmcb->control.exit_info_2  = 0;

		nested_svm_unmap(page);

		return false;
	}

2732
	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2733 2734 2735 2736 2737
			       nested_vmcb->save.rip,
			       nested_vmcb->control.int_ctl,
			       nested_vmcb->control.event_inj,
			       nested_vmcb->control.nested_ctl);

2738 2739
	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
				    nested_vmcb->control.intercept_cr >> 16,
2740 2741 2742
				    nested_vmcb->control.intercept_exceptions,
				    nested_vmcb->control.intercept);

Alexander Graf's avatar
Alexander Graf committed
2743
	/* Clear internal status */
2744 2745
	kvm_clear_exception_queue(&svm->vcpu);
	kvm_clear_interrupt_queue(&svm->vcpu);
Alexander Graf's avatar
Alexander Graf committed
2746

2747 2748 2749 2750
	/*
	 * Save the old vmcb, so we don't need to pick what we save, but can
	 * restore everything when a VMEXIT occurs
	 */
2751 2752 2753 2754 2755 2756
	hsave->save.es     = vmcb->save.es;
	hsave->save.cs     = vmcb->save.cs;
	hsave->save.ss     = vmcb->save.ss;
	hsave->save.ds     = vmcb->save.ds;
	hsave->save.gdtr   = vmcb->save.gdtr;
	hsave->save.idtr   = vmcb->save.idtr;
2757
	hsave->save.efer   = svm->vcpu.arch.efer;
2758
	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2759
	hsave->save.cr4    = svm->vcpu.arch.cr4;
2760
	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2761
	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2762 2763 2764 2765 2766
	hsave->save.rsp    = vmcb->save.rsp;
	hsave->save.rax    = vmcb->save.rax;
	if (npt_enabled)
		hsave->save.cr3    = vmcb->save.cr3;
	else
2767
		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2768

2769
	copy_vmcb_control_area(hsave, vmcb);
Alexander Graf's avatar
Alexander Graf committed
2770

2771
	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
Alexander Graf's avatar
Alexander Graf committed
2772 2773 2774 2775
		svm->vcpu.arch.hflags |= HF_HIF_MASK;
	else
		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;

2776 2777 2778 2779 2780 2781
	if (nested_vmcb->control.nested_ctl) {
		kvm_mmu_unload(&svm->vcpu);
		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
		nested_svm_init_mmu_context(&svm->vcpu);
	}

Alexander Graf's avatar
Alexander Graf committed
2782 2783 2784 2785 2786 2787 2788
	/* Load the nested guest state */
	svm->vmcb->save.es = nested_vmcb->save.es;
	svm->vmcb->save.cs = nested_vmcb->save.cs;
	svm->vmcb->save.ss = nested_vmcb->save.ss;
	svm->vmcb->save.ds = nested_vmcb->save.ds;
	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2789
	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
Alexander Graf's avatar
Alexander Graf committed
2790 2791 2792 2793 2794 2795
	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
	if (npt_enabled) {
		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2796
	} else
2797
		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2798 2799 2800 2801

	/* Guest paging mode is active - reset mmu */
	kvm_mmu_reset_context(&svm->vcpu);

2802
	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
Alexander Graf's avatar
Alexander Graf committed
2803 2804 2805
	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2806

Alexander Graf's avatar
Alexander Graf committed
2807 2808 2809 2810 2811 2812 2813 2814
	/* In case we don't even reach vcpu_run, the fields are not updated */
	svm->vmcb->save.rax = nested_vmcb->save.rax;
	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
	svm->vmcb->save.rip = nested_vmcb->save.rip;
	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
	svm->vmcb->save.cpl = nested_vmcb->save.cpl;

2815
	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2816
	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
Alexander Graf's avatar
Alexander Graf committed
2817

2818
	/* cache intercepts */
2819
	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2820
	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2821 2822 2823
	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
	svm->nested.intercept            = nested_vmcb->control.intercept;

2824
	svm_flush_tlb(&svm->vcpu);
Alexander Graf's avatar
Alexander Graf committed
2825 2826 2827 2828 2829 2830
	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
	else
		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;

2831 2832
	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
		/* We only want the cr8 intercept bits of the guest */
2833 2834
		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2835 2836
	}

2837
	/* We don't want to see VMMCALLs from a nested guest */
2838
	clr_intercept(svm, INTERCEPT_VMMCALL);
2839

2840
	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
Alexander Graf's avatar
Alexander Graf committed
2841 2842 2843 2844 2845 2846
	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;

2847
	nested_svm_unmap(page);
2848

2849 2850 2851
	/* Enter Guest-Mode */
	enter_guest_mode(&svm->vcpu);

2852 2853 2854 2855 2856 2857
	/*
	 * Merge guest and host intercepts - must be called  with vcpu in
	 * guest-mode to take affect here
	 */
	recalc_intercepts(svm);

2858
	svm->nested.vmcb = vmcb_gpa;
2859

2860
	enable_gif(svm);
Alexander Graf's avatar
Alexander Graf committed
2861

2862 2863
	mark_all_dirty(svm->vmcb);

2864
	return true;
Alexander Graf's avatar
Alexander Graf committed
2865 2866
}

2867
static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
{
	to_vmcb->save.fs = from_vmcb->save.fs;
	to_vmcb->save.gs = from_vmcb->save.gs;
	to_vmcb->save.tr = from_vmcb->save.tr;
	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
	to_vmcb->save.star = from_vmcb->save.star;
	to_vmcb->save.lstar = from_vmcb->save.lstar;
	to_vmcb->save.cstar = from_vmcb->save.cstar;
	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
}

2883
static int vmload_interception(struct vcpu_svm *svm)
2884
{
2885
	struct vmcb *nested_vmcb;
2886
	struct page *page;
2887

2888 2889 2890
	if (nested_svm_check_permissions(svm))
		return 1;

2891
	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2892 2893 2894
	if (!nested_vmcb)
		return 1;

2895 2896 2897
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);

2898
	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2899
	nested_svm_unmap(page);
2900 2901 2902 2903

	return 1;
}

2904
static int vmsave_interception(struct vcpu_svm *svm)
2905
{
2906
	struct vmcb *nested_vmcb;
2907
	struct page *page;
2908

2909 2910 2911
	if (nested_svm_check_permissions(svm))
		return 1;

2912
	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2913 2914 2915
	if (!nested_vmcb)
		return 1;

2916 2917 2918
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);

2919
	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2920
	nested_svm_unmap(page);
2921 2922 2923 2924

	return 1;
}

2925
static int vmrun_interception(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2926 2927 2928 2929
{
	if (nested_svm_check_permissions(svm))
		return 1;

2930 2931
	/* Save rip after vmrun instruction */
	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
Alexander Graf's avatar
Alexander Graf committed
2932

2933
	if (!nested_svm_vmrun(svm))
Alexander Graf's avatar
Alexander Graf committed
2934 2935
		return 1;

2936
	if (!nested_svm_vmrun_msrpm(svm))
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		goto failed;

	return 1;

failed:

	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
	svm->vmcb->control.exit_code_hi = 0;
	svm->vmcb->control.exit_info_1  = 0;
	svm->vmcb->control.exit_info_2  = 0;

	nested_svm_vmexit(svm);
Alexander Graf's avatar
Alexander Graf committed
2949 2950 2951 2952

	return 1;
}

2953
static int stgi_interception(struct vcpu_svm *svm)
2954 2955 2956 2957 2958 2959
{
	if (nested_svm_check_permissions(svm))
		return 1;

	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);
2960
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2961

2962
	enable_gif(svm);
2963 2964 2965 2966

	return 1;
}

2967
static int clgi_interception(struct vcpu_svm *svm)
2968 2969 2970 2971 2972 2973 2974
{
	if (nested_svm_check_permissions(svm))
		return 1;

	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);

2975
	disable_gif(svm);
2976 2977

	/* After a CLGI no interrupts should come */
2978 2979 2980 2981 2982
	if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
		svm_clear_vintr(svm);
		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
		mark_dirty(svm->vmcb, VMCB_INTR);
	}
2983

2984 2985 2986
	return 1;
}

2987
static int invlpga_interception(struct vcpu_svm *svm)
Alexander Graf's avatar
Alexander Graf committed
2988 2989 2990
{
	struct kvm_vcpu *vcpu = &svm->vcpu;

2991 2992
	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2993

Alexander Graf's avatar
Alexander Graf committed
2994
	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2995
	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
Alexander Graf's avatar
Alexander Graf committed
2996 2997 2998 2999 3000 3001

	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
	skip_emulated_instruction(&svm->vcpu);
	return 1;
}

3002 3003
static int skinit_interception(struct vcpu_svm *svm)
{
3004
	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3005 3006 3007 3008 3009

	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
	return 1;
}

David Kaplan's avatar
David Kaplan committed
3010 3011 3012 3013 3014 3015
static int wbinvd_interception(struct vcpu_svm *svm)
{
	kvm_emulate_wbinvd(&svm->vcpu);
	return 1;
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
static int xsetbv_interception(struct vcpu_svm *svm)
{
	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);

	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
		skip_emulated_instruction(&svm->vcpu);
	}

	return 1;
}

3029
static int task_switch_interception(struct vcpu_svm *svm)
3030
{
3031
	u16 tss_selector;
3032 3033 3034
	int reason;
	int int_type = svm->vmcb->control.exit_int_info &
		SVM_EXITINTINFO_TYPE_MASK;
3035
	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3036 3037 3038 3039
	uint32_t type =
		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
	uint32_t idt_v =
		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3040 3041
	bool has_error_code = false;
	u32 error_code = 0;
3042 3043

	tss_selector = (u16)svm->vmcb->control.exit_info_1;
3044

3045 3046
	if (svm->vmcb->control.exit_info_2 &
	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3047 3048 3049 3050
		reason = TASK_SWITCH_IRET;
	else if (svm->vmcb->control.exit_info_2 &
		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
		reason = TASK_SWITCH_JMP;
3051
	else if (idt_v)
3052 3053 3054 3055
		reason = TASK_SWITCH_GATE;
	else
		reason = TASK_SWITCH_CALL;

3056 3057 3058 3059 3060 3061
	if (reason == TASK_SWITCH_GATE) {
		switch (type) {
		case SVM_EXITINTINFO_TYPE_NMI:
			svm->vcpu.arch.nmi_injected = false;
			break;
		case SVM_EXITINTINFO_TYPE_EXEPT:
3062 3063 3064 3065 3066 3067
			if (svm->vmcb->control.exit_info_2 &
			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
				has_error_code = true;
				error_code =
					(u32)svm->vmcb->control.exit_info_2;
			}
3068 3069 3070 3071 3072 3073 3074 3075 3076
			kvm_clear_exception_queue(&svm->vcpu);
			break;
		case SVM_EXITINTINFO_TYPE_INTR:
			kvm_clear_interrupt_queue(&svm->vcpu);
			break;
		default:
			break;
		}
	}
3077

3078 3079 3080
	if (reason != TASK_SWITCH_GATE ||
	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3081 3082
	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
		skip_emulated_instruction(&svm->vcpu);
3083

3084 3085 3086 3087
	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
		int_vec = -1;

	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3088 3089 3090 3091 3092 3093 3094
				has_error_code, error_code) == EMULATE_FAIL) {
		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		svm->vcpu.run->internal.ndata = 0;
		return 0;
	}
	return 1;
3095 3096
}

3097
static int cpuid_interception(struct vcpu_svm *svm)
3098
{
3099
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
Rusty Russell's avatar
Rusty Russell committed
3100
	kvm_emulate_cpuid(&svm->vcpu);
3101
	return 1;
3102 3103
}

3104
static int iret_interception(struct vcpu_svm *svm)
3105 3106
{
	++svm->vcpu.stat.nmi_window_exits;
3107
	clr_intercept(svm, INTERCEPT_IRET);
3108
	svm->vcpu.arch.hflags |= HF_IRET_MASK;
3109
	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3110
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3111 3112 3113
	return 1;
}

3114
static int invlpg_interception(struct vcpu_svm *svm)
Marcelo Tosatti's avatar
Marcelo Tosatti committed
3115
{
3116 3117 3118 3119 3120 3121
	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;

	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
	skip_emulated_instruction(&svm->vcpu);
	return 1;
Marcelo Tosatti's avatar
Marcelo Tosatti committed
3122 3123
}

3124
static int emulate_on_interception(struct vcpu_svm *svm)
3125
{
3126
	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3127 3128
}

Avi Kivity's avatar
Avi Kivity committed
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
static int rdpmc_interception(struct vcpu_svm *svm)
{
	int err;

	if (!static_cpu_has(X86_FEATURE_NRIPS))
		return emulate_on_interception(svm);

	err = kvm_rdpmc(&svm->vcpu);
	kvm_complete_insn_gp(&svm->vcpu, err);

	return 1;
}

3142 3143
static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
					    unsigned long val)
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
{
	unsigned long cr0 = svm->vcpu.arch.cr0;
	bool ret = false;
	u64 intercept;

	intercept = svm->nested.intercept;

	if (!is_guest_mode(&svm->vcpu) ||
	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
		return false;

	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
	val &= ~SVM_CR0_SELECTIVE_MASK;

	if (cr0 ^ val) {
		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
	}

	return ret;
}

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
#define CR_VALID (1ULL << 63)

static int cr_interception(struct vcpu_svm *svm)
{
	int reg, cr;
	unsigned long val;
	int err;

	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_on_interception(svm);

	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
		return emulate_on_interception(svm);

	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3181 3182 3183 3184
	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
	else
		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3185 3186 3187 3188 3189 3190 3191

	err = 0;
	if (cr >= 16) { /* mov to cr */
		cr -= 16;
		val = kvm_register_read(&svm->vcpu, reg);
		switch (cr) {
		case 0:
3192 3193
			if (!check_selective_cr0_intercepted(svm, val))
				err = kvm_set_cr0(&svm->vcpu, val);
3194 3195 3196
			else
				return 1;

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
			break;
		case 3:
			err = kvm_set_cr3(&svm->vcpu, val);
			break;
		case 4:
			err = kvm_set_cr4(&svm->vcpu, val);
			break;
		case 8:
			err = kvm_set_cr8(&svm->vcpu, val);
			break;
		default:
			WARN(1, "unhandled write to CR%d", cr);
			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
			return 1;
		}
	} else { /* mov from cr */
		switch (cr) {
		case 0:
			val = kvm_read_cr0(&svm->vcpu);
			break;
		case 2:
			val = svm->vcpu.arch.cr2;
			break;
		case 3:
3221
			val = kvm_read_cr3(&svm->vcpu);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
			break;
		case 4:
			val = kvm_read_cr4(&svm->vcpu);
			break;
		case 8:
			val = kvm_get_cr8(&svm->vcpu);
			break;
		default:
			WARN(1, "unhandled read from CR%d", cr);
			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
			return 1;
		}
		kvm_register_write(&svm->vcpu, reg, val);
	}
	kvm_complete_insn_gp(&svm->vcpu, err);

	return 1;
}

3241 3242 3243 3244 3245
static int dr_interception(struct vcpu_svm *svm)
{
	int reg, dr;
	unsigned long val;

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	if (svm->vcpu.guest_debug == 0) {
		/*
		 * No more DR vmexits; force a reload of the debug registers
		 * and reenter on this instruction.  The next vmexit will
		 * retrieve the full state of the debug registers.
		 */
		clr_dr_intercepts(svm);
		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
		return 1;
	}

3257 3258 3259 3260 3261 3262 3263
	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
		return emulate_on_interception(svm);

	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;

	if (dr >= 16) { /* mov to DRn */
3264 3265
		if (!kvm_require_dr(&svm->vcpu, dr - 16))
			return 1;
3266 3267 3268
		val = kvm_register_read(&svm->vcpu, reg);
		kvm_set_dr(&svm->vcpu, dr - 16, val);
	} else {
3269 3270 3271 3272
		if (!kvm_require_dr(&svm->vcpu, dr))
			return 1;
		kvm_get_dr(&svm->vcpu, dr, &val);
		kvm_register_write(&svm->vcpu, reg, val);
3273 3274
	}

3275 3276
	skip_emulated_instruction(&svm->vcpu);

3277 3278 3279
	return 1;
}

3280
static int cr8_write_interception(struct vcpu_svm *svm)
3281
{
3282
	struct kvm_run *kvm_run = svm->vcpu.run;
Andre Przywara's avatar
Andre Przywara committed
3283
	int r;
3284

3285 3286
	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
	/* instruction emulation calls kvm_set_cr8() */
3287
	r = cr_interception(svm);
3288
	if (lapic_in_kernel(&svm->vcpu))
3289
		return r;
3290
	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3291
		return r;
3292 3293 3294 3295
	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
	return 0;
}

3296
static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
Nadav Har'El's avatar
Nadav Har'El committed
3297 3298
{
	struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3299
	return vmcb->control.tsc_offset + host_tsc;
Nadav Har'El's avatar
Nadav Har'El committed
3300 3301
}

3302
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3303
{
3304 3305
	struct vcpu_svm *svm = to_svm(vcpu);

3306
	switch (msr_info->index) {
3307
	case MSR_IA32_TSC: {
3308
		msr_info->data = svm->vmcb->control.tsc_offset +
3309
			kvm_scale_tsc(vcpu, rdtsc());
3310

3311 3312
		break;
	}
Brian Gerst's avatar
Brian Gerst committed
3313
	case MSR_STAR:
3314
		msr_info->data = svm->vmcb->save.star;
3315
		break;
3316
#ifdef CONFIG_X86_64
3317
	case MSR_LSTAR:
3318
		msr_info->data = svm->vmcb->save.lstar;
3319 3320
		break;
	case MSR_CSTAR:
3321
		msr_info->data = svm->vmcb->save.cstar;
3322 3323
		break;
	case MSR_KERNEL_GS_BASE:
3324
		msr_info->data = svm->vmcb->save.kernel_gs_base;
3325 3326
		break;
	case MSR_SYSCALL_MASK:
3327
		msr_info->data = svm->vmcb->save.sfmask;
3328 3329 3330
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
3331
		msr_info->data = svm->vmcb->save.sysenter_cs;
3332 3333
		break;
	case MSR_IA32_SYSENTER_EIP:
3334
		msr_info->data = svm->sysenter_eip;
3335 3336
		break;
	case MSR_IA32_SYSENTER_ESP:
3337
		msr_info->data = svm->sysenter_esp;
3338
		break;
3339 3340 3341 3342 3343
	case MSR_TSC_AUX:
		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
			return 1;
		msr_info->data = svm->tsc_aux;
		break;
3344 3345 3346 3347 3348
	/*
	 * Nobody will change the following 5 values in the VMCB so we can
	 * safely return them on rdmsr. They will always be 0 until LBRV is
	 * implemented.
	 */
3349
	case MSR_IA32_DEBUGCTLMSR:
3350
		msr_info->data = svm->vmcb->save.dbgctl;
3351 3352
		break;
	case MSR_IA32_LASTBRANCHFROMIP:
3353
		msr_info->data = svm->vmcb->save.br_from;
3354 3355
		break;
	case MSR_IA32_LASTBRANCHTOIP:
3356
		msr_info->data = svm->vmcb->save.br_to;
3357 3358
		break;
	case MSR_IA32_LASTINTFROMIP:
3359
		msr_info->data = svm->vmcb->save.last_excp_from;
3360 3361
		break;
	case MSR_IA32_LASTINTTOIP:
3362
		msr_info->data = svm->vmcb->save.last_excp_to;
3363
		break;
Alexander Graf's avatar
Alexander Graf committed
3364
	case MSR_VM_HSAVE_PA:
3365
		msr_info->data = svm->nested.hsave_msr;
Alexander Graf's avatar
Alexander Graf committed
3366
		break;
3367
	case MSR_VM_CR:
3368
		msr_info->data = svm->nested.vm_cr_msr;
3369
		break;
3370
	case MSR_IA32_UCODE_REV:
3371
		msr_info->data = 0x01000065;
3372
		break;
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	case MSR_F15H_IC_CFG: {

		int family, model;

		family = guest_cpuid_family(vcpu);
		model  = guest_cpuid_model(vcpu);

		if (family < 0 || model < 0)
			return kvm_get_msr_common(vcpu, msr_info);

		msr_info->data = 0;

		if (family == 0x15 &&
		    (model >= 0x2 && model < 0x20))
			msr_info->data = 0x1E;
		}
		break;
3390
	default:
3391
		return kvm_get_msr_common(vcpu, msr_info);
3392 3393 3394 3395
	}
	return 0;
}

3396
static int rdmsr_interception(struct vcpu_svm *svm)
3397
{
3398
	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3399
	struct msr_data msr_info;
3400

3401 3402 3403
	msr_info.index = ecx;
	msr_info.host_initiated = false;
	if (svm_get_msr(&svm->vcpu, &msr_info)) {
3404
		trace_kvm_msr_read_ex(ecx);
3405
		kvm_inject_gp(&svm->vcpu, 0);
3406
	} else {
3407
		trace_kvm_msr_read(ecx, msr_info.data);
3408

3409 3410 3411 3412
		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
				   msr_info.data & 0xffffffff);
		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
				   msr_info.data >> 32);
3413
		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
Rusty Russell's avatar
Rusty Russell committed
3414
		skip_emulated_instruction(&svm->vcpu);
3415 3416 3417 3418
	}
	return 1;
}

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int svm_dis, chg_mask;

	if (data & ~SVM_VM_CR_VALID_MASK)
		return 1;

	chg_mask = SVM_VM_CR_VALID_MASK;

	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);

	svm->nested.vm_cr_msr &= ~chg_mask;
	svm->nested.vm_cr_msr |= (data & chg_mask);

	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;

	/* check for svm_disable while efer.svme is set */
	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
		return 1;

	return 0;
}

3444
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3445
{
3446 3447
	struct vcpu_svm *svm = to_svm(vcpu);

3448 3449
	u32 ecx = msr->index;
	u64 data = msr->data;
3450
	switch (ecx) {
3451
	case MSR_IA32_TSC:
3452
		kvm_write_tsc(vcpu, msr);
3453
		break;
Brian Gerst's avatar
Brian Gerst committed
3454
	case MSR_STAR:
3455
		svm->vmcb->save.star = data;
3456
		break;
3457
#ifdef CONFIG_X86_64
3458
	case MSR_LSTAR:
3459
		svm->vmcb->save.lstar = data;
3460 3461
		break;
	case MSR_CSTAR:
3462
		svm->vmcb->save.cstar = data;
3463 3464
		break;
	case MSR_KERNEL_GS_BASE:
3465
		svm->vmcb->save.kernel_gs_base = data;
3466 3467
		break;
	case MSR_SYSCALL_MASK:
3468
		svm->vmcb->save.sfmask = data;
3469 3470 3471
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
3472
		svm->vmcb->save.sysenter_cs = data;
3473 3474
		break;
	case MSR_IA32_SYSENTER_EIP:
3475
		svm->sysenter_eip = data;
3476
		svm->vmcb->save.sysenter_eip = data;
3477 3478
		break;
	case MSR_IA32_SYSENTER_ESP:
3479
		svm->sysenter_esp = data;
3480
		svm->vmcb->save.sysenter_esp = data;
3481
		break;
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	case MSR_TSC_AUX:
		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
			return 1;

		/*
		 * This is rare, so we update the MSR here instead of using
		 * direct_access_msrs.  Doing that would require a rdmsr in
		 * svm_vcpu_put.
		 */
		svm->tsc_aux = data;
		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
		break;
3494
	case MSR_IA32_DEBUGCTLMSR:
3495
		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3496 3497
			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
				    __func__, data);
3498 3499 3500 3501 3502 3503
			break;
		}
		if (data & DEBUGCTL_RESERVED_BITS)
			return 1;

		svm->vmcb->save.dbgctl = data;
3504
		mark_dirty(svm->vmcb, VMCB_LBR);
3505 3506 3507 3508
		if (data & (1ULL<<0))
			svm_enable_lbrv(svm);
		else
			svm_disable_lbrv(svm);
3509
		break;
Alexander Graf's avatar
Alexander Graf committed
3510
	case MSR_VM_HSAVE_PA:
3511
		svm->nested.hsave_msr = data;
3512
		break;
3513
	case MSR_VM_CR:
3514
		return svm_set_vm_cr(vcpu, data);
3515
	case MSR_VM_IGNNE:
3516
		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3517
		break;
3518 3519 3520 3521
	case MSR_IA32_APICBASE:
		if (kvm_vcpu_apicv_active(vcpu))
			avic_update_vapic_bar(to_svm(vcpu), data);
		/* Follow through */
3522
	default:
3523
		return kvm_set_msr_common(vcpu, msr);
3524 3525 3526 3527
	}
	return 0;
}

3528
static int wrmsr_interception(struct vcpu_svm *svm)
3529
{
3530
	struct msr_data msr;
3531 3532
	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
	u64 data = kvm_read_edx_eax(&svm->vcpu);
3533

3534 3535 3536
	msr.data = data;
	msr.index = ecx;
	msr.host_initiated = false;
3537

3538
	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3539
	if (kvm_set_msr(&svm->vcpu, &msr)) {
3540
		trace_kvm_msr_write_ex(ecx, data);
3541
		kvm_inject_gp(&svm->vcpu, 0);
3542 3543
	} else {
		trace_kvm_msr_write(ecx, data);
Rusty Russell's avatar
Rusty Russell committed
3544
		skip_emulated_instruction(&svm->vcpu);
3545
	}
3546 3547 3548
	return 1;
}

3549
static int msr_interception(struct vcpu_svm *svm)
3550
{
Rusty Russell's avatar
Rusty Russell committed
3551
	if (svm->vmcb->control.exit_info_1)
3552
		return wrmsr_interception(svm);
3553
	else
3554
		return rdmsr_interception(svm);
3555 3556
}

3557
static int interrupt_window_interception(struct vcpu_svm *svm)
3558
{
3559
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3560
	svm_clear_vintr(svm);
3561
	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3562
	mark_dirty(svm->vmcb, VMCB_INTR);
3563
	++svm->vcpu.stat.irq_window_exits;
3564 3565 3566
	return 1;
}

3567 3568 3569 3570 3571 3572
static int pause_interception(struct vcpu_svm *svm)
{
	kvm_vcpu_on_spin(&(svm->vcpu));
	return 1;
}

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
static int nop_interception(struct vcpu_svm *svm)
{
	skip_emulated_instruction(&(svm->vcpu));
	return 1;
}

static int monitor_interception(struct vcpu_svm *svm)
{
	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
	return nop_interception(svm);
}

static int mwait_interception(struct vcpu_svm *svm)
{
	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
	return nop_interception(svm);
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
enum avic_ipi_failure_cause {
	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
	AVIC_IPI_FAILURE_INVALID_TARGET,
	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
};

static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
{
	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
	u32 icrl = svm->vmcb->control.exit_info_1;
	u32 id = svm->vmcb->control.exit_info_2 >> 32;
3603
	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
	struct kvm_lapic *apic = svm->vcpu.arch.apic;

	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);

	switch (id) {
	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
		/*
		 * AVIC hardware handles the generation of
		 * IPIs when the specified Message Type is Fixed
		 * (also known as fixed delivery mode) and
		 * the Trigger Mode is edge-triggered. The hardware
		 * also supports self and broadcast delivery modes
		 * specified via the Destination Shorthand(DSH)
		 * field of the ICRL. Logical and physical APIC ID
		 * formats are supported. All other IPI types cause
		 * a #VMEXIT, which needs to emulated.
		 */
		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
		break;
	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
		int i;
		struct kvm_vcpu *vcpu;
		struct kvm *kvm = svm->vcpu.kvm;
		struct kvm_lapic *apic = svm->vcpu.arch.apic;

		/*
		 * At this point, we expect that the AVIC HW has already
		 * set the appropriate IRR bits on the valid target
		 * vcpus. So, we just need to kick the appropriate vcpu.
		 */
		kvm_for_each_vcpu(i, vcpu, kvm) {
			bool m = kvm_apic_match_dest(vcpu, apic,
						     icrl & KVM_APIC_SHORT_MASK,
						     GET_APIC_DEST_FIELD(icrh),
						     icrl & KVM_APIC_DEST_MASK);

			if (m && !avic_vcpu_is_running(vcpu))
				kvm_vcpu_wake_up(vcpu);
		}
		break;
	}
	case AVIC_IPI_FAILURE_INVALID_TARGET:
		break;
	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
		WARN_ONCE(1, "Invalid backing page\n");
		break;
	default:
		pr_err("Unknown IPI interception\n");
	}

	return 1;
}

static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
{
	struct kvm_arch *vm_data = &vcpu->kvm->arch;
	int index;
	u32 *logical_apic_id_table;
	int dlid = GET_APIC_LOGICAL_ID(ldr);

	if (!dlid)
		return NULL;

	if (flat) { /* flat */
		index = ffs(dlid) - 1;
		if (index > 7)
			return NULL;
	} else { /* cluster */
		int cluster = (dlid & 0xf0) >> 4;
		int apic = ffs(dlid & 0x0f) - 1;

		if ((apic < 0) || (apic > 7) ||
		    (cluster >= 0xf))
			return NULL;
		index = (cluster << 2) + apic;
	}

	logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);

	return &logical_apic_id_table[index];
}

static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
			  bool valid)
{
	bool flat;
	u32 *entry, new_entry;

	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
	if (!entry)
		return -EINVAL;

	new_entry = READ_ONCE(*entry);
	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
	if (valid)
		new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
	else
		new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
	WRITE_ONCE(*entry, new_entry);

	return 0;
}

static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
{
	int ret;
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);

	if (!ldr)
		return 1;

	ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
	if (ret && svm->ldr_reg) {
		avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
		svm->ldr_reg = 0;
	} else {
		svm->ldr_reg = ldr;
	}
	return ret;
}

static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
{
	u64 *old, *new;
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
	u32 id = (apic_id_reg >> 24) & 0xff;

	if (vcpu->vcpu_id == id)
		return 0;

	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
	new = avic_get_physical_id_entry(vcpu, id);
	if (!new || !old)
		return 1;

	/* We need to move physical_id_entry to new offset */
	*new = *old;
	*old = 0ULL;
	to_svm(vcpu)->avic_physical_id_cache = new;

	/*
	 * Also update the guest physical APIC ID in the logical
	 * APIC ID table entry if already setup the LDR.
	 */
	if (svm->ldr_reg)
		avic_handle_ldr_update(vcpu);

	return 0;
}

static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct kvm_arch *vm_data = &vcpu->kvm->arch;
	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
	u32 mod = (dfr >> 28) & 0xf;

	/*
	 * We assume that all local APICs are using the same type.
	 * If this changes, we need to flush the AVIC logical
	 * APID id table.
	 */
	if (vm_data->ldr_mode == mod)
		return 0;

	clear_page(page_address(vm_data->avic_logical_id_table_page));
	vm_data->ldr_mode = mod;

	if (svm->ldr_reg)
		avic_handle_ldr_update(vcpu);
	return 0;
}

static int avic_unaccel_trap_write(struct vcpu_svm *svm)
{
	struct kvm_lapic *apic = svm->vcpu.arch.apic;
	u32 offset = svm->vmcb->control.exit_info_1 &
				AVIC_UNACCEL_ACCESS_OFFSET_MASK;

	switch (offset) {
	case APIC_ID:
		if (avic_handle_apic_id_update(&svm->vcpu))
			return 0;
		break;
	case APIC_LDR:
		if (avic_handle_ldr_update(&svm->vcpu))
			return 0;
		break;
	case APIC_DFR:
		avic_handle_dfr_update(&svm->vcpu);
		break;
	default:
		break;
	}

	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));

	return 1;
}

static bool is_avic_unaccelerated_access_trap(u32 offset)
{
	bool ret = false;

	switch (offset) {
	case APIC_ID:
	case APIC_EOI:
	case APIC_RRR:
	case APIC_LDR:
	case APIC_DFR:
	case APIC_SPIV:
	case APIC_ESR:
	case APIC_ICR:
	case APIC_LVTT:
	case APIC_LVTTHMR:
	case APIC_LVTPC:
	case APIC_LVT0:
	case APIC_LVT1:
	case APIC_LVTERR:
	case APIC_TMICT:
	case APIC_TDCR:
		ret = true;
		break;
	default:
		break;
	}
	return ret;
}

static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
{
	int ret = 0;
	u32 offset = svm->vmcb->control.exit_info_1 &
		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
	u32 vector = svm->vmcb->control.exit_info_2 &
		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
	bool trap = is_avic_unaccelerated_access_trap(offset);

	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
					    trap, write, vector);
	if (trap) {
		/* Handling Trap */
		WARN_ONCE(!write, "svm: Handling trap read.\n");
		ret = avic_unaccel_trap_write(svm);
	} else {
		/* Handling Fault */
		ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
	}

	return ret;
}

3863
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3864 3865 3866 3867
	[SVM_EXIT_READ_CR0]			= cr_interception,
	[SVM_EXIT_READ_CR3]			= cr_interception,
	[SVM_EXIT_READ_CR4]			= cr_interception,
	[SVM_EXIT_READ_CR8]			= cr_interception,
3868
	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3869
	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3870 3871
	[SVM_EXIT_WRITE_CR3]			= cr_interception,
	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3872
	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
	[SVM_EXIT_READ_DR0]			= dr_interception,
	[SVM_EXIT_READ_DR1]			= dr_interception,
	[SVM_EXIT_READ_DR2]			= dr_interception,
	[SVM_EXIT_READ_DR3]			= dr_interception,
	[SVM_EXIT_READ_DR4]			= dr_interception,
	[SVM_EXIT_READ_DR5]			= dr_interception,
	[SVM_EXIT_READ_DR6]			= dr_interception,
	[SVM_EXIT_READ_DR7]			= dr_interception,
	[SVM_EXIT_WRITE_DR0]			= dr_interception,
	[SVM_EXIT_WRITE_DR1]			= dr_interception,
	[SVM_EXIT_WRITE_DR2]			= dr_interception,
	[SVM_EXIT_WRITE_DR3]			= dr_interception,
	[SVM_EXIT_WRITE_DR4]			= dr_interception,
	[SVM_EXIT_WRITE_DR5]			= dr_interception,
	[SVM_EXIT_WRITE_DR6]			= dr_interception,
	[SVM_EXIT_WRITE_DR7]			= dr_interception,
Jan Kiszka's avatar
Jan Kiszka committed
3889 3890
	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3891
	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3892 3893 3894
	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception,
	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3895
	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3896
	[SVM_EXIT_INTR]				= intr_interception,
3897
	[SVM_EXIT_NMI]				= nmi_interception,
3898 3899
	[SVM_EXIT_SMI]				= nop_on_interception,
	[SVM_EXIT_INIT]				= nop_on_interception,
3900
	[SVM_EXIT_VINTR]			= interrupt_window_interception,
Avi Kivity's avatar
Avi Kivity committed
3901
	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3902
	[SVM_EXIT_CPUID]			= cpuid_interception,
3903
	[SVM_EXIT_IRET]                         = iret_interception,
3904
	[SVM_EXIT_INVD]                         = emulate_on_interception,
3905
	[SVM_EXIT_PAUSE]			= pause_interception,
3906
	[SVM_EXIT_HLT]				= halt_interception,
Marcelo Tosatti's avatar
Marcelo Tosatti committed
3907
	[SVM_EXIT_INVLPG]			= invlpg_interception,
Alexander Graf's avatar
Alexander Graf committed
3908
	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3909
	[SVM_EXIT_IOIO]				= io_interception,
3910 3911
	[SVM_EXIT_MSR]				= msr_interception,
	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3912
	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
Alexander Graf's avatar
Alexander Graf committed
3913
	[SVM_EXIT_VMRUN]			= vmrun_interception,
3914
	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3915 3916
	[SVM_EXIT_VMLOAD]			= vmload_interception,
	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3917 3918
	[SVM_EXIT_STGI]				= stgi_interception,
	[SVM_EXIT_CLGI]				= clgi_interception,
3919
	[SVM_EXIT_SKINIT]			= skinit_interception,
David Kaplan's avatar
David Kaplan committed
3920
	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3921 3922
	[SVM_EXIT_MONITOR]			= monitor_interception,
	[SVM_EXIT_MWAIT]			= mwait_interception,
3923
	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3924
	[SVM_EXIT_NPF]				= pf_interception,
3925
	[SVM_EXIT_RSM]                          = emulate_on_interception,
3926 3927
	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3928 3929
};

3930
static void dump_vmcb(struct kvm_vcpu *vcpu)
3931 3932 3933 3934 3935 3936
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct vmcb_save_area *save = &svm->vmcb->save;

	pr_err("VMCB Control Area:\n");
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
	pr_err("%-20s%d\n", "asid:", control->asid);
	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
	pr_err("%-20s%08x\n", "int_state:", control->int_state);
	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3959
	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3960 3961 3962 3963
	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
	pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3964 3965 3966
	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3967
	pr_err("VMCB State Save Area:\n");
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "es:",
	       save->es.selector, save->es.attrib,
	       save->es.limit, save->es.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "cs:",
	       save->cs.selector, save->cs.attrib,
	       save->cs.limit, save->cs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ss:",
	       save->ss.selector, save->ss.attrib,
	       save->ss.limit, save->ss.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ds:",
	       save->ds.selector, save->ds.attrib,
	       save->ds.limit, save->ds.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "fs:",
	       save->fs.selector, save->fs.attrib,
	       save->fs.limit, save->fs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "gs:",
	       save->gs.selector, save->gs.attrib,
	       save->gs.limit, save->gs.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "gdtr:",
	       save->gdtr.selector, save->gdtr.attrib,
	       save->gdtr.limit, save->gdtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "ldtr:",
	       save->ldtr.selector, save->ldtr.attrib,
	       save->ldtr.limit, save->ldtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "idtr:",
	       save->idtr.selector, save->idtr.attrib,
	       save->idtr.limit, save->idtr.base);
	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
	       "tr:",
	       save->tr.selector, save->tr.attrib,
	       save->tr.limit, save->tr.base);
4008 4009
	pr_err("cpl:            %d                efer:         %016llx\n",
		save->cpl, save->efer);
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cr0:", save->cr0, "cr2:", save->cr2);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cr3:", save->cr3, "cr4:", save->cr4);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "dr6:", save->dr6, "dr7:", save->dr7);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "rip:", save->rip, "rflags:", save->rflags);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "rsp:", save->rsp, "rax:", save->rax);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "star:", save->star, "lstar:", save->lstar);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "cstar:", save->cstar, "sfmask:", save->sfmask);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "kernel_gs_base:", save->kernel_gs_base,
	       "sysenter_cs:", save->sysenter_cs);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "sysenter_esp:", save->sysenter_esp,
	       "sysenter_eip:", save->sysenter_eip);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "br_from:", save->br_from, "br_to:", save->br_to);
	pr_err("%-15s %016llx %-13s %016llx\n",
	       "excp_from:", save->last_excp_from,
	       "excp_to:", save->last_excp_to);
4037 4038
}

4039 4040 4041 4042 4043 4044 4045 4046
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;

	*info1 = control->exit_info_1;
	*info2 = control->exit_info_2;
}

4047
static int handle_exit(struct kvm_vcpu *vcpu)
4048
{
4049
	struct vcpu_svm *svm = to_svm(vcpu);
4050
	struct kvm_run *kvm_run = vcpu->run;
4051
	u32 exit_code = svm->vmcb->control.exit_code;
4052

4053 4054
	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);

4055
	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4056 4057 4058
		vcpu->arch.cr0 = svm->vmcb->save.cr0;
	if (npt_enabled)
		vcpu->arch.cr3 = svm->vmcb->save.cr3;
4059

4060 4061 4062 4063 4064 4065 4066
	if (unlikely(svm->nested.exit_required)) {
		nested_svm_vmexit(svm);
		svm->nested.exit_required = false;

		return 1;
	}

4067
	if (is_guest_mode(vcpu)) {
4068 4069
		int vmexit;

4070 4071 4072 4073
		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
					svm->vmcb->control.exit_info_1,
					svm->vmcb->control.exit_info_2,
					svm->vmcb->control.exit_int_info,
4074 4075
					svm->vmcb->control.exit_int_info_err,
					KVM_ISA_SVM);
4076

4077 4078 4079 4080 4081 4082
		vmexit = nested_svm_exit_special(svm);

		if (vmexit == NESTED_EXIT_CONTINUE)
			vmexit = nested_svm_exit_handled(svm);

		if (vmexit == NESTED_EXIT_DONE)
4083 4084 4085
			return 1;
	}

4086 4087
	svm_complete_interrupts(svm);

4088 4089 4090 4091
	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
		kvm_run->fail_entry.hardware_entry_failure_reason
			= svm->vmcb->control.exit_code;
4092 4093
		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
		dump_vmcb(vcpu);
4094 4095 4096
		return 0;
	}

4097
	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4098
	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4099 4100
	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4101
		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4102
		       "exit_code 0x%x\n",
4103
		       __func__, svm->vmcb->control.exit_int_info,
4104 4105
		       exit_code);

4106
	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4107
	    || !svm_exit_handlers[exit_code]) {
4108
		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4109 4110
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
4111 4112
	}

4113
	return svm_exit_handlers[exit_code](svm);
4114 4115 4116 4117 4118 4119
}

static void reload_tss(struct kvm_vcpu *vcpu)
{
	int cpu = raw_smp_processor_id();

4120 4121
	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4122 4123 4124
	load_TR_desc();
}

Rusty Russell's avatar
Rusty Russell committed
4125
static void pre_svm_run(struct vcpu_svm *svm)
4126 4127 4128
{
	int cpu = raw_smp_processor_id();

4129
	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4130

4131
	/* FIXME: handle wraparound of asid_generation */
4132 4133
	if (svm->asid_generation != sd->asid_generation)
		new_asid(svm, sd);
4134 4135
}

4136 4137 4138 4139 4140 4141
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
	vcpu->arch.hflags |= HF_NMI_MASK;
4142
	set_intercept(svm, INTERCEPT_IRET);
4143 4144
	++vcpu->stat.nmi_injections;
}
4145

4146
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4147 4148 4149
{
	struct vmcb_control_area *control;

4150
	/* The following fields are ignored when AVIC is enabled */
Rusty Russell's avatar
Rusty Russell committed
4151
	control = &svm->vmcb->control;
4152
	control->int_vector = irq;
4153 4154 4155
	control->int_ctl &= ~V_INTR_PRIO_MASK;
	control->int_ctl |= V_IRQ_MASK |
		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4156
	mark_dirty(svm->vmcb, VMCB_INTR);
4157 4158
}

4159
static void svm_set_irq(struct kvm_vcpu *vcpu)
Eddie Dong's avatar
Eddie Dong committed
4160 4161 4162
{
	struct vcpu_svm *svm = to_svm(vcpu);

4163
	BUG_ON(!(gif_set(svm)));
4164

4165 4166 4167
	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
	++vcpu->stat.irq_injections;

4168 4169
	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
Eddie Dong's avatar
Eddie Dong committed
4170 4171
}

4172 4173 4174 4175 4176
static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
{
	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
}

4177
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4178 4179 4180
{
	struct vcpu_svm *svm = to_svm(vcpu);

4181 4182
	if (svm_nested_virtualize_tpr(vcpu) ||
	    kvm_vcpu_apicv_active(vcpu))
4183 4184
		return;

4185 4186
	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);

4187
	if (irr == -1)
4188 4189
		return;

4190
	if (tpr >= irr)
4191
		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4192
}
4193

4194 4195 4196 4197 4198
static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
{
	return;
}

4199 4200
static bool svm_get_enable_apicv(void)
{
4201 4202 4203 4204 4205
	return avic;
}

static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
{
4206 4207
}

4208
static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4209
{
4210 4211
}

4212
/* Note: Currently only used by Hyper-V. */
4213
static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4214
{
4215 4216 4217 4218 4219 4220 4221 4222
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb;

	if (!avic)
		return;

	vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
	mark_dirty(vmcb, VMCB_INTR);
4223 4224
}

4225
static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4226 4227 4228 4229
{
	return;
}

4230 4231 4232 4233 4234
static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
	return;
}

4235 4236 4237 4238 4239 4240 4241
static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
{
	kvm_lapic_set_irr(vec, vcpu->arch.apic);
	smp_mb__after_atomic();

	if (avic_vcpu_is_running(vcpu))
		wrmsrl(SVM_AVIC_DOORBELL,
4242
		       kvm_cpu_get_apicid(vcpu->cpu));
4243 4244 4245 4246
	else
		kvm_vcpu_wake_up(vcpu);
}

4247 4248 4249 4250
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb;
4251 4252 4253 4254 4255 4256
	int ret;
	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
	ret = ret && gif_set(svm) && nested_svm_nmi(svm);

	return ret;
4257 4258
}

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
}

static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (masked) {
		svm->vcpu.arch.hflags |= HF_NMI_MASK;
4272
		set_intercept(svm, INTERCEPT_IRET);
4273 4274
	} else {
		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4275
		clr_intercept(svm, INTERCEPT_IRET);
4276 4277 4278
	}
}

4279 4280 4281 4282
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb;
4283 4284 4285 4286 4287 4288
	int ret;

	if (!gif_set(svm) ||
	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
		return 0;

4289
	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4290

4291
	if (is_guest_mode(vcpu))
4292 4293 4294
		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);

	return ret;
4295 4296
}

4297
static void enable_irq_window(struct kvm_vcpu *vcpu)
4298
{
4299 4300
	struct vcpu_svm *svm = to_svm(vcpu);

4301 4302 4303
	if (kvm_vcpu_apicv_active(vcpu))
		return;

4304 4305 4306 4307 4308 4309
	/*
	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
	 * get that intercept, this function will be called again though and
	 * we'll get the vintr intercept.
	 */
4310
	if (gif_set(svm) && nested_svm_intr(svm)) {
4311 4312 4313
		svm_set_vintr(svm);
		svm_inject_irq(svm, 0x0);
	}
4314 4315
}

4316
static void enable_nmi_window(struct kvm_vcpu *vcpu)
4317
{
4318
	struct vcpu_svm *svm = to_svm(vcpu);
4319

4320 4321
	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
	    == HF_NMI_MASK)
4322
		return; /* IRET will cause a vm exit */
4323

4324 4325 4326 4327
	/*
	 * Something prevents NMI from been injected. Single step over possible
	 * problem (IRET or exception injection or interrupt shadow)
	 */
4328
	svm->nmi_singlestep = true;
4329
	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4330 4331
}

4332 4333 4334 4335 4336
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
	return 0;
}

4337 4338
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
4339 4340 4341 4342 4343 4344
	struct vcpu_svm *svm = to_svm(vcpu);

	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
	else
		svm->asid_generation--;
4345 4346
}

4347 4348 4349 4350
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
{
}

4351 4352 4353 4354
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

4355
	if (svm_nested_virtualize_tpr(vcpu))
4356 4357
		return;

4358
	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4359
		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4360
		kvm_set_cr8(vcpu, cr8);
4361 4362 4363
	}
}

4364 4365 4366 4367 4368
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u64 cr8;

4369 4370
	if (svm_nested_virtualize_tpr(vcpu) ||
	    kvm_vcpu_apicv_active(vcpu))
4371 4372
		return;

4373 4374 4375 4376 4377
	cr8 = kvm_get_cr8(vcpu);
	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}

4378 4379 4380 4381 4382
static void svm_complete_interrupts(struct vcpu_svm *svm)
{
	u8 vector;
	int type;
	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4383 4384 4385
	unsigned int3_injected = svm->int3_injected;

	svm->int3_injected = 0;
4386

4387 4388 4389 4390 4391 4392
	/*
	 * If we've made progress since setting HF_IRET_MASK, we've
	 * executed an IRET and can allow NMI injection.
	 */
	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4393
		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4394 4395
		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
	}
4396

4397 4398 4399 4400 4401 4402 4403
	svm->vcpu.arch.nmi_injected = false;
	kvm_clear_exception_queue(&svm->vcpu);
	kvm_clear_interrupt_queue(&svm->vcpu);

	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
		return;

4404 4405
	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);

4406 4407 4408 4409 4410 4411 4412 4413
	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;

	switch (type) {
	case SVM_EXITINTINFO_TYPE_NMI:
		svm->vcpu.arch.nmi_injected = true;
		break;
	case SVM_EXITINTINFO_TYPE_EXEPT:
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
		/*
		 * In case of software exceptions, do not reinject the vector,
		 * but re-execute the instruction instead. Rewind RIP first
		 * if we emulated INT3 before.
		 */
		if (kvm_exception_is_soft(vector)) {
			if (vector == BP_VECTOR && int3_injected &&
			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
				kvm_rip_write(&svm->vcpu,
					      kvm_rip_read(&svm->vcpu) -
					      int3_injected);
4425
			break;
4426
		}
4427 4428
		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
			u32 err = svm->vmcb->control.exit_int_info_err;
4429
			kvm_requeue_exception_e(&svm->vcpu, vector, err);
4430 4431

		} else
4432
			kvm_requeue_exception(&svm->vcpu, vector);
4433 4434
		break;
	case SVM_EXITINTINFO_TYPE_INTR:
4435
		kvm_queue_interrupt(&svm->vcpu, vector, false);
4436 4437 4438 4439 4440 4441
		break;
	default:
		break;
	}
}

4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;

	control->exit_int_info = control->event_inj;
	control->exit_int_info_err = control->event_inj_err;
	control->event_inj = 0;
	svm_complete_interrupts(svm);
}

4453
static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4454
{
4455
	struct vcpu_svm *svm = to_svm(vcpu);
4456

4457 4458 4459 4460
	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];

4461 4462 4463 4464 4465 4466 4467
	/*
	 * A vmexit emulation is required before the vcpu can be executed
	 * again.
	 */
	if (unlikely(svm->nested.exit_required))
		return;

Rusty Russell's avatar
Rusty Russell committed
4468
	pre_svm_run(svm);
4469

4470 4471
	sync_lapic_to_cr8(vcpu);

4472
	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4473

4474
	clgi();
4475 4476
	if (static_cpu_has(X86_FEATURE_RDTSCP))
		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4477 4478

	local_irq_enable();
4479

4480
	asm volatile (
Avi Kivity's avatar
Avi Kivity committed
4481 4482 4483 4484 4485 4486 4487
		"push %%" _ASM_BP "; \n\t"
		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4488
#ifdef CONFIG_X86_64
4489 4490 4491 4492 4493 4494 4495 4496
		"mov %c[r8](%[svm]),  %%r8  \n\t"
		"mov %c[r9](%[svm]),  %%r9  \n\t"
		"mov %c[r10](%[svm]), %%r10 \n\t"
		"mov %c[r11](%[svm]), %%r11 \n\t"
		"mov %c[r12](%[svm]), %%r12 \n\t"
		"mov %c[r13](%[svm]), %%r13 \n\t"
		"mov %c[r14](%[svm]), %%r14 \n\t"
		"mov %c[r15](%[svm]), %%r15 \n\t"
4497 4498 4499
#endif

		/* Enter guest mode */
Avi Kivity's avatar
Avi Kivity committed
4500 4501
		"push %%" _ASM_AX " \n\t"
		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4502 4503 4504
		__ex(SVM_VMLOAD) "\n\t"
		__ex(SVM_VMRUN) "\n\t"
		__ex(SVM_VMSAVE) "\n\t"
Avi Kivity's avatar
Avi Kivity committed
4505
		"pop %%" _ASM_AX " \n\t"
4506 4507

		/* Save guest registers, load host registers */
Avi Kivity's avatar
Avi Kivity committed
4508 4509 4510 4511 4512 4513
		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4514
#ifdef CONFIG_X86_64
4515 4516 4517 4518 4519 4520 4521 4522
		"mov %%r8,  %c[r8](%[svm]) \n\t"
		"mov %%r9,  %c[r9](%[svm]) \n\t"
		"mov %%r10, %c[r10](%[svm]) \n\t"
		"mov %%r11, %c[r11](%[svm]) \n\t"
		"mov %%r12, %c[r12](%[svm]) \n\t"
		"mov %%r13, %c[r13](%[svm]) \n\t"
		"mov %%r14, %c[r14](%[svm]) \n\t"
		"mov %%r15, %c[r15](%[svm]) \n\t"
4523
#endif
Avi Kivity's avatar
Avi Kivity committed
4524
		"pop %%" _ASM_BP
4525
		:
4526
		: [svm]"a"(svm),
4527
		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4528 4529 4530 4531 4532 4533
		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4534
#ifdef CONFIG_X86_64
4535 4536 4537 4538 4539 4540 4541 4542
		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4543
#endif
4544 4545
		: "cc", "memory"
#ifdef CONFIG_X86_64
Avi Kivity's avatar
Avi Kivity committed
4546
		, "rbx", "rcx", "rdx", "rsi", "rdi"
4547
		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
Avi Kivity's avatar
Avi Kivity committed
4548 4549
#else
		, "ebx", "ecx", "edx", "esi", "edi"
4550 4551
#endif
		);
4552

4553 4554
	if (static_cpu_has(X86_FEATURE_RDTSCP))
		wrmsrl(MSR_TSC_AUX, __getcpu());
4555 4556 4557
#ifdef CONFIG_X86_64
	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
#else
4558
	loadsegment(fs, svm->host.fs);
4559 4560 4561
#ifndef CONFIG_X86_32_LAZY_GS
	loadsegment(gs, svm->host.gs);
#endif
4562
#endif
4563 4564 4565

	reload_tss(vcpu);

4566 4567
	local_irq_disable();

4568 4569 4570 4571 4572
	vcpu->arch.cr2 = svm->vmcb->save.cr2;
	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
		kvm_before_handle_nmi(&svm->vcpu);

	stgi();

	/* Any pending NMI will happen here */

	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
		kvm_after_handle_nmi(&svm->vcpu);

4583 4584
	sync_cr8_to_lapic(vcpu);

4585
	svm->next_rip = 0;
4586

4587 4588
	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;

4589 4590 4591 4592
	/* if exit due to PF check for async PF */
	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
		svm->apf_reason = kvm_read_and_reset_pf_reason();

Avi Kivity's avatar
Avi Kivity committed
4593 4594 4595 4596
	if (npt_enabled) {
		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
	}
4597 4598 4599 4600 4601 4602 4603 4604

	/*
	 * We need to handle MC intercepts here before the vcpu has a chance to
	 * change the physical cpu
	 */
	if (unlikely(svm->vmcb->control.exit_code ==
		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
		svm_handle_mce(svm);
4605 4606

	mark_all_clean(svm->vmcb);
4607 4608 4609 4610
}

static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
4611 4612 4613
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->save.cr3 = root;
4614
	mark_dirty(svm->vmcb, VMCB_CR);
4615
	svm_flush_tlb(vcpu);
4616 4617
}

4618 4619 4620 4621 4622
static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	svm->vmcb->control.nested_cr3 = root;
4623
	mark_dirty(svm->vmcb, VMCB_NPT);
4624 4625

	/* Also sync guest cr3 here in case we live migrate */
4626
	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4627
	mark_dirty(svm->vmcb, VMCB_CR);
4628

4629
	svm_flush_tlb(vcpu);
4630 4631
}

4632 4633
static int is_disabled(void)
{
4634 4635 4636 4637 4638 4639
	u64 vm_cr;

	rdmsrl(MSR_VM_CR, vm_cr);
	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
		return 1;

4640 4641 4642
	return 0;
}

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
	/*
	 * Patch in the VMMCALL instruction:
	 */
	hypercall[0] = 0x0f;
	hypercall[1] = 0x01;
	hypercall[2] = 0xd9;
}

4654 4655 4656 4657 4658
static void svm_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}

4659 4660 4661 4662 4663
static bool svm_cpu_has_accelerated_tpr(void)
{
	return false;
}

4664 4665 4666 4667 4668
static bool svm_has_high_real_mode_segbase(void)
{
	return true;
}

4669 4670 4671 4672 4673
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
	return 0;
}

4674 4675
static void svm_cpuid_update(struct kvm_vcpu *vcpu)
{
4676
	struct vcpu_svm *svm = to_svm(vcpu);
4677
	struct kvm_cpuid_entry2 *entry;
4678 4679 4680

	/* Update nrips enabled cache */
	svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4681 4682 4683 4684 4685 4686 4687

	if (!kvm_vcpu_apicv_active(vcpu))
		return;

	entry = kvm_find_cpuid_entry(vcpu, 1, 0);
	if (entry)
		entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4688 4689
}

4690 4691
static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
4692
	switch (func) {
4693 4694 4695 4696
	case 0x1:
		if (avic)
			entry->ecx &= ~bit(X86_FEATURE_X2APIC);
		break;
4697 4698 4699 4700
	case 0x80000001:
		if (nested)
			entry->ecx |= (1 << 2); /* Set SVM bit */
		break;
4701 4702 4703 4704 4705
	case 0x8000000A:
		entry->eax = 1; /* SVM revision 1 */
		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
				   ASID emulation to nested SVM */
		entry->ecx = 0; /* Reserved */
4706 4707 4708 4709
		entry->edx = 0; /* Per default do not support any
				   additional features */

		/* Support next_rip if host supports it */
4710
		if (boot_cpu_has(X86_FEATURE_NRIPS))
4711
			entry->edx |= SVM_FEATURE_NRIP;
4712

4713 4714 4715 4716
		/* Support NPT for the guest if enabled */
		if (npt_enabled)
			entry->edx |= SVM_FEATURE_NPT;

4717 4718
		break;
	}
4719 4720
}

4721
static int svm_get_lpage_level(void)
4722
{
4723
	return PT_PDPE_LEVEL;
4724 4725
}

4726 4727
static bool svm_rdtscp_supported(void)
{
4728
	return boot_cpu_has(X86_FEATURE_RDTSCP);
4729 4730
}

4731 4732 4733 4734 4735
static bool svm_invpcid_supported(void)
{
	return false;
}

4736 4737 4738 4739 4740
static bool svm_mpx_supported(void)
{
	return false;
}

4741 4742 4743 4744 4745
static bool svm_xsaves_supported(void)
{
	return false;
}

4746 4747 4748 4749 4750
static bool svm_has_wbinvd_exit(void)
{
	return true;
}

4751 4752 4753 4754
static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

4755
	set_exception_intercept(svm, NM_VECTOR);
4756
	update_cr0_intercept(svm);
4757 4758
}

4759
#define PRE_EX(exit)  { .exit_code = (exit), \
4760
			.stage = X86_ICPT_PRE_EXCEPT, }
4761
#define POST_EX(exit) { .exit_code = (exit), \
4762
			.stage = X86_ICPT_POST_EXCEPT, }
4763
#define POST_MEM(exit) { .exit_code = (exit), \
4764
			.stage = X86_ICPT_POST_MEMACCESS, }
4765

4766
static const struct __x86_intercept {
4767 4768 4769 4770 4771 4772 4773 4774
	u32 exit_code;
	enum x86_intercept_stage stage;
} x86_intercept_map[] = {
	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4775 4776
	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4777 4778 4779 4780 4781 4782 4783 4784
	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4785 4786 4787 4788 4789 4790 4791 4792
	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4793 4794 4795
	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4796 4797 4798 4799 4800 4801 4802 4803 4804
	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4805 4806 4807 4808 4809 4810 4811
	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4812 4813 4814 4815
	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4816 4817
};

4818
#undef PRE_EX
4819
#undef POST_EX
4820
#undef POST_MEM
4821

4822 4823 4824 4825
static int svm_check_intercept(struct kvm_vcpu *vcpu,
			       struct x86_instruction_info *info,
			       enum x86_intercept_stage stage)
{
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	struct vcpu_svm *svm = to_svm(vcpu);
	int vmexit, ret = X86EMUL_CONTINUE;
	struct __x86_intercept icpt_info;
	struct vmcb *vmcb = svm->vmcb;

	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
		goto out;

	icpt_info = x86_intercept_map[info->intercept];

4836
	if (stage != icpt_info.stage)
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
		goto out;

	switch (icpt_info.exit_code) {
	case SVM_EXIT_READ_CR0:
		if (info->intercept == x86_intercept_cr_read)
			icpt_info.exit_code += info->modrm_reg;
		break;
	case SVM_EXIT_WRITE_CR0: {
		unsigned long cr0, val;
		u64 intercept;

		if (info->intercept == x86_intercept_cr_write)
			icpt_info.exit_code += info->modrm_reg;

4851 4852
		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
		    info->intercept == x86_intercept_clts)
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
			break;

		intercept = svm->nested.intercept;

		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
			break;

		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;

		if (info->intercept == x86_intercept_lmsw) {
			cr0 &= 0xfUL;
			val &= 0xfUL;
			/* lmsw can't clear PE - catch this here */
			if (cr0 & X86_CR0_PE)
				val |= X86_CR0_PE;
		}

		if (cr0 ^ val)
			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;

		break;
	}
4876 4877 4878 4879
	case SVM_EXIT_READ_DR0:
	case SVM_EXIT_WRITE_DR0:
		icpt_info.exit_code += info->modrm_reg;
		break;
4880 4881 4882 4883 4884 4885
	case SVM_EXIT_MSR:
		if (info->intercept == x86_intercept_wrmsr)
			vmcb->control.exit_info_1 = 1;
		else
			vmcb->control.exit_info_1 = 0;
		break;
4886 4887 4888 4889 4890 4891 4892
	case SVM_EXIT_PAUSE:
		/*
		 * We get this for NOP only, but pause
		 * is rep not, check this here
		 */
		if (info->rep_prefix != REPE_PREFIX)
			goto out;
4893 4894 4895 4896 4897 4898
	case SVM_EXIT_IOIO: {
		u64 exit_info;
		u32 bytes;

		if (info->intercept == x86_intercept_in ||
		    info->intercept == x86_intercept_ins) {
4899 4900
			exit_info = ((info->src_val & 0xffff) << 16) |
				SVM_IOIO_TYPE_MASK;
4901
			bytes = info->dst_bytes;
4902
		} else {
4903
			exit_info = (info->dst_val & 0xffff) << 16;
4904
			bytes = info->src_bytes;
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
		}

		if (info->intercept == x86_intercept_outs ||
		    info->intercept == x86_intercept_ins)
			exit_info |= SVM_IOIO_STR_MASK;

		if (info->rep_prefix)
			exit_info |= SVM_IOIO_REP_MASK;

		bytes = min(bytes, 4u);

		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;

		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);

		vmcb->control.exit_info_1 = exit_info;
		vmcb->control.exit_info_2 = info->next_rip;

		break;
	}
4925 4926 4927 4928
	default:
		break;
	}

4929 4930 4931
	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
	if (static_cpu_has(X86_FEATURE_NRIPS))
		vmcb->control.next_rip  = info->next_rip;
4932 4933 4934 4935 4936 4937 4938 4939
	vmcb->control.exit_code = icpt_info.exit_code;
	vmexit = nested_svm_exit_handled(svm);

	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
					   : X86EMUL_CONTINUE;

out:
	return ret;
4940 4941
}

4942 4943 4944 4945 4946
static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
{
	local_irq_enable();
}

4947 4948 4949 4950
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
}

4951 4952 4953 4954 4955 4956 4957 4958 4959
static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
{
	if (avic_handle_apic_id_update(vcpu) != 0)
		return;
	if (avic_handle_dfr_update(vcpu) != 0)
		return;
	avic_handle_ldr_update(vcpu);
}

4960
static struct kvm_x86_ops svm_x86_ops = {
4961 4962 4963 4964
	.cpu_has_kvm_support = has_svm,
	.disabled_by_bios = is_disabled,
	.hardware_setup = svm_hardware_setup,
	.hardware_unsetup = svm_hardware_unsetup,
4965
	.check_processor_compatibility = svm_check_processor_compat,
4966 4967
	.hardware_enable = svm_hardware_enable,
	.hardware_disable = svm_hardware_disable,
4968
	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4969
	.cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4970 4971 4972

	.vcpu_create = svm_create_vcpu,
	.vcpu_free = svm_free_vcpu,
4973
	.vcpu_reset = svm_vcpu_reset,
4974

4975 4976 4977
	.vm_init = avic_vm_init,
	.vm_destroy = avic_vm_destroy,

4978
	.prepare_guest_switch = svm_prepare_guest_switch,
4979 4980
	.vcpu_load = svm_vcpu_load,
	.vcpu_put = svm_vcpu_put,
4981 4982
	.vcpu_blocking = svm_vcpu_blocking,
	.vcpu_unblocking = svm_vcpu_unblocking,
4983

4984
	.update_bp_intercept = update_bp_intercept,
4985 4986 4987 4988 4989
	.get_msr = svm_get_msr,
	.set_msr = svm_set_msr,
	.get_segment_base = svm_get_segment_base,
	.get_segment = svm_get_segment,
	.set_segment = svm_set_segment,
4990
	.get_cpl = svm_get_cpl,
4991
	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4992
	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4993
	.decache_cr3 = svm_decache_cr3,
4994
	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4995 4996 4997 4998 4999 5000 5001 5002
	.set_cr0 = svm_set_cr0,
	.set_cr3 = svm_set_cr3,
	.set_cr4 = svm_set_cr4,
	.set_efer = svm_set_efer,
	.get_idt = svm_get_idt,
	.set_idt = svm_set_idt,
	.get_gdt = svm_get_gdt,
	.set_gdt = svm_set_gdt,
Jan Kiszka's avatar
Jan Kiszka committed
5003 5004
	.get_dr6 = svm_get_dr6,
	.set_dr6 = svm_set_dr6,
5005
	.set_dr7 = svm_set_dr7,
5006
	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
Avi Kivity's avatar
Avi Kivity committed
5007
	.cache_reg = svm_cache_reg,
5008 5009
	.get_rflags = svm_get_rflags,
	.set_rflags = svm_set_rflags,
5010 5011 5012

	.get_pkru = svm_get_pkru,

5013
	.fpu_activate = svm_fpu_activate,
5014
	.fpu_deactivate = svm_fpu_deactivate,
5015 5016 5017 5018

	.tlb_flush = svm_flush_tlb,

	.run = svm_vcpu_run,
5019
	.handle_exit = handle_exit,
5020
	.skip_emulated_instruction = skip_emulated_instruction,
5021 5022
	.set_interrupt_shadow = svm_set_interrupt_shadow,
	.get_interrupt_shadow = svm_get_interrupt_shadow,
5023
	.patch_hypercall = svm_patch_hypercall,
Eddie Dong's avatar
Eddie Dong committed
5024
	.set_irq = svm_set_irq,
5025
	.set_nmi = svm_inject_nmi,
5026
	.queue_exception = svm_queue_exception,
5027
	.cancel_injection = svm_cancel_injection,
5028
	.interrupt_allowed = svm_interrupt_allowed,
5029
	.nmi_allowed = svm_nmi_allowed,
5030 5031
	.get_nmi_mask = svm_get_nmi_mask,
	.set_nmi_mask = svm_set_nmi_mask,
5032 5033 5034
	.enable_nmi_window = enable_nmi_window,
	.enable_irq_window = enable_irq_window,
	.update_cr8_intercept = update_cr8_intercept,
5035
	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5036 5037
	.get_enable_apicv = svm_get_enable_apicv,
	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5038
	.load_eoi_exitmap = svm_load_eoi_exitmap,
5039
	.sync_pir_to_irr = svm_sync_pir_to_irr,
5040 5041
	.hwapic_irr_update = svm_hwapic_irr_update,
	.hwapic_isr_update = svm_hwapic_isr_update,
5042
	.apicv_post_state_restore = avic_post_state_restore,
5043 5044

	.set_tss_addr = svm_set_tss_addr,
5045
	.get_tdp_level = get_npt_level,
5046
	.get_mt_mask = svm_get_mt_mask,
5047

5048 5049
	.get_exit_info = svm_get_exit_info,

5050
	.get_lpage_level = svm_get_lpage_level,
5051 5052

	.cpuid_update = svm_cpuid_update,
5053 5054

	.rdtscp_supported = svm_rdtscp_supported,
5055
	.invpcid_supported = svm_invpcid_supported,
5056
	.mpx_supported = svm_mpx_supported,
5057
	.xsaves_supported = svm_xsaves_supported,
5058 5059

	.set_supported_cpuid = svm_set_supported_cpuid,
5060 5061

	.has_wbinvd_exit = svm_has_wbinvd_exit,
5062

5063
	.read_tsc_offset = svm_read_tsc_offset,
5064
	.write_tsc_offset = svm_write_tsc_offset,
5065
	.adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
Nadav Har'El's avatar
Nadav Har'El committed
5066
	.read_l1_tsc = svm_read_l1_tsc,
5067 5068

	.set_tdp_cr3 = set_tdp_cr3,
5069 5070

	.check_intercept = svm_check_intercept,
5071
	.handle_external_intr = svm_handle_external_intr,
5072 5073

	.sched_in = svm_sched_in,
5074 5075

	.pmu_ops = &amd_pmu_ops,
5076
	.deliver_posted_interrupt = svm_deliver_avic_intr,
5077 5078 5079 5080
};

static int __init svm_init(void)
{
5081
	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5082
			__alignof__(struct vcpu_svm), THIS_MODULE);
5083 5084 5085 5086
}

static void __exit svm_exit(void)
{
5087
	kvm_exit();
5088 5089 5090 5091
}

module_init(svm_init)
module_exit(svm_exit)