stmmac_main.c 196 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

6
	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 8 9 10 11 12 13 14 15 16


  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

17
#include <linux/clk.h>
18 19 20 21 22 23 24 25 26
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
27
#include <linux/if.h>
28 29
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
30
#include <linux/slab.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/prefetch.h>
33
#include <linux/pinctrl/consumer.h>
34
#ifdef CONFIG_DEBUG_FS
35 36
#include <linux/debugfs.h>
#include <linux/seq_file.h>
37
#endif /* CONFIG_DEBUG_FS */
38
#include <linux/net_tstamp.h>
39
#include <linux/phylink.h>
40
#include <linux/udp.h>
41
#include <linux/bpf_trace.h>
42
#include <net/pkt_cls.h>
43
#include <net/xdp_sock_drv.h>
44
#include "stmmac_ptp.h"
45
#include "stmmac.h"
46
#include "stmmac_xdp.h"
47
#include <linux/reset.h>
48
#include <linux/of_mdio.h>
49
#include "dwmac1000.h"
50
#include "dwxgmac2.h"
51
#include "hwif.h"
52

53
#define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
Alexandre TORGUE's avatar
Alexandre TORGUE committed
54
#define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
55 56

/* Module parameters */
57
#define TX_TIMEO	5000
58
static int watchdog = TX_TIMEO;
59
module_param(watchdog, int, 0644);
60
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61

62
static int debug = -1;
63
module_param(debug, int, 0644);
64
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65

66
static int phyaddr = -1;
67
module_param(phyaddr, int, 0444);
68 69
MODULE_PARM_DESC(phyaddr, "Physical device address");

70 71
#define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
#define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
72

73 74 75
/* Limit to make sure XDP TX and slow path can coexist */
#define STMMAC_XSK_TX_BUDGET_MAX	256
#define STMMAC_TX_XSK_AVAIL		16
76 77
#define STMMAC_RX_FILL_BATCH		16

78 79
#define STMMAC_XDP_PASS		0
#define STMMAC_XDP_CONSUMED	BIT(0)
80
#define STMMAC_XDP_TX		BIT(1)
81
#define STMMAC_XDP_REDIRECT	BIT(2)
82

83
static int flow_ctrl = FLOW_AUTO;
84
module_param(flow_ctrl, int, 0644);
85 86 87
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
88
module_param(pause, int, 0644);
89 90 91 92
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
93
module_param(tc, int, 0644);
94 95
MODULE_PARM_DESC(tc, "DMA threshold control value");

96 97
#define	DEFAULT_BUFSIZE	1536
static int buf_sz = DEFAULT_BUFSIZE;
98
module_param(buf_sz, int, 0644);
99 100
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

101 102
#define	STMMAC_RX_COPYBREAK	256

103 104 105 106
static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

107 108
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109
module_param(eee_timer, int, 0644);
110
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111
#define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112

113 114
/* By default the driver will use the ring mode to manage tx and rx descriptors,
 * but allow user to force to use the chain instead of the ring
115 116
 */
static unsigned int chain_mode;
117
module_param(chain_mode, int, 0444);
118 119
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");

120
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 122 123 124 125
/* For MSI interrupts handling */
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 127
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128

129
#ifdef CONFIG_DEBUG_FS
130
static const struct net_device_ops stmmac_netdev_ops;
131
static void stmmac_init_fs(struct net_device *dev);
132
static void stmmac_exit_fs(struct net_device *dev);
133 134
#endif

135
#define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136

137 138 139 140 141 142 143 144 145 146 147 148 149
int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
{
	int ret = 0;

	if (enabled) {
		ret = clk_prepare_enable(priv->plat->stmmac_clk);
		if (ret)
			return ret;
		ret = clk_prepare_enable(priv->plat->pclk);
		if (ret) {
			clk_disable_unprepare(priv->plat->stmmac_clk);
			return ret;
		}
150 151 152 153 154 155 156 157
		if (priv->plat->clks_config) {
			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
			if (ret) {
				clk_disable_unprepare(priv->plat->stmmac_clk);
				clk_disable_unprepare(priv->plat->pclk);
				return ret;
			}
		}
158 159 160
	} else {
		clk_disable_unprepare(priv->plat->stmmac_clk);
		clk_disable_unprepare(priv->plat->pclk);
161 162
		if (priv->plat->clks_config)
			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163 164 165 166 167 168
	}

	return ret;
}
EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);

169 170
/**
 * stmmac_verify_args - verify the driver parameters.
171 172
 * Description: it checks the driver parameters and set a default in case of
 * errors.
173 174 175 176 177
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
178 179
	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DEFAULT_BUFSIZE;
180 181 182 183 184 185
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
186 187
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 189
}

190
static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 192
{
	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193 194
	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195 196
	u32 queue;

197 198
	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];
199

200 201 202 203 204 205
		if (stmmac_xdp_is_enabled(priv) &&
		    test_bit(queue, priv->af_xdp_zc_qps)) {
			napi_disable(&ch->rxtx_napi);
			continue;
		}

206 207 208 209
		if (queue < rx_queues_cnt)
			napi_disable(&ch->rx_napi);
		if (queue < tx_queues_cnt)
			napi_disable(&ch->tx_napi);
210 211 212
	}
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/**
 * stmmac_disable_all_queues - Disable all queues
 * @priv: driver private structure
 */
static void stmmac_disable_all_queues(struct stmmac_priv *priv)
{
	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
	struct stmmac_rx_queue *rx_q;
	u32 queue;

	/* synchronize_rcu() needed for pending XDP buffers to drain */
	for (queue = 0; queue < rx_queues_cnt; queue++) {
		rx_q = &priv->rx_queue[queue];
		if (rx_q->xsk_pool) {
			synchronize_rcu();
			break;
		}
	}

	__stmmac_disable_all_queues(priv);
}

235 236 237 238 239 240 241
/**
 * stmmac_enable_all_queues - Enable all queues
 * @priv: driver private structure
 */
static void stmmac_enable_all_queues(struct stmmac_priv *priv)
{
	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242 243
	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244 245
	u32 queue;

246 247
	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];
248

249 250 251 252 253 254
		if (stmmac_xdp_is_enabled(priv) &&
		    test_bit(queue, priv->af_xdp_zc_qps)) {
			napi_enable(&ch->rxtx_napi);
			continue;
		}

255 256 257 258
		if (queue < rx_queues_cnt)
			napi_enable(&ch->rx_napi);
		if (queue < tx_queues_cnt)
			napi_enable(&ch->tx_napi);
259 260 261
	}
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275
static void stmmac_service_event_schedule(struct stmmac_priv *priv)
{
	if (!test_bit(STMMAC_DOWN, &priv->state) &&
	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
		queue_work(priv->wq, &priv->service_task);
}

static void stmmac_global_err(struct stmmac_priv *priv)
{
	netif_carrier_off(priv->dev);
	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
	stmmac_service_event_schedule(priv);
}

276 277 278 279 280 281 282 283 284 285 286 287
/**
 * stmmac_clk_csr_set - dynamically set the MDC clock
 * @priv: driver private structure
 * Description: this is to dynamically set the MDC clock according to the csr
 * clock input.
 * Note:
 *	If a specific clk_csr value is passed from the platform
 *	this means that the CSR Clock Range selection cannot be
 *	changed at run-time and it is fixed (as reported in the driver
 *	documentation). Viceversa the driver will try to set the MDC
 *	clock dynamically according to the actual clock input.
 */
288 289 290 291
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

292
	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293 294

	/* Platform provided default clk_csr would be assumed valid
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
295 296 297 298 299 300
	 * for all other cases except for the below mentioned ones.
	 * For values higher than the IEEE 802.3 specified frequency
	 * we can not estimate the proper divider as it is not known
	 * the frequency of clk_csr_i. So we do not change the default
	 * divider.
	 */
301 302 303 304 305 306 307 308 309 310 311
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
312
		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
313
			priv->clk_csr = STMMAC_CSR_250_300M;
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
314
	}
315 316 317 318 319 320 321 322 323 324 325

	if (priv->plat->has_sun8i) {
		if (clk_rate > 160000000)
			priv->clk_csr = 0x03;
		else if (clk_rate > 80000000)
			priv->clk_csr = 0x02;
		else if (clk_rate > 40000000)
			priv->clk_csr = 0x01;
		else
			priv->clk_csr = 0;
	}
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

	if (priv->plat->has_xgmac) {
		if (clk_rate > 400000000)
			priv->clk_csr = 0x5;
		else if (clk_rate > 350000000)
			priv->clk_csr = 0x4;
		else if (clk_rate > 300000000)
			priv->clk_csr = 0x3;
		else if (clk_rate > 250000000)
			priv->clk_csr = 0x2;
		else if (clk_rate > 150000000)
			priv->clk_csr = 0x1;
		else
			priv->clk_csr = 0x0;
	}
341 342
}

343 344
static void print_pkt(unsigned char *buf, int len)
{
345 346
	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 348
}

349
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350
{
351
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352
	u32 avail;
353

354 355
	if (tx_q->dirty_tx > tx_q->cur_tx)
		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356
	else
357
		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358 359 360 361

	return avail;
}

362 363 364 365 366 367
/**
 * stmmac_rx_dirty - Get RX queue dirty
 * @priv: driver private structure
 * @queue: RX queue index
 */
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368
{
369
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370
	u32 dirty;
371

372 373
	if (rx_q->dirty_rx <= rx_q->cur_rx)
		dirty = rx_q->cur_rx - rx_q->dirty_rx;
374
	else
375
		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376 377

	return dirty;
378 379
}

380 381 382 383 384 385 386 387 388 389
static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
{
	int tx_lpi_timer;

	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
	priv->eee_sw_timer_en = en ? 0 : 1;
	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
}

390
/**
391
 * stmmac_enable_eee_mode - check and enter in LPI mode
392
 * @priv: driver private structure
393 394
 * Description: this function is to verify and enter in LPI mode in case of
 * EEE.
395
 */
396 397
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
398 399 400 401 402 403 404 405 406 407 408
	u32 tx_cnt = priv->plat->tx_queues_to_use;
	u32 queue;

	/* check if all TX queues have the work finished */
	for (queue = 0; queue < tx_cnt; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

		if (tx_q->dirty_tx != tx_q->cur_tx)
			return; /* still unfinished work */
	}

409
	/* Check and enter in LPI mode */
410
	if (!priv->tx_path_in_lpi_mode)
411 412
		stmmac_set_eee_mode(priv, priv->hw,
				priv->plat->en_tx_lpi_clockgating);
413 414
}

415
/**
416
 * stmmac_disable_eee_mode - disable and exit from LPI mode
417 418 419 420
 * @priv: driver private structure
 * Description: this function is to exit and disable EEE in case of
 * LPI state is true. This is called by the xmit.
 */
421 422
void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
423 424 425 426 427
	if (!priv->eee_sw_timer_en) {
		stmmac_lpi_entry_timer_config(priv, 0);
		return;
	}

428
	stmmac_reset_eee_mode(priv, priv->hw);
429 430 431 432 433
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
434
 * stmmac_eee_ctrl_timer - EEE TX SW timer.
435
 * @t:  timer_list struct containing private info
436
 * Description:
437
 *  if there is no data transfer and if we are not in LPI state,
438 439
 *  then MAC Transmitter can be moved to LPI state.
 */
440
static void stmmac_eee_ctrl_timer(struct timer_list *t)
441
{
442
	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443 444

	stmmac_enable_eee_mode(priv);
445
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 447 448
}

/**
449
 * stmmac_eee_init - init EEE
450
 * @priv: driver private structure
451
 * Description:
452 453 454
 *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
 *  can also manage EEE, this function enable the LPI state and start related
 *  timer.
455 456 457
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
458
	int eee_tw_timer = priv->eee_tw_timer;
459

Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
460 461 462
	/* Using PCS we cannot dial with the phy registers at this stage
	 * so we do not support extra feature like EEE.
	 */
463 464
	if (priv->hw->pcs == STMMAC_PCS_TBI ||
	    priv->hw->pcs == STMMAC_PCS_RTBI)
465
		return false;
466

467 468 469 470 471
	/* Check if MAC core supports the EEE feature. */
	if (!priv->dma_cap.eee)
		return false;

	mutex_lock(&priv->lock);
472

473
	/* Check if it needs to be deactivated */
474 475 476
	if (!priv->eee_active) {
		if (priv->eee_enabled) {
			netdev_dbg(priv->dev, "disable EEE\n");
477
			stmmac_lpi_entry_timer_config(priv, 0);
478
			del_timer_sync(&priv->eee_ctrl_timer);
479
			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480 481 482 483
			if (priv->hw->xpcs)
				xpcs_config_eee(priv->hw->xpcs,
						priv->plat->mult_fact_100ns,
						false);
484
		}
485
		mutex_unlock(&priv->lock);
486
		return false;
487
	}
488 489 490 491

	if (priv->eee_active && !priv->eee_enabled) {
		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
492
				     eee_tw_timer);
493 494 495 496
		if (priv->hw->xpcs)
			xpcs_config_eee(priv->hw->xpcs,
					priv->plat->mult_fact_100ns,
					true);
497 498
	}

499 500 501 502 503 504 505 506 507
	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
		del_timer_sync(&priv->eee_ctrl_timer);
		priv->tx_path_in_lpi_mode = false;
		stmmac_lpi_entry_timer_config(priv, 1);
	} else {
		stmmac_lpi_entry_timer_config(priv, 0);
		mod_timer(&priv->eee_ctrl_timer,
			  STMMAC_LPI_T(priv->tx_lpi_timer));
	}
508

509 510 511
	mutex_unlock(&priv->lock);
	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
	return true;
512 513
}

514
/* stmmac_get_tx_hwtstamp - get HW TX timestamps
515
 * @priv: driver private structure
516
 * @p : descriptor pointer
517 518 519 520 521 522
 * @skb : the socket buffer
 * Description :
 * This function will read timestamp from the descriptor & pass it to stack.
 * and also perform some sanity checks.
 */
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
523
				   struct dma_desc *p, struct sk_buff *skb)
524 525
{
	struct skb_shared_hwtstamps shhwtstamp;
526
	bool found = false;
527
	s64 adjust = 0;
528
	u64 ns = 0;
529 530 531 532

	if (!priv->hwts_tx_en)
		return;

Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
533
	/* exit if skb doesn't support hw tstamp */
534
	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
535 536 537
		return;

	/* check tx tstamp status */
538 539
	if (stmmac_get_tx_timestamp_status(priv, p)) {
		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
540 541 542 543
		found = true;
	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
		found = true;
	}
544

545
	if (found) {
546 547 548 549 550 551 552
		/* Correct the clk domain crossing(CDC) error */
		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
			adjust += -(2 * (NSEC_PER_SEC /
					 priv->plat->clk_ptp_rate));
			ns += adjust;
		}

553 554
		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
		shhwtstamp.hwtstamp = ns_to_ktime(ns);
555

556
		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
557 558 559
		/* pass tstamp to stack */
		skb_tstamp_tx(skb, &shhwtstamp);
	}
560 561
}

562
/* stmmac_get_rx_hwtstamp - get HW RX timestamps
563
 * @priv: driver private structure
564 565
 * @p : descriptor pointer
 * @np : next descriptor pointer
566 567 568 569 570
 * @skb : the socket buffer
 * Description :
 * This function will read received packet's timestamp from the descriptor
 * and pass it to stack. It also perform some sanity checks.
 */
571 572
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
				   struct dma_desc *np, struct sk_buff *skb)
573 574
{
	struct skb_shared_hwtstamps *shhwtstamp = NULL;
575
	struct dma_desc *desc = p;
576
	u64 adjust = 0;
577
	u64 ns = 0;
578 579 580

	if (!priv->hwts_rx_en)
		return;
581
	/* For GMAC4, the valid timestamp is from CTX next desc. */
582
	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
583
		desc = np;
584

585
	/* Check if timestamp is available */
586 587
	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
588 589 590 591 592 593 594

		/* Correct the clk domain crossing(CDC) error */
		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
			adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
			ns -= adjust;
		}

595
		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
596 597 598 599
		shhwtstamp = skb_hwtstamps(skb);
		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
		shhwtstamp->hwtstamp = ns_to_ktime(ns);
	} else  {
600
		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
601
	}
602 603 604
}

/**
605
 *  stmmac_hwtstamp_set - control hardware timestamping.
606
 *  @dev: device pointer.
607
 *  @ifr: An IOCTL specific structure, that can contain a pointer to
608 609 610 611 612 613 614
 *  a proprietary structure used to pass information to the driver.
 *  Description:
 *  This function configures the MAC to enable/disable both outgoing(TX)
 *  and incoming(RX) packets time stamping based on user input.
 *  Return Value:
 *  0 on success and an appropriate -ve integer on failure.
 */
615
static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
616 617 618
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct hwtstamp_config config;
619
	struct timespec64 now;
620 621 622 623 624 625 626 627 628
	u64 temp = 0;
	u32 ptp_v2 = 0;
	u32 tstamp_all = 0;
	u32 ptp_over_ipv4_udp = 0;
	u32 ptp_over_ipv6_udp = 0;
	u32 ptp_over_ethernet = 0;
	u32 snap_type_sel = 0;
	u32 ts_master_en = 0;
	u32 ts_event_en = 0;
629
	u32 sec_inc = 0;
630
	u32 value = 0;
631 632 633
	bool xmac;

	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
634 635 636 637 638 639 640 641 642 643

	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
		netdev_alert(priv->dev, "No support for HW time stamping\n");
		priv->hwts_tx_en = 0;
		priv->hwts_rx_en = 0;

		return -EOPNOTSUPP;
	}

	if (copy_from_user(&config, ifr->ifr_data,
644
			   sizeof(config)))
645 646
		return -EFAULT;

647 648
	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
		   __func__, config.flags, config.tx_type, config.rx_filter);
649 650 651 652 653

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

654 655
	if (config.tx_type != HWTSTAMP_TX_OFF &&
	    config.tx_type != HWTSTAMP_TX_ON)
656 657 658 659 660
		return -ERANGE;

	if (priv->adv_ts) {
		switch (config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
661
			/* time stamp no incoming packet at all */
662 663 664 665
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;

		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
666
			/* PTP v1, UDP, any kind of event packet */
667
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
668 669 670 671 672 673 674
			/* 'xmac' hardware can support Sync, Pdelay_Req and
			 * Pdelay_resp by setting bit14 and bits17/16 to 01
			 * This leaves Delay_Req timestamps out.
			 * Enable all events *and* general purpose message
			 * timestamping
			 */
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
675 676 677 678 679
			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
680
			/* PTP v1, UDP, Sync packet */
681 682 683 684 685 686 687 688 689
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
690
			/* PTP v1, UDP, Delay_req packet */
691 692 693 694 695 696 697 698 699 700
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
701
			/* PTP v2, UDP, any kind of event packet */
702 703 704
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for all event messages */
705
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
706 707 708 709 710 711

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
712
			/* PTP v2, UDP, Sync packet */
713 714 715 716 717 718 719 720 721 722
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
723
			/* PTP v2, UDP, Delay_req packet */
724 725 726 727 728 729 730 731 732 733 734
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_EVENT:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
735
			/* PTP v2/802.AS1 any layer, any kind of event packet */
736 737
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
			ptp_v2 = PTP_TCR_TSVER2ENA;
738
			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
739
			if (priv->synopsys_id < DWMAC_CORE_4_10)
740
				ts_event_en = PTP_TCR_TSEVNTENA;
741 742 743 744 745 746
			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_SYNC:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
747
			/* PTP v2/802.AS1, any layer, Sync packet */
748 749 750 751 752 753 754 755 756 757 758
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for SYNC messages only */
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
759
			/* PTP v2/802.AS1, any layer, Delay_req packet */
760 761 762 763 764 765 766 767 768 769 770
			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
			ptp_v2 = PTP_TCR_TSVER2ENA;
			/* take time stamp for Delay_Req messages only */
			ts_master_en = PTP_TCR_TSMSTRENA;
			ts_event_en = PTP_TCR_TSEVNTENA;

			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
			ptp_over_ethernet = PTP_TCR_TSIPENA;
			break;

771
		case HWTSTAMP_FILTER_NTP_ALL:
772
		case HWTSTAMP_FILTER_ALL:
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
773
			/* time stamp any incoming packet */
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
			config.rx_filter = HWTSTAMP_FILTER_ALL;
			tstamp_all = PTP_TCR_TSENALL;
			break;

		default:
			return -ERANGE;
		}
	} else {
		switch (config.rx_filter) {
		case HWTSTAMP_FILTER_NONE:
			config.rx_filter = HWTSTAMP_FILTER_NONE;
			break;
		default:
			/* PTP v1, UDP, any kind of event packet */
			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
			break;
		}
	}
	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
793
	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
794 795

	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
796
		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
797 798
	else {
		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
799 800 801
			 tstamp_all | ptp_v2 | ptp_over_ethernet |
			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
			 ts_master_en | snap_type_sel);
802
		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
803 804

		/* program Sub Second Increment reg */
805 806
		stmmac_config_sub_second_increment(priv,
				priv->ptpaddr, priv->plat->clk_ptp_rate,
807
				xmac, &sec_inc);
808
		temp = div_u64(1000000000ULL, sec_inc);
809

810 811 812 813
		/* Store sub second increment and flags for later use */
		priv->sub_second_inc = sec_inc;
		priv->systime_flags = value;

814 815 816
		/* calculate default added value:
		 * formula is :
		 * addend = (2^32)/freq_div_ratio;
817
		 * where, freq_div_ratio = 1e9ns/sec_inc
818
		 */
819
		temp = (u64)(temp << 32);
820
		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
821
		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
822 823

		/* initialize system time */
824 825 826
		ktime_get_real_ts64(&now);

		/* lower 32 bits of tv_sec are safe until y2106 */
827 828
		stmmac_init_systime(priv, priv->ptpaddr,
				(u32)now.tv_sec, now.tv_nsec);
829 830
	}

831 832
	memcpy(&priv->tstamp_config, &config, sizeof(config));

833
	return copy_to_user(ifr->ifr_data, &config,
834 835 836 837 838 839 840 841 842 843
			    sizeof(config)) ? -EFAULT : 0;
}

/**
 *  stmmac_hwtstamp_get - read hardware timestamping.
 *  @dev: device pointer.
 *  @ifr: An IOCTL specific structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  Description:
 *  This function obtain the current hardware timestamping settings
844
 *  as requested.
845 846 847 848 849 850 851 852 853 854 855
 */
static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct hwtstamp_config *config = &priv->tstamp_config;

	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
		return -EOPNOTSUPP;

	return copy_to_user(ifr->ifr_data, config,
			    sizeof(*config)) ? -EFAULT : 0;
856 857
}

858
/**
859
 * stmmac_init_ptp - init PTP
860
 * @priv: driver private structure
861
 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
862
 * This is done by looking at the HW cap. register.
863
 * This function also registers the ptp driver.
864
 */
865
static int stmmac_init_ptp(struct stmmac_priv *priv)
866
{
867 868
	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;

869 870 871
	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
		return -EOPNOTSUPP;

872
	priv->adv_ts = 0;
873 874
	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
	if (xmac && priv->dma_cap.atime_stamp)
875 876 877
		priv->adv_ts = 1;
	/* Dwmac 3.x core with extend_desc can support adv_ts */
	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
878 879
		priv->adv_ts = 1;

880 881
	if (priv->dma_cap.time_stamp)
		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
882

883 884 885
	if (priv->adv_ts)
		netdev_info(priv->dev,
			    "IEEE 1588-2008 Advanced Timestamp supported\n");
886 887 888

	priv->hwts_tx_en = 0;
	priv->hwts_rx_en = 0;
889

890 891 892
	stmmac_ptp_register(priv);

	return 0;
893 894 895 896
}

static void stmmac_release_ptp(struct stmmac_priv *priv)
{
897
	clk_disable_unprepare(priv->plat->clk_ptp_ref);
898
	stmmac_ptp_unregister(priv);
899 900
}

901 902 903
/**
 *  stmmac_mac_flow_ctrl - Configure flow control in all queues
 *  @priv: driver private structure
904
 *  @duplex: duplex passed to the next function
905 906 907 908 909 910
 *  Description: It is used for configuring the flow control in all queues
 */
static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
{
	u32 tx_cnt = priv->plat->tx_queues_to_use;

911 912
	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
			priv->pause, tx_cnt);
913 914
}

915 916 917 918 919
static void stmmac_validate(struct phylink_config *config,
			    unsigned long *supported,
			    struct phylink_link_state *state)
{
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
920
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
921 922 923 924
	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
	int tx_cnt = priv->plat->tx_queues_to_use;
	int max_speed = priv->plat->max_speed;

925 926 927 928
	phylink_set(mac_supported, 10baseT_Half);
	phylink_set(mac_supported, 10baseT_Full);
	phylink_set(mac_supported, 100baseT_Half);
	phylink_set(mac_supported, 100baseT_Full);
929 930 931
	phylink_set(mac_supported, 1000baseT_Half);
	phylink_set(mac_supported, 1000baseT_Full);
	phylink_set(mac_supported, 1000baseKX_Full);
932 933 934 935 936 937

	phylink_set(mac_supported, Autoneg);
	phylink_set(mac_supported, Pause);
	phylink_set(mac_supported, Asym_Pause);
	phylink_set_port_modes(mac_supported);

938 939 940 941
	/* Cut down 1G if asked to */
	if ((max_speed > 0) && (max_speed < 1000)) {
		phylink_set(mask, 1000baseT_Full);
		phylink_set(mask, 1000baseX_Full);
942
	} else if (priv->plat->has_gmac4) {
943
		if (!max_speed || max_speed >= 2500) {
944 945
			phylink_set(mac_supported, 2500baseT_Full);
			phylink_set(mac_supported, 2500baseX_Full);
946
		}
947
	} else if (priv->plat->has_xgmac) {
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		if (!max_speed || (max_speed >= 2500)) {
			phylink_set(mac_supported, 2500baseT_Full);
			phylink_set(mac_supported, 2500baseX_Full);
		}
		if (!max_speed || (max_speed >= 5000)) {
			phylink_set(mac_supported, 5000baseT_Full);
		}
		if (!max_speed || (max_speed >= 10000)) {
			phylink_set(mac_supported, 10000baseSR_Full);
			phylink_set(mac_supported, 10000baseLR_Full);
			phylink_set(mac_supported, 10000baseER_Full);
			phylink_set(mac_supported, 10000baseLRM_Full);
			phylink_set(mac_supported, 10000baseT_Full);
			phylink_set(mac_supported, 10000baseKX4_Full);
			phylink_set(mac_supported, 10000baseKR_Full);
		}
Jose Abreu's avatar
Jose Abreu committed
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
		if (!max_speed || (max_speed >= 25000)) {
			phylink_set(mac_supported, 25000baseCR_Full);
			phylink_set(mac_supported, 25000baseKR_Full);
			phylink_set(mac_supported, 25000baseSR_Full);
		}
		if (!max_speed || (max_speed >= 40000)) {
			phylink_set(mac_supported, 40000baseKR4_Full);
			phylink_set(mac_supported, 40000baseCR4_Full);
			phylink_set(mac_supported, 40000baseSR4_Full);
			phylink_set(mac_supported, 40000baseLR4_Full);
		}
		if (!max_speed || (max_speed >= 50000)) {
			phylink_set(mac_supported, 50000baseCR2_Full);
			phylink_set(mac_supported, 50000baseKR2_Full);
			phylink_set(mac_supported, 50000baseSR2_Full);
			phylink_set(mac_supported, 50000baseKR_Full);
			phylink_set(mac_supported, 50000baseSR_Full);
			phylink_set(mac_supported, 50000baseCR_Full);
			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
			phylink_set(mac_supported, 50000baseDR_Full);
		}
		if (!max_speed || (max_speed >= 100000)) {
			phylink_set(mac_supported, 100000baseKR4_Full);
			phylink_set(mac_supported, 100000baseSR4_Full);
			phylink_set(mac_supported, 100000baseCR4_Full);
			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
			phylink_set(mac_supported, 100000baseKR2_Full);
			phylink_set(mac_supported, 100000baseSR2_Full);
			phylink_set(mac_supported, 100000baseCR2_Full);
			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
			phylink_set(mac_supported, 100000baseDR2_Full);
		}
996 997 998 999 1000 1001 1002 1003 1004
	}

	/* Half-Duplex can only work with single queue */
	if (tx_cnt > 1) {
		phylink_set(mask, 10baseT_Half);
		phylink_set(mask, 100baseT_Half);
		phylink_set(mask, 1000baseT_Half);
	}

1005 1006 1007 1008 1009
	linkmode_and(supported, supported, mac_supported);
	linkmode_andnot(supported, supported, mask);

	linkmode_and(state->advertising, state->advertising, mac_supported);
	linkmode_andnot(state->advertising, state->advertising, mask);
1010 1011

	/* If PCS is supported, check which modes it supports. */
1012
	if (priv->hw->xpcs)
1013
		xpcs_validate(priv->hw->xpcs, supported, state);
1014 1015
}

1016 1017
static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
			      const struct phylink_link_state *state)
1018
{
1019
	/* Nothing to do, xpcs_config() handles everything */
1020 1021
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
{
	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
	bool *hs_enable = &fpe_cfg->hs_enable;

	if (is_up && *hs_enable) {
		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
	} else {
1032 1033
		*lo_state = FPE_STATE_OFF;
		*lp_state = FPE_STATE_OFF;
1034 1035 1036
	}
}

1037 1038 1039 1040 1041 1042 1043
static void stmmac_mac_link_down(struct phylink_config *config,
				 unsigned int mode, phy_interface_t interface)
{
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));

	stmmac_mac_set(priv, priv->ioaddr, false);
	priv->eee_active = false;
1044
	priv->tx_lpi_enabled = false;
1045
	priv->eee_enabled = stmmac_eee_init(priv);
1046
	stmmac_set_eee_pls(priv, priv->hw, false);
1047

1048 1049
	if (priv->dma_cap.fpesel)
		stmmac_fpe_link_state_handle(priv, false);
1050 1051 1052 1053 1054 1055 1056
}

static void stmmac_mac_link_up(struct phylink_config *config,
			       struct phy_device *phy,
			       unsigned int mode, phy_interface_t interface,
			       int speed, int duplex,
			       bool tx_pause, bool rx_pause)
1057
{
1058
	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1059 1060 1061
	u32 ctrl;

	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1062
	ctrl &= ~priv->hw->link.speed_mask;
1063

1064 1065
	if (interface == PHY_INTERFACE_MODE_USXGMII) {
		switch (speed) {
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		case SPEED_10000:
			ctrl |= priv->hw->link.xgmii.speed10000;
			break;
		case SPEED_5000:
			ctrl |= priv->hw->link.xgmii.speed5000;
			break;
		case SPEED_2500:
			ctrl |= priv->hw->link.xgmii.speed2500;
			break;
		default:
			return;
		}
Jose Abreu's avatar
Jose Abreu committed
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
		switch (speed) {
		case SPEED_100000:
			ctrl |= priv->hw->link.xlgmii.speed100000;
			break;
		case SPEED_50000:
			ctrl |= priv->hw->link.xlgmii.speed50000;
			break;
		case SPEED_40000:
			ctrl |= priv->hw->link.xlgmii.speed40000;
			break;
		case SPEED_25000:
			ctrl |= priv->hw->link.xlgmii.speed25000;
			break;
		case SPEED_10000:
			ctrl |= priv->hw->link.xgmii.speed10000;
			break;
		case SPEED_2500:
			ctrl |= priv->hw->link.speed2500;
			break;
		case SPEED_1000:
			ctrl |= priv->hw->link.speed1000;
			break;
		default:
			return;
		}
1104
	} else {
1105
		switch (speed) {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		case SPEED_2500:
			ctrl |= priv->hw->link.speed2500;
			break;
		case SPEED_1000:
			ctrl |= priv->hw->link.speed1000;
			break;
		case SPEED_100:
			ctrl |= priv->hw->link.speed100;
			break;
		case SPEED_10:
			ctrl |= priv->hw->link.speed10;
			break;
		default:
			return;
		}
1121 1122
	}

1123
	priv->speed = speed;
1124

1125
	if (priv->plat->fix_mac_speed)
1126
		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1127

1128
	if (!duplex)
1129 1130 1131
		ctrl &= ~priv->hw->link.duplex;
	else
		ctrl |= priv->hw->link.duplex;
1132 1133

	/* Flow Control operation */
1134 1135
	if (tx_pause && rx_pause)
		stmmac_mac_flow_ctrl(priv, duplex);
1136 1137 1138 1139

	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);

	stmmac_mac_set(priv, priv->ioaddr, true);
1140
	if (phy && priv->dma_cap.eee) {
1141 1142
		priv->eee_active = phy_init_eee(phy, 1) >= 0;
		priv->eee_enabled = stmmac_eee_init(priv);
1143
		priv->tx_lpi_enabled = priv->eee_enabled;
1144 1145
		stmmac_set_eee_pls(priv, priv->hw, true);
	}
1146

1147 1148
	if (priv->dma_cap.fpesel)
		stmmac_fpe_link_state_handle(priv, true);
1149 1150
}

1151
static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1152
	.validate = stmmac_validate,
1153 1154 1155
	.mac_config = stmmac_mac_config,
	.mac_link_down = stmmac_mac_link_down,
	.mac_link_up = stmmac_mac_link_up,
1156 1157
};

1158
/**
1159
 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1160 1161 1162 1163 1164
 * @priv: driver private structure
 * Description: this is to verify if the HW supports the PCS.
 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
 * configured for the TBI, RTBI, or SGMII PHY interface.
 */
1165 1166 1167 1168 1169
static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
{
	int interface = priv->plat->interface;

	if (priv->dma_cap.pcs) {
Byungho An's avatar
Byungho An committed
1170 1171 1172 1173
		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1174
			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1175
			priv->hw->pcs = STMMAC_PCS_RGMII;
Byungho An's avatar
Byungho An committed
1176
		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1177
			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1178
			priv->hw->pcs = STMMAC_PCS_SGMII;
1179 1180 1181 1182
		}
	}
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1194 1195
	struct device_node *node;
	int ret;
1196

1197
	node = priv->plat->phylink_node;
1198

1199
	if (node)
1200
		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1201 1202 1203 1204 1205

	/* Some DT bindings do not set-up the PHY handle. Let's try to
	 * manually parse it
	 */
	if (!node || ret) {
1206 1207
		int addr = priv->plat->phy_addr;
		struct phy_device *phydev;
1208

1209 1210 1211
		phydev = mdiobus_get_phy(priv->mii, addr);
		if (!phydev) {
			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1212
			return -ENODEV;
1213
		}
1214

1215
		ret = phylink_connect_phy(priv->phylink, phydev);
1216 1217
	}

1218 1219 1220 1221 1222 1223
	if (!priv->plat->pmt) {
		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };

		phylink_ethtool_get_wol(priv->phylink, &wol);
		device_set_wakeup_capable(priv->device, !!wol.supported);
	}
1224

1225 1226
	return ret;
}
1227

1228 1229
static int stmmac_phy_setup(struct stmmac_priv *priv)
{
1230
	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1231
	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1232
	int mode = priv->plat->phy_interface;
1233
	struct phylink *phylink;
1234

1235 1236
	priv->phylink_config.dev = &priv->dev->dev;
	priv->phylink_config.type = PHYLINK_NETDEV;
1237
	priv->phylink_config.pcs_poll = true;
1238 1239
	if (priv->plat->mdio_bus_data)
		priv->phylink_config.ovr_an_inband =
1240
			mdio_bus_data->xpcs_an_inband;
1241

1242 1243 1244
	if (!fwnode)
		fwnode = dev_fwnode(priv->device);

1245
	phylink = phylink_create(&priv->phylink_config, fwnode,
1246 1247 1248
				 mode, &stmmac_phylink_mac_ops);
	if (IS_ERR(phylink))
		return PTR_ERR(phylink);
1249

1250 1251
	if (priv->hw->xpcs)
		phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1252

1253
	priv->phylink = phylink;
1254 1255 1256
	return 0;
}

1257
static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1258
{
1259
	u32 rx_cnt = priv->plat->rx_queues_to_use;
1260
	unsigned int desc_size;
1261
	void *head_rx;
1262
	u32 queue;
1263

1264 1265 1266
	/* Display RX rings */
	for (queue = 0; queue < rx_cnt; queue++) {
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1267

1268 1269
		pr_info("\tRX Queue %u rings\n", queue);

1270
		if (priv->extend_desc) {
1271
			head_rx = (void *)rx_q->dma_erx;
1272 1273
			desc_size = sizeof(struct dma_extended_desc);
		} else {
1274
			head_rx = (void *)rx_q->dma_rx;
1275 1276
			desc_size = sizeof(struct dma_desc);
		}
1277 1278

		/* Display RX ring */
1279 1280
		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
				    rx_q->dma_rx_phy, desc_size);
1281
	}
1282 1283 1284 1285
}

static void stmmac_display_tx_rings(struct stmmac_priv *priv)
{
1286
	u32 tx_cnt = priv->plat->tx_queues_to_use;
1287
	unsigned int desc_size;
1288
	void *head_tx;
1289
	u32 queue;
1290

1291 1292 1293
	/* Display TX rings */
	for (queue = 0; queue < tx_cnt; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1294

1295 1296
		pr_info("\tTX Queue %d rings\n", queue);

1297
		if (priv->extend_desc) {
1298
			head_tx = (void *)tx_q->dma_etx;
1299 1300
			desc_size = sizeof(struct dma_extended_desc);
		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1301
			head_tx = (void *)tx_q->dma_entx;
1302 1303
			desc_size = sizeof(struct dma_edesc);
		} else {
1304
			head_tx = (void *)tx_q->dma_tx;
1305 1306
			desc_size = sizeof(struct dma_desc);
		}
1307

1308 1309
		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
				    tx_q->dma_tx_phy, desc_size);
1310
	}
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321
static void stmmac_display_rings(struct stmmac_priv *priv)
{
	/* Display RX ring */
	stmmac_display_rx_rings(priv);

	/* Display TX ring */
	stmmac_display_tx_rings(priv);
}

1322 1323 1324 1325
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

1326 1327 1328
	if (mtu >= BUF_SIZE_8KiB)
		ret = BUF_SIZE_16KiB;
	else if (mtu >= BUF_SIZE_4KiB)
1329 1330 1331
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
1332
	else if (mtu > DEFAULT_BUFSIZE)
1333 1334
		ret = BUF_SIZE_2KiB;
	else
1335
		ret = DEFAULT_BUFSIZE;
1336 1337 1338 1339

	return ret;
}

1340
/**
1341
 * stmmac_clear_rx_descriptors - clear RX descriptors
1342
 * @priv: driver private structure
1343
 * @queue: RX queue index
1344
 * Description: this function is called to clear the RX descriptors
1345 1346
 * in case of both basic and extended descriptors are used.
 */
1347
static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1348
{
1349
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1350
	int i;
1351

1352
	/* Clear the RX descriptors */
1353
	for (i = 0; i < priv->dma_rx_size; i++)
1354
		if (priv->extend_desc)
1355 1356
			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
					priv->use_riwt, priv->mode,
1357
					(i == priv->dma_rx_size - 1),
1358
					priv->dma_buf_sz);
1359
		else
1360 1361
			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
					priv->use_riwt, priv->mode,
1362
					(i == priv->dma_rx_size - 1),
1363
					priv->dma_buf_sz);
1364 1365 1366 1367 1368
}

/**
 * stmmac_clear_tx_descriptors - clear tx descriptors
 * @priv: driver private structure
1369
 * @queue: TX queue index.
1370 1371 1372
 * Description: this function is called to clear the TX descriptors
 * in case of both basic and extended descriptors are used.
 */
1373
static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1374
{
1375
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376 1377 1378
	int i;

	/* Clear the TX descriptors */
1379 1380
	for (i = 0; i < priv->dma_tx_size; i++) {
		int last = (i == (priv->dma_tx_size - 1));
1381 1382
		struct dma_desc *p;

1383
		if (priv->extend_desc)
1384 1385 1386
			p = &tx_q->dma_etx[i].basic;
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			p = &tx_q->dma_entx[i].basic;
1387
		else
1388 1389 1390 1391
			p = &tx_q->dma_tx[i];

		stmmac_init_tx_desc(priv, p, priv->mode, last);
	}
1392 1393
}

1394 1395 1396 1397 1398 1399 1400 1401
/**
 * stmmac_clear_descriptors - clear descriptors
 * @priv: driver private structure
 * Description: this function is called to clear the TX and RX descriptors
 * in case of both basic and extended descriptors are used.
 */
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
1402
	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1403
	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1404 1405
	u32 queue;

1406
	/* Clear the RX descriptors */
1407 1408
	for (queue = 0; queue < rx_queue_cnt; queue++)
		stmmac_clear_rx_descriptors(priv, queue);
1409 1410

	/* Clear the TX descriptors */
1411 1412
	for (queue = 0; queue < tx_queue_cnt; queue++)
		stmmac_clear_tx_descriptors(priv, queue);
1413 1414
}

1415 1416 1417 1418 1419
/**
 * stmmac_init_rx_buffers - init the RX descriptor buffer.
 * @priv: driver private structure
 * @p: descriptor pointer
 * @i: descriptor index
1420 1421
 * @flags: gfp flag
 * @queue: RX queue index
1422 1423 1424
 * Description: this function is called to allocate a receive buffer, perform
 * the DMA mapping and init the descriptor.
 */
1425
static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1426
				  int i, gfp_t flags, u32 queue)
1427
{
1428
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1429
	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1430

1431 1432 1433 1434 1435 1436
	if (!buf->page) {
		buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
		if (!buf->page)
			return -ENOMEM;
		buf->page_offset = stmmac_rx_offset(priv);
	}
1437

1438
	if (priv->sph && !buf->sec_page) {
1439 1440 1441 1442 1443
		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
		if (!buf->sec_page)
			return -ENOMEM;

		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1444
		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1445 1446
	} else {
		buf->sec_page = NULL;
1447
		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1448 1449
	}

1450 1451
	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;

1452
	stmmac_set_desc_addr(priv, p, buf->addr);
1453 1454
	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
		stmmac_init_desc3(priv, p);
1455 1456 1457 1458

	return 0;
}

1459 1460 1461
/**
 * stmmac_free_rx_buffer - free RX dma buffers
 * @priv: private structure
1462
 * @queue: RX queue index
1463 1464
 * @i: buffer index.
 */
1465
static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1466
{
1467
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1468
	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1469

1470
	if (buf->page)
1471
		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1472
	buf->page = NULL;
1473 1474

	if (buf->sec_page)
1475
		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1476
	buf->sec_page = NULL;
1477 1478 1479
}

/**
1480 1481
 * stmmac_free_tx_buffer - free RX dma buffers
 * @priv: private structure
1482
 * @queue: RX queue index
1483 1484
 * @i: buffer index.
 */
1485
static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1486
{
1487 1488
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

1489 1490
	if (tx_q->tx_skbuff_dma[i].buf &&
	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1491
		if (tx_q->tx_skbuff_dma[i].map_as_page)
1492
			dma_unmap_page(priv->device,
1493 1494
				       tx_q->tx_skbuff_dma[i].buf,
				       tx_q->tx_skbuff_dma[i].len,
1495 1496 1497
				       DMA_TO_DEVICE);
		else
			dma_unmap_single(priv->device,
1498 1499
					 tx_q->tx_skbuff_dma[i].buf,
					 tx_q->tx_skbuff_dma[i].len,
1500 1501 1502
					 DMA_TO_DEVICE);
	}

1503
	if (tx_q->xdpf[i] &&
1504 1505
	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1506 1507 1508 1509
		xdp_return_frame(tx_q->xdpf[i]);
		tx_q->xdpf[i] = NULL;
	}

1510 1511 1512
	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
		tx_q->xsk_frames_done++;

1513 1514
	if (tx_q->tx_skbuff[i] &&
	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1515 1516
		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
		tx_q->tx_skbuff[i] = NULL;
1517
	}
1518 1519 1520

	tx_q->tx_skbuff_dma[i].buf = 0;
	tx_q->tx_skbuff_dma[i].map_as_page = false;
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * dma_free_rx_skbufs - free RX dma buffers
 * @priv: private structure
 * @queue: RX queue index
 */
static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++)
		stmmac_free_rx_buffer(priv, queue, i);
}

static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
				   gfp_t flags)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct dma_desc *p;
		int ret;

		if (priv->extend_desc)
			p = &((rx_q->dma_erx + i)->basic);
		else
			p = rx_q->dma_rx + i;

		ret = stmmac_init_rx_buffers(priv, p, i, flags,
					     queue);
		if (ret)
			return ret;
1555 1556

		rx_q->buf_alloc_num++;
1557 1558 1559 1560 1561
	}

	return 0;
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/**
 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
 * @priv: private structure
 * @queue: RX queue index
 */
static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];

		if (!buf->xdp)
			continue;

		xsk_buff_free(buf->xdp);
		buf->xdp = NULL;
	}
}

static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct stmmac_rx_buffer *buf;
		dma_addr_t dma_addr;
		struct dma_desc *p;

		if (priv->extend_desc)
			p = (struct dma_desc *)(rx_q->dma_erx + i);
		else
			p = rx_q->dma_rx + i;

		buf = &rx_q->buf_pool[i];

		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
		if (!buf->xdp)
			return -ENOMEM;

		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
		stmmac_set_desc_addr(priv, p, dma_addr);
		rx_q->buf_alloc_num++;
	}

	return 0;
}

static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
{
	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
		return NULL;

	return xsk_get_pool_from_qid(priv->dev, queue);
}

1620
/**
1621 1622 1623
 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
 * @priv: driver private structure
 * @queue: RX queue index
1624
 * @flags: gfp flag.
1625
 * Description: this function initializes the DMA RX descriptors
1626
 * and allocates the socket buffers. It supports the chained and ring
1627
 * modes.
1628
 */
1629
static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1630
{
1631 1632
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	int ret;
1633

1634
	netif_dbg(priv, probe, priv->dev,
1635 1636
		  "(%s) dma_rx_phy=0x%08x\n", __func__,
		  (u32)rx_q->dma_rx_phy);
1637

1638
	stmmac_clear_rx_descriptors(priv, queue);
1639

1640
	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1641

1642
	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	if (rx_q->xsk_pool) {
		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
						   MEM_TYPE_XSK_BUFF_POOL,
						   NULL));
		netdev_info(priv->dev,
			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
			    rx_q->queue_index);
		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
	} else {
		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
						   MEM_TYPE_PAGE_POOL,
						   rx_q->page_pool));
		netdev_info(priv->dev,
			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
			    rx_q->queue_index);
	}

	if (rx_q->xsk_pool) {
		/* RX XDP ZC buffer pool may not be populated, e.g.
		 * xdpsock TX-only.
		 */
		stmmac_alloc_rx_buffers_zc(priv, queue);
	} else {
		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
		if (ret < 0)
			return -ENOMEM;
	}
1671

1672 1673
	rx_q->cur_rx = 0;
	rx_q->dirty_rx = 0;
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/* Setup the chained descriptor addresses */
	if (priv->mode == STMMAC_CHAIN_MODE) {
		if (priv->extend_desc)
			stmmac_mode_init(priv, rx_q->dma_erx,
					 rx_q->dma_rx_phy,
					 priv->dma_rx_size, 1);
		else
			stmmac_mode_init(priv, rx_q->dma_rx,
					 rx_q->dma_rx_phy,
					 priv->dma_rx_size, 0);
	}
1686

1687 1688
	return 0;
}
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 rx_count = priv->plat->rx_queues_to_use;
	u32 queue;
	int ret;

	/* RX INITIALIZATION */
	netif_dbg(priv, probe, priv->dev,
		  "SKB addresses:\nskb\t\tskb data\tdma data\n");

	for (queue = 0; queue < rx_count; queue++) {
		ret = __init_dma_rx_desc_rings(priv, queue, flags);
		if (ret)
			goto err_init_rx_buffers;
1705 1706 1707
	}

	return 0;
1708

1709
err_init_rx_buffers:
1710
	while (queue >= 0) {
1711 1712 1713 1714 1715 1716 1717 1718 1719
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

		if (rx_q->xsk_pool)
			dma_free_rx_xskbufs(priv, queue);
		else
			dma_free_rx_skbufs(priv, queue);

		rx_q->buf_alloc_num = 0;
		rx_q->xsk_pool = NULL;
1720 1721 1722 1723 1724 1725 1726

		if (queue == 0)
			break;

		queue--;
	}

1727 1728 1729 1730
	return ret;
}

/**
1731 1732 1733
 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
 * @priv: driver private structure
 * @queue : TX queue index
1734 1735 1736 1737
 * Description: this function initializes the DMA TX descriptors
 * and allocates the socket buffers. It supports the chained and ring
 * modes.
 */
1738
static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1739
{
1740
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1741 1742
	int i;

1743 1744 1745
	netif_dbg(priv, probe, priv->dev,
		  "(%s) dma_tx_phy=0x%08x\n", __func__,
		  (u32)tx_q->dma_tx_phy);
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	/* Setup the chained descriptor addresses */
	if (priv->mode == STMMAC_CHAIN_MODE) {
		if (priv->extend_desc)
			stmmac_mode_init(priv, tx_q->dma_etx,
					 tx_q->dma_tx_phy,
					 priv->dma_tx_size, 1);
		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
			stmmac_mode_init(priv, tx_q->dma_tx,
					 tx_q->dma_tx_phy,
					 priv->dma_tx_size, 0);
	}
1758

1759 1760
	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);

1761 1762 1763 1764 1765 1766 1767 1768 1769
	for (i = 0; i < priv->dma_tx_size; i++) {
		struct dma_desc *p;

		if (priv->extend_desc)
			p = &((tx_q->dma_etx + i)->basic);
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			p = &((tx_q->dma_entx + i)->basic);
		else
			p = tx_q->dma_tx + i;
1770

1771
		stmmac_clear_desc(priv, p);
1772

1773 1774 1775 1776 1777
		tx_q->tx_skbuff_dma[i].buf = 0;
		tx_q->tx_skbuff_dma[i].map_as_page = false;
		tx_q->tx_skbuff_dma[i].len = 0;
		tx_q->tx_skbuff_dma[i].last_segment = false;
		tx_q->tx_skbuff[i] = NULL;
1778
	}
1779

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	tx_q->dirty_tx = 0;
	tx_q->cur_tx = 0;
	tx_q->mss = 0;

	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));

	return 0;
}

static int init_dma_tx_desc_rings(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 tx_queue_cnt;
	u32 queue;

	tx_queue_cnt = priv->plat->tx_queues_to_use;

	for (queue = 0; queue < tx_queue_cnt; queue++)
		__init_dma_tx_desc_rings(priv, queue);

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	return 0;
}

/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * @flags: gfp flag.
 * Description: this function initializes the DMA RX/TX descriptors
 * and allocates the socket buffers. It supports the chained and ring
 * modes.
 */
static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

	ret = init_dma_rx_desc_rings(dev, flags);
	if (ret)
		return ret;

	ret = init_dma_tx_desc_rings(dev);

1822
	stmmac_clear_descriptors(priv);
1823

1824 1825
	if (netif_msg_hw(priv))
		stmmac_display_rings(priv);
1826 1827

	return ret;
1828 1829
}

1830 1831 1832
/**
 * dma_free_tx_skbufs - free TX dma buffers
 * @priv: private structure
1833
 * @queue: TX queue index
1834
 */
1835
static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1836
{
1837
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1838 1839
	int i;

1840 1841
	tx_q->xsk_frames_done = 0;

1842
	for (i = 0; i < priv->dma_tx_size; i++)
1843
		stmmac_free_tx_buffer(priv, queue, i);
1844 1845 1846 1847 1848 1849

	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
		tx_q->xsk_frames_done = 0;
		tx_q->xsk_pool = NULL;
	}
1850 1851
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
/**
 * stmmac_free_tx_skbufs - free TX skb buffers
 * @priv: private structure
 */
static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
{
	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
	u32 queue;

	for (queue = 0; queue < tx_queue_cnt; queue++)
		dma_free_tx_skbufs(priv, queue);
}

1865
/**
1866
 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1867
 * @priv: private structure
1868
 * @queue: RX queue index
1869
 */
1870 1871 1872 1873 1874
static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

	/* Release the DMA RX socket buffers */
1875 1876 1877 1878 1879 1880 1881
	if (rx_q->xsk_pool)
		dma_free_rx_xskbufs(priv, queue);
	else
		dma_free_rx_skbufs(priv, queue);

	rx_q->buf_alloc_num = 0;
	rx_q->xsk_pool = NULL;
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	/* Free DMA regions of consistent memory previously allocated */
	if (!priv->extend_desc)
		dma_free_coherent(priv->device, priv->dma_rx_size *
				  sizeof(struct dma_desc),
				  rx_q->dma_rx, rx_q->dma_rx_phy);
	else
		dma_free_coherent(priv->device, priv->dma_rx_size *
				  sizeof(struct dma_extended_desc),
				  rx_q->dma_erx, rx_q->dma_rx_phy);

	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
		xdp_rxq_info_unreg(&rx_q->xdp_rxq);

	kfree(rx_q->buf_pool);
	if (rx_q->page_pool)
		page_pool_destroy(rx_q->page_pool);
}

1901 1902 1903 1904 1905 1906
static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
{
	u32 rx_count = priv->plat->rx_queues_to_use;
	u32 queue;

	/* Free RX queue resources */
1907 1908 1909
	for (queue = 0; queue < rx_count; queue++)
		__free_dma_rx_desc_resources(priv, queue);
}
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/**
 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
 * @priv: private structure
 * @queue: TX queue index
 */
static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	size_t size;
	void *addr;

	/* Release the DMA TX socket buffers */
	dma_free_tx_skbufs(priv, queue);

	if (priv->extend_desc) {
		size = sizeof(struct dma_extended_desc);
		addr = tx_q->dma_etx;
	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
		size = sizeof(struct dma_edesc);
		addr = tx_q->dma_entx;
	} else {
		size = sizeof(struct dma_desc);
		addr = tx_q->dma_tx;
	}
1935

1936
	size *= priv->dma_tx_size;
1937

1938
	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1939

1940 1941
	kfree(tx_q->tx_skbuff_dma);
	kfree(tx_q->tx_skbuff);
1942 1943
}

1944 1945 1946
static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
{
	u32 tx_count = priv->plat->tx_queues_to_use;
1947
	u32 queue;
1948 1949

	/* Free TX queue resources */
1950 1951
	for (queue = 0; queue < tx_count; queue++)
		__free_dma_tx_desc_resources(priv, queue);
1952 1953
}

1954
/**
1955
 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1956
 * @priv: private structure
1957
 * @queue: RX queue index
1958
 * Description: according to which descriptor can be used (extend or basic)
1959 1960 1961
 * this function allocates the resources for TX and RX paths. In case of
 * reception, for example, it pre-allocated the RX socket buffer in order to
 * allow zero-copy mechanism.
1962
 */
1963
static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1964
{
1965 1966
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	struct stmmac_channel *ch = &priv->channel[queue];
1967
	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1968 1969
	struct page_pool_params pp_params = { 0 };
	unsigned int num_pages;
1970
	unsigned int napi_id;
1971
	int ret;
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	rx_q->queue_index = queue;
	rx_q->priv_data = priv;

	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
	pp_params.pool_size = priv->dma_rx_size;
	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
	pp_params.order = ilog2(num_pages);
	pp_params.nid = dev_to_node(priv->device);
	pp_params.dev = priv->device;
	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
	pp_params.offset = stmmac_rx_offset(priv);
	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);

	rx_q->page_pool = page_pool_create(&pp_params);
	if (IS_ERR(rx_q->page_pool)) {
		ret = PTR_ERR(rx_q->page_pool);
		rx_q->page_pool = NULL;
		return ret;
	}
1992

1993 1994 1995 1996 1997
	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
				 sizeof(*rx_q->buf_pool),
				 GFP_KERNEL);
	if (!rx_q->buf_pool)
		return -ENOMEM;
1998

1999 2000 2001 2002 2003 2004 2005 2006
	if (priv->extend_desc) {
		rx_q->dma_erx = dma_alloc_coherent(priv->device,
						   priv->dma_rx_size *
						   sizeof(struct dma_extended_desc),
						   &rx_q->dma_rx_phy,
						   GFP_KERNEL);
		if (!rx_q->dma_erx)
			return -ENOMEM;
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016
	} else {
		rx_q->dma_rx = dma_alloc_coherent(priv->device,
						  priv->dma_rx_size *
						  sizeof(struct dma_desc),
						  &rx_q->dma_rx_phy,
						  GFP_KERNEL);
		if (!rx_q->dma_rx)
			return -ENOMEM;
	}
2017

2018 2019 2020 2021 2022 2023
	if (stmmac_xdp_is_enabled(priv) &&
	    test_bit(queue, priv->af_xdp_zc_qps))
		napi_id = ch->rxtx_napi.napi_id;
	else
		napi_id = ch->rx_napi.napi_id;

2024 2025
	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
			       rx_q->queue_index,
2026
			       napi_id);
2027 2028 2029 2030
	if (ret) {
		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
		return -EINVAL;
	}
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	return 0;
}

static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
{
	u32 rx_count = priv->plat->rx_queues_to_use;
	u32 queue;
	int ret;

	/* RX queues buffers and DMA */
	for (queue = 0; queue < rx_count; queue++) {
		ret = __alloc_dma_rx_desc_resources(priv, queue);
		if (ret)
2045
			goto err_dma;
2046 2047 2048 2049 2050
	}

	return 0;

err_dma:
2051 2052
	free_dma_rx_desc_resources(priv);

2053 2054 2055 2056
	return ret;
}

/**
2057
 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2058
 * @priv: private structure
2059
 * @queue: TX queue index
2060 2061 2062 2063 2064
 * Description: according to which descriptor can be used (extend or basic)
 * this function allocates the resources for TX and RX paths. In case of
 * reception, for example, it pre-allocated the RX socket buffer in order to
 * allow zero-copy mechanism.
 */
2065
static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2066
{
2067 2068 2069
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	size_t size;
	void *addr;
2070

2071 2072
	tx_q->queue_index = queue;
	tx_q->priv_data = priv;
2073

2074 2075 2076 2077 2078
	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
				      sizeof(*tx_q->tx_skbuff_dma),
				      GFP_KERNEL);
	if (!tx_q->tx_skbuff_dma)
		return -ENOMEM;
2079

2080 2081 2082 2083 2084
	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
				  sizeof(struct sk_buff *),
				  GFP_KERNEL);
	if (!tx_q->tx_skbuff)
		return -ENOMEM;
2085

2086 2087 2088 2089 2090 2091
	if (priv->extend_desc)
		size = sizeof(struct dma_extended_desc);
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		size = sizeof(struct dma_edesc);
	else
		size = sizeof(struct dma_desc);
2092

2093
	size *= priv->dma_tx_size;
2094

2095 2096 2097 2098
	addr = dma_alloc_coherent(priv->device, size,
				  &tx_q->dma_tx_phy, GFP_KERNEL);
	if (!addr)
		return -ENOMEM;
2099

2100 2101 2102 2103 2104 2105
	if (priv->extend_desc)
		tx_q->dma_etx = addr;
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		tx_q->dma_entx = addr;
	else
		tx_q->dma_tx = addr;
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	return 0;
}

static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
{
	u32 tx_count = priv->plat->tx_queues_to_use;
	u32 queue;
	int ret;

	/* TX queues buffers and DMA */
	for (queue = 0; queue < tx_count; queue++) {
		ret = __alloc_dma_tx_desc_resources(priv, queue);
		if (ret)
			goto err_dma;
2121 2122 2123 2124
	}

	return 0;

2125
err_dma:
2126
	free_dma_tx_desc_resources(priv);
2127 2128 2129
	return ret;
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
/**
 * alloc_dma_desc_resources - alloc TX/RX resources.
 * @priv: private structure
 * Description: according to which descriptor can be used (extend or basic)
 * this function allocates the resources for TX and RX paths. In case of
 * reception, for example, it pre-allocated the RX socket buffer in order to
 * allow zero-copy mechanism.
 */
static int alloc_dma_desc_resources(struct stmmac_priv *priv)
{
2140
	/* RX Allocation */
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	int ret = alloc_dma_rx_desc_resources(priv);

	if (ret)
		return ret;

	ret = alloc_dma_tx_desc_resources(priv);

	return ret;
}

/**
 * free_dma_desc_resources - free dma desc resources
 * @priv: private structure
 */
static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX socket buffers */
	free_dma_tx_desc_resources(priv);
2159 2160 2161 2162 2163

	/* Release the DMA RX socket buffers later
	 * to ensure all pending XDP_TX buffers are returned.
	 */
	free_dma_rx_desc_resources(priv);
2164 2165
}

jpinto's avatar
jpinto committed
2166 2167 2168 2169 2170 2171 2172
/**
 *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
 *  @priv: driver private structure
 *  Description: It is used for enabling the rx queues in the MAC
 */
static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
{
2173 2174 2175
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	int queue;
	u8 mode;
jpinto's avatar
jpinto committed
2176

2177 2178
	for (queue = 0; queue < rx_queues_count; queue++) {
		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2179
		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2180
	}
jpinto's avatar
jpinto committed
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
/**
 * stmmac_start_rx_dma - start RX DMA channel
 * @priv: driver private structure
 * @chan: RX channel index
 * Description:
 * This starts a RX DMA channel
 */
static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2193
	stmmac_start_rx(priv, priv->ioaddr, chan);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
}

/**
 * stmmac_start_tx_dma - start TX DMA channel
 * @priv: driver private structure
 * @chan: TX channel index
 * Description:
 * This starts a TX DMA channel
 */
static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2206
	stmmac_start_tx(priv, priv->ioaddr, chan);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
}

/**
 * stmmac_stop_rx_dma - stop RX DMA channel
 * @priv: driver private structure
 * @chan: RX channel index
 * Description:
 * This stops a RX DMA channel
 */
static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2219
	stmmac_stop_rx(priv, priv->ioaddr, chan);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
}

/**
 * stmmac_stop_tx_dma - stop TX DMA channel
 * @priv: driver private structure
 * @chan: TX channel index
 * Description:
 * This stops a TX DMA channel
 */
static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
{
	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2232
	stmmac_stop_tx(priv, priv->ioaddr, chan);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
}

/**
 * stmmac_start_all_dma - start all RX and TX DMA channels
 * @priv: driver private structure
 * Description:
 * This starts all the RX and TX DMA channels
 */
static void stmmac_start_all_dma(struct stmmac_priv *priv)
{
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
	u32 chan = 0;

	for (chan = 0; chan < rx_channels_count; chan++)
		stmmac_start_rx_dma(priv, chan);

	for (chan = 0; chan < tx_channels_count; chan++)
		stmmac_start_tx_dma(priv, chan);
}

/**
 * stmmac_stop_all_dma - stop all RX and TX DMA channels
 * @priv: driver private structure
 * Description:
 * This stops the RX and TX DMA channels
 */
static void stmmac_stop_all_dma(struct stmmac_priv *priv)
{
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
	u32 chan = 0;

	for (chan = 0; chan < rx_channels_count; chan++)
		stmmac_stop_rx_dma(priv, chan);

	for (chan = 0; chan < tx_channels_count; chan++)
		stmmac_stop_tx_dma(priv, chan);
}

2273 2274
/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
2275
 *  @priv: driver private structure
2276 2277
 *  Description: it is used for configuring the DMA operation mode register in
 *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2278 2279 2280
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
2281 2282
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2283
	int rxfifosz = priv->plat->rx_fifo_size;
2284
	int txfifosz = priv->plat->tx_fifo_size;
2285 2286 2287
	u32 txmode = 0;
	u32 rxmode = 0;
	u32 chan = 0;
2288
	u8 qmode = 0;
2289

2290 2291
	if (rxfifosz == 0)
		rxfifosz = priv->dma_cap.rx_fifo_size;
2292 2293 2294 2295 2296 2297
	if (txfifosz == 0)
		txfifosz = priv->dma_cap.tx_fifo_size;

	/* Adjust for real per queue fifo size */
	rxfifosz /= rx_channels_count;
	txfifosz /= tx_channels_count;
2298

2299 2300 2301 2302
	if (priv->plat->force_thresh_dma_mode) {
		txmode = tc;
		rxmode = tc;
	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2303 2304 2305
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
2306 2307 2308 2309
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
2310 2311
		txmode = SF_DMA_MODE;
		rxmode = SF_DMA_MODE;
2312
		priv->xstats.threshold = SF_DMA_MODE;
2313 2314 2315 2316 2317 2318
	} else {
		txmode = tc;
		rxmode = SF_DMA_MODE;
	}

	/* configure all channels */
2319
	for (chan = 0; chan < rx_channels_count; chan++) {
2320 2321 2322
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
		u32 buf_size;

2323
		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2324

2325 2326
		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
				rxfifosz, qmode);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

		if (rx_q->xsk_pool) {
			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
			stmmac_set_dma_bfsize(priv, priv->ioaddr,
					      buf_size,
					      chan);
		} else {
			stmmac_set_dma_bfsize(priv, priv->ioaddr,
					      priv->dma_buf_sz,
					      chan);
		}
2338
	}
2339

2340 2341
	for (chan = 0; chan < tx_channels_count; chan++) {
		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2342

2343 2344
		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
				txfifosz, qmode);
2345
	}
2346 2347
}

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	struct xsk_buff_pool *pool = tx_q->xsk_pool;
	unsigned int entry = tx_q->cur_tx;
	struct dma_desc *tx_desc = NULL;
	struct xdp_desc xdp_desc;
	bool work_done = true;

	/* Avoids TX time-out as we are sharing with slow path */
	nq->trans_start = jiffies;

	budget = min(budget, stmmac_tx_avail(priv, queue));

	while (budget-- > 0) {
		dma_addr_t dma_addr;
		bool set_ic;

		/* We are sharing with slow path and stop XSK TX desc submission when
		 * available TX ring is less than threshold.
		 */
		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
		    !netif_carrier_ok(priv->dev)) {
			work_done = false;
			break;
		}

		if (!xsk_tx_peek_desc(pool, &xdp_desc))
			break;

		if (likely(priv->extend_desc))
			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			tx_desc = &tx_q->dma_entx[entry].basic;
		else
			tx_desc = tx_q->dma_tx + entry;

		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);

		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;

		/* To return XDP buffer to XSK pool, we simple call
		 * xsk_tx_completed(), so we don't need to fill up
		 * 'buf' and 'xdpf'.
		 */
		tx_q->tx_skbuff_dma[entry].buf = 0;
		tx_q->xdpf[entry] = NULL;

		tx_q->tx_skbuff_dma[entry].map_as_page = false;
		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
		tx_q->tx_skbuff_dma[entry].last_segment = true;
		tx_q->tx_skbuff_dma[entry].is_jumbo = false;

		stmmac_set_desc_addr(priv, tx_desc, dma_addr);

		tx_q->tx_count_frames++;

		if (!priv->tx_coal_frames[queue])
			set_ic = false;
		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
			set_ic = true;
		else
			set_ic = false;

		if (set_ic) {
			tx_q->tx_count_frames = 0;
			stmmac_set_tx_ic(priv, tx_desc);
			priv->xstats.tx_set_ic_bit++;
		}

		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
				       true, priv->mode, true, true,
				       xdp_desc.len);

		stmmac_enable_dma_transmission(priv, priv->ioaddr);

		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
		entry = tx_q->cur_tx;
	}

	if (tx_desc) {
		stmmac_flush_tx_descriptors(priv, queue);
		xsk_tx_release(pool);
	}

	/* Return true if all of the 3 conditions are met
	 *  a) TX Budget is still available
	 *  b) work_done = true when XSK TX desc peek is empty (no more
	 *     pending XSK TX for transmission)
	 */
	return !!budget && work_done;
}

2443
/**
2444
 * stmmac_tx_clean - to manage the transmission completion
2445
 * @priv: driver private structure
2446
 * @budget: napi budget limiting this functions packet handling
2447
 * @queue: TX queue index
2448
 * Description: it reclaims the transmit resources after transmission completes.
2449
 */
2450
static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2451
{
2452
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2453
	unsigned int bytes_compl = 0, pkts_compl = 0;
2454
	unsigned int entry, xmits = 0, count = 0;
2455

2456
	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2457

2458 2459
	priv->xstats.tx_clean++;

2460 2461
	tx_q->xsk_frames_done = 0;

2462
	entry = tx_q->dirty_tx;
2463 2464 2465

	/* Try to clean all TX complete frame in 1 shot */
	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2466 2467
		struct xdp_frame *xdpf;
		struct sk_buff *skb;
2468
		struct dma_desc *p;
2469
		int status;
2470

2471 2472
		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
			xdpf = tx_q->xdpf[entry];
			skb = NULL;
		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
			xdpf = NULL;
			skb = tx_q->tx_skbuff[entry];
		} else {
			xdpf = NULL;
			skb = NULL;
		}

2483
		if (priv->extend_desc)
2484
			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2485 2486
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			p = &tx_q->dma_entx[entry].basic;
2487
		else
2488
			p = tx_q->dma_tx + entry;
2489

2490 2491
		status = stmmac_tx_status(priv, &priv->dev->stats,
				&priv->xstats, p, priv->ioaddr);
2492 2493 2494 2495
		/* Check if the descriptor is owned by the DMA */
		if (unlikely(status & tx_dma_own))
			break;

2496 2497
		count++;

2498 2499 2500 2501 2502
		/* Make sure descriptor fields are read after reading
		 * the own bit.
		 */
		dma_rmb();

2503 2504 2505 2506 2507 2508
		/* Just consider the last segment and ...*/
		if (likely(!(status & tx_not_ls))) {
			/* ... verify the status error condition */
			if (unlikely(status & tx_err)) {
				priv->dev->stats.tx_errors++;
			} else {
2509 2510
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
2511
				priv->xstats.txq_stats[queue].tx_pkt_n++;
2512
			}
2513 2514
			if (skb)
				stmmac_get_tx_hwtstamp(priv, p, skb);
2515 2516
		}

2517 2518
		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2519
			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2520
				dma_unmap_page(priv->device,
2521 2522
					       tx_q->tx_skbuff_dma[entry].buf,
					       tx_q->tx_skbuff_dma[entry].len,
2523 2524 2525
					       DMA_TO_DEVICE);
			else
				dma_unmap_single(priv->device,
2526 2527
						 tx_q->tx_skbuff_dma[entry].buf,
						 tx_q->tx_skbuff_dma[entry].len,
2528
						 DMA_TO_DEVICE);
2529 2530 2531
			tx_q->tx_skbuff_dma[entry].buf = 0;
			tx_q->tx_skbuff_dma[entry].len = 0;
			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2532
		}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
2533

2534
		stmmac_clean_desc3(priv, tx_q, p);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
2535

2536 2537
		tx_q->tx_skbuff_dma[entry].last_segment = false;
		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2538

2539 2540 2541 2542 2543 2544
		if (xdpf &&
		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
			xdp_return_frame_rx_napi(xdpf);
			tx_q->xdpf[entry] = NULL;
		}

2545 2546 2547 2548 2549 2550
		if (xdpf &&
		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
			xdp_return_frame(xdpf);
			tx_q->xdpf[entry] = NULL;
		}

2551 2552 2553
		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
			tx_q->xsk_frames_done++;

2554 2555 2556 2557 2558 2559 2560
		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
			if (likely(skb)) {
				pkts_compl++;
				bytes_compl += skb->len;
				dev_consume_skb_any(skb);
				tx_q->tx_skbuff[entry] = NULL;
			}
2561 2562
		}

2563
		stmmac_release_tx_desc(priv, p, priv->mode);
2564

2565
		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2566
	}
2567
	tx_q->dirty_tx = entry;
2568

2569 2570 2571 2572 2573
	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
				  pkts_compl, bytes_compl);

	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
								queue))) &&
2574
	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2575

2576 2577
		netif_dbg(priv, tx_done, priv->dev,
			  "%s: restart transmit\n", __func__);
2578
		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2579
	}
2580

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	if (tx_q->xsk_pool) {
		bool work_done;

		if (tx_q->xsk_frames_done)
			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);

		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
			xsk_set_tx_need_wakeup(tx_q->xsk_pool);

		/* For XSK TX, we try to send as many as possible.
		 * If XSK work done (XSK TX desc empty and budget still
		 * available), return "budget - 1" to reenable TX IRQ.
		 * Else, return "budget" to make NAPI continue polling.
		 */
		work_done = stmmac_xdp_xmit_zc(priv, queue,
					       STMMAC_XSK_TX_BUDGET_MAX);
		if (work_done)
			xmits = budget - 1;
		else
			xmits = budget;
	}

2603 2604
	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
	    priv->eee_sw_timer_en) {
2605
		stmmac_enable_eee_mode(priv);
2606
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2607
	}
2608

2609 2610
	/* We still have pending packets, let's call for a new scheduling */
	if (tx_q->dirty_tx != tx_q->cur_tx)
2611 2612
		hrtimer_start(&tx_q->txtimer,
			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2613
			      HRTIMER_MODE_REL);
2614

2615 2616
	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));

2617 2618
	/* Combine decisions from TX clean and XSK TX */
	return max(count, xmits);
2619 2620 2621
}

/**
2622
 * stmmac_tx_err - to manage the tx error
2623
 * @priv: driver private structure
2624
 * @chan: channel index
2625
 * Description: it cleans the descriptors and restarts the transmission
2626
 * in case of transmission errors.
2627
 */
2628
static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2629
{
2630 2631
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];

2632
	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2633

2634
	stmmac_stop_tx_dma(priv, chan);
2635
	dma_free_tx_skbufs(priv, chan);
2636
	stmmac_clear_tx_descriptors(priv, chan);
2637 2638
	tx_q->dirty_tx = 0;
	tx_q->cur_tx = 0;
2639
	tx_q->mss = 0;
2640
	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2641 2642
	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
			    tx_q->dma_tx_phy, chan);
2643
	stmmac_start_tx_dma(priv, chan);
2644 2645

	priv->dev->stats.tx_errors++;
2646
	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2647 2648
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
/**
 *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
 *  @priv: driver private structure
 *  @txmode: TX operating mode
 *  @rxmode: RX operating mode
 *  @chan: channel index
 *  Description: it is used for configuring of the DMA operation mode in
 *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
 *  mode.
 */
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
					  u32 rxmode, u32 chan)
{
2662 2663
	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2664 2665
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2666
	int rxfifosz = priv->plat->rx_fifo_size;
2667
	int txfifosz = priv->plat->tx_fifo_size;
2668 2669 2670

	if (rxfifosz == 0)
		rxfifosz = priv->dma_cap.rx_fifo_size;
2671 2672 2673 2674 2675 2676
	if (txfifosz == 0)
		txfifosz = priv->dma_cap.tx_fifo_size;

	/* Adjust for real per queue fifo size */
	rxfifosz /= rx_channels_count;
	txfifosz /= tx_channels_count;
2677

2678 2679
	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2680 2681
}

2682 2683
static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
{
2684
	int ret;
2685

2686 2687 2688
	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
	if (ret && (ret != -EINVAL)) {
2689
		stmmac_global_err(priv);
2690 2691 2692 2693
		return true;
	}

	return false;
2694 2695
}

2696
static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2697 2698
{
	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2699
						 &priv->xstats, chan, dir);
2700 2701
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2702
	struct stmmac_channel *ch = &priv->channel[chan];
2703 2704
	struct napi_struct *rx_napi;
	struct napi_struct *tx_napi;
2705
	unsigned long flags;
2706

2707 2708 2709
	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;

2710
	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2711
		if (napi_schedule_prep(rx_napi)) {
2712 2713 2714
			spin_lock_irqsave(&ch->lock, flags);
			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
			spin_unlock_irqrestore(&ch->lock, flags);
2715
			__napi_schedule(rx_napi);
2716
		}
2717 2718
	}

2719
	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2720
		if (napi_schedule_prep(tx_napi)) {
2721 2722 2723
			spin_lock_irqsave(&ch->lock, flags);
			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
			spin_unlock_irqrestore(&ch->lock, flags);
2724
			__napi_schedule(tx_napi);
2725 2726
		}
	}
2727 2728 2729 2730

	return status;
}

2731
/**
2732
 * stmmac_dma_interrupt - DMA ISR
2733 2734
 * @priv: driver private structure
 * Description: this is the DMA ISR. It is called by the main ISR.
2735 2736
 * It calls the dwmac dma routine and schedule poll method in case of some
 * work can be done.
2737
 */
2738 2739
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
2740
	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2741 2742 2743
	u32 rx_channel_count = priv->plat->rx_queues_to_use;
	u32 channels_to_check = tx_channel_count > rx_channel_count ?
				tx_channel_count : rx_channel_count;
2744
	u32 chan;
Kees Cook's avatar
Kees Cook committed
2745 2746 2747 2748 2749
	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];

	/* Make sure we never check beyond our status buffer. */
	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
		channels_to_check = ARRAY_SIZE(status);
2750 2751

	for (chan = 0; chan < channels_to_check; chan++)
2752 2753
		status[chan] = stmmac_napi_check(priv, chan,
						 DMA_DIR_RXTX);
2754

2755 2756
	for (chan = 0; chan < tx_channel_count; chan++) {
		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
			/* Try to bump up the dma threshold on this failure */
			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
			    (tc <= 256)) {
				tc += 64;
				if (priv->plat->force_thresh_dma_mode)
					stmmac_set_dma_operation_mode(priv,
								      tc,
								      tc,
								      chan);
				else
					stmmac_set_dma_operation_mode(priv,
								    tc,
								    SF_DMA_MODE,
								    chan);
				priv->xstats.threshold = tc;
			}
2773
		} else if (unlikely(status[chan] == tx_hard_error)) {
2774
			stmmac_tx_err(priv, chan);
2775
		}
2776
	}
2777 2778
}

2779 2780 2781 2782 2783
/**
 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
 * @priv: driver private structure
 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
 */
2784 2785 2786
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2787
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2788

2789
	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2790 2791

	if (priv->dma_cap.rmon) {
2792
		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2793 2794
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
2795
		netdev_info(priv->dev, "No MAC Management Counters available\n");
2796 2797
}

2798
/**
2799
 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2800
 * @priv: driver private structure
2801 2802 2803 2804 2805
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
2806 2807 2808
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
2809
	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2810 2811
}

2812
/**
2813
 * stmmac_check_ether_addr - check if the MAC addr is valid
2814 2815 2816 2817 2818
 * @priv: driver private structure
 * Description:
 * it is to verify if the MAC address is valid, in case of failures it
 * generates a random MAC address
 */
2819 2820 2821
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2822
		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
2823
		if (!is_valid_ether_addr(priv->dev->dev_addr))
2824
			eth_hw_addr_random(priv->dev);
2825 2826
		dev_info(priv->device, "device MAC address %pM\n",
			 priv->dev->dev_addr);
2827 2828 2829
	}
}

2830
/**
2831
 * stmmac_init_dma_engine - DMA init.
2832 2833 2834 2835 2836 2837
 * @priv: driver private structure
 * Description:
 * It inits the DMA invoking the specific MAC/GMAC callback.
 * Some DMA parameters can be passed from the platform;
 * in case of these are not passed a default is kept for the MAC or GMAC.
 */
2838 2839
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
2840 2841
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2842
	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2843
	struct stmmac_rx_queue *rx_q;
2844
	struct stmmac_tx_queue *tx_q;
2845
	u32 chan = 0;
2846
	int atds = 0;
2847
	int ret = 0;
2848

2849 2850
	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
		dev_err(priv->device, "Invalid DMA configuration\n");
2851
		return -EINVAL;
2852 2853
	}

2854 2855 2856
	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
		atds = 1;

2857
	ret = stmmac_reset(priv, priv->ioaddr);
2858 2859 2860 2861 2862
	if (ret) {
		dev_err(priv->device, "Failed to reset the dma\n");
		return ret;
	}

2863 2864 2865 2866 2867 2868
	/* DMA Configuration */
	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);

	if (priv->plat->axi)
		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);

2869 2870 2871 2872
	/* DMA CSR Channel configuration */
	for (chan = 0; chan < dma_csr_ch; chan++)
		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);

2873 2874 2875
	/* DMA RX Channel Configuration */
	for (chan = 0; chan < rx_channels_count; chan++) {
		rx_q = &priv->rx_queue[chan];
2876

2877 2878
		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
				    rx_q->dma_rx_phy, chan);
2879

2880
		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2881
				     (rx_q->buf_alloc_num *
2882
				      sizeof(struct dma_desc));
2883 2884 2885
		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
				       rx_q->rx_tail_addr, chan);
	}
2886

2887 2888 2889
	/* DMA TX Channel Configuration */
	for (chan = 0; chan < tx_channels_count; chan++) {
		tx_q = &priv->tx_queue[chan];
2890

2891 2892
		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
				    tx_q->dma_tx_phy, chan);
2893

2894
		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2895 2896 2897
		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
				       tx_q->tx_tail_addr, chan);
	}
2898

2899
	return ret;
2900 2901
}

2902 2903 2904 2905
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

2906 2907
	hrtimer_start(&tx_q->txtimer,
		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2908
		      HRTIMER_MODE_REL);
2909 2910
}

2911
/**
2912
 * stmmac_tx_timer - mitigation sw timer for tx.
2913
 * @t: data pointer
2914 2915 2916
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
2917
static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2918
{
2919
	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2920 2921
	struct stmmac_priv *priv = tx_q->priv_data;
	struct stmmac_channel *ch;
2922
	struct napi_struct *napi;
2923 2924

	ch = &priv->channel[tx_q->queue_index];
2925
	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2926

2927
	if (likely(napi_schedule_prep(napi))) {
2928 2929 2930 2931 2932
		unsigned long flags;

		spin_lock_irqsave(&ch->lock, flags);
		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
		spin_unlock_irqrestore(&ch->lock, flags);
2933
		__napi_schedule(napi);
2934
	}
2935 2936

	return HRTIMER_NORESTART;
2937 2938 2939
}

/**
2940
 * stmmac_init_coalesce - init mitigation options.
2941
 * @priv: driver private structure
2942
 * Description:
2943
 * This inits the coalesce parameters: i.e. timer rate,
2944 2945 2946
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
2947
static void stmmac_init_coalesce(struct stmmac_priv *priv)
2948
{
2949
	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2950
	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2951 2952 2953 2954 2955
	u32 chan;

	for (chan = 0; chan < tx_channel_count; chan++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];

2956 2957 2958
		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;

2959 2960
		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		tx_q->txtimer.function = stmmac_tx_timer;
2961
	}
2962 2963 2964

	for (chan = 0; chan < rx_channel_count; chan++)
		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2965 2966
}

2967 2968 2969 2970 2971 2972 2973
static void stmmac_set_rings_length(struct stmmac_priv *priv)
{
	u32 rx_channels_count = priv->plat->rx_queues_to_use;
	u32 tx_channels_count = priv->plat->tx_queues_to_use;
	u32 chan;

	/* set TX ring length */
2974 2975
	for (chan = 0; chan < tx_channels_count; chan++)
		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2976
				       (priv->dma_tx_size - 1), chan);
2977 2978

	/* set RX ring length */
2979 2980
	for (chan = 0; chan < rx_channels_count; chan++)
		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2981
				       (priv->dma_rx_size - 1), chan);
2982 2983
}

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/**
 *  stmmac_set_tx_queue_weight - Set TX queue weight
 *  @priv: driver private structure
 *  Description: It is used for setting TX queues weight
 */
static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
{
	u32 tx_queues_count = priv->plat->tx_queues_to_use;
	u32 weight;
	u32 queue;

	for (queue = 0; queue < tx_queues_count; queue++) {
		weight = priv->plat->tx_queues_cfg[queue].weight;
2997
		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2998 2999 3000
	}
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
/**
 *  stmmac_configure_cbs - Configure CBS in TX queue
 *  @priv: driver private structure
 *  Description: It is used for configuring CBS in AVB TX queues
 */
static void stmmac_configure_cbs(struct stmmac_priv *priv)
{
	u32 tx_queues_count = priv->plat->tx_queues_to_use;
	u32 mode_to_use;
	u32 queue;

3012 3013
	/* queue 0 is reserved for legacy traffic */
	for (queue = 1; queue < tx_queues_count; queue++) {
3014 3015 3016 3017
		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
		if (mode_to_use == MTL_QUEUE_DCB)
			continue;

3018
		stmmac_config_cbs(priv, priv->hw,
3019 3020 3021 3022 3023 3024 3025 3026
				priv->plat->tx_queues_cfg[queue].send_slope,
				priv->plat->tx_queues_cfg[queue].idle_slope,
				priv->plat->tx_queues_cfg[queue].high_credit,
				priv->plat->tx_queues_cfg[queue].low_credit,
				queue);
	}
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**
 *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
 *  @priv: driver private structure
 *  Description: It is used for mapping RX queues to RX dma channels
 */
static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 queue;
	u32 chan;

	for (queue = 0; queue < rx_queues_count; queue++) {
		chan = priv->plat->rx_queues_cfg[queue].chan;
3040
		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3041 3042 3043
	}
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
/**
 *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
 *  @priv: driver private structure
 *  Description: It is used for configuring the RX Queue Priority
 */
static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 queue;
	u32 prio;

	for (queue = 0; queue < rx_queues_count; queue++) {
		if (!priv->plat->rx_queues_cfg[queue].use_prio)
			continue;

		prio = priv->plat->rx_queues_cfg[queue].prio;
3060
		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	}
}

/**
 *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
 *  @priv: driver private structure
 *  Description: It is used for configuring the TX Queue Priority
 */
static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
{
	u32 tx_queues_count = priv->plat->tx_queues_to_use;
	u32 queue;
	u32 prio;

	for (queue = 0; queue < tx_queues_count; queue++) {
		if (!priv->plat->tx_queues_cfg[queue].use_prio)
			continue;

		prio = priv->plat->tx_queues_cfg[queue].prio;
3080
		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3081 3082 3083
	}
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
/**
 *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
 *  @priv: driver private structure
 *  Description: It is used for configuring the RX queue routing
 */
static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 queue;
	u8 packet;

	for (queue = 0; queue < rx_queues_count; queue++) {
		/* no specific packet type routing specified for the queue */
		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
			continue;

		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3101
		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3102 3103 3104
	}
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static void stmmac_mac_config_rss(struct stmmac_priv *priv)
{
	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
		priv->rss.enable = false;
		return;
	}

	if (priv->dev->features & NETIF_F_RXHASH)
		priv->rss.enable = true;
	else
		priv->rss.enable = false;

	stmmac_rss_configure(priv, priv->hw, &priv->rss,
			     priv->plat->rx_queues_to_use);
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/**
 *  stmmac_mtl_configuration - Configure MTL
 *  @priv: driver private structure
 *  Description: It is used for configurring MTL
 */
static void stmmac_mtl_configuration(struct stmmac_priv *priv)
{
	u32 rx_queues_count = priv->plat->rx_queues_to_use;
	u32 tx_queues_count = priv->plat->tx_queues_to_use;

3131
	if (tx_queues_count > 1)
3132 3133
		stmmac_set_tx_queue_weight(priv);

3134
	/* Configure MTL RX algorithms */
3135 3136 3137
	if (rx_queues_count > 1)
		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
				priv->plat->rx_sched_algorithm);
3138 3139

	/* Configure MTL TX algorithms */
3140 3141 3142
	if (tx_queues_count > 1)
		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
				priv->plat->tx_sched_algorithm);
3143

3144
	/* Configure CBS in AVB TX queues */
3145
	if (tx_queues_count > 1)
3146 3147
		stmmac_configure_cbs(priv);

3148
	/* Map RX MTL to DMA channels */
3149
	stmmac_rx_queue_dma_chan_map(priv);
3150

3151
	/* Enable MAC RX Queues */
3152
	stmmac_mac_enable_rx_queues(priv);
3153

3154
	/* Set RX priorities */
3155
	if (rx_queues_count > 1)
3156 3157 3158
		stmmac_mac_config_rx_queues_prio(priv);

	/* Set TX priorities */
3159
	if (tx_queues_count > 1)
3160
		stmmac_mac_config_tx_queues_prio(priv);
3161 3162

	/* Set RX routing */
3163
	if (rx_queues_count > 1)
3164
		stmmac_mac_config_rx_queues_routing(priv);
3165 3166 3167 3168

	/* Receive Side Scaling */
	if (rx_queues_count > 1)
		stmmac_mac_config_rss(priv);
3169 3170
}

3171 3172
static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
{
3173
	if (priv->dma_cap.asp) {
3174
		netdev_info(priv->dev, "Enabling Safety Features\n");
3175 3176
		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
					  priv->plat->safety_feat_cfg);
3177 3178 3179 3180 3181
	} else {
		netdev_info(priv->dev, "No Safety Features support found\n");
	}
}

3182 3183 3184 3185 3186
static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
{
	char *name;

	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3187
	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

	name = priv->wq_name;
	sprintf(name, "%s-fpe", priv->dev->name);

	priv->fpe_wq = create_singlethread_workqueue(name);
	if (!priv->fpe_wq) {
		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);

		return -ENOMEM;
	}
	netdev_info(priv->dev, "FPE workqueue start");

	return 0;
}

3203
/**
3204
 * stmmac_hw_setup - setup mac in a usable state.
3205
 *  @dev : pointer to the device structure.
3206
 *  @init_ptp: initialize PTP if set
3207
 *  Description:
3208 3209 3210 3211
 *  this is the main function to setup the HW in a usable state because the
 *  dma engine is reset, the core registers are configured (e.g. AXI,
 *  Checksum features, timers). The DMA is ready to start receiving and
 *  transmitting.
3212 3213 3214 3215
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
3216
static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3217 3218
{
	struct stmmac_priv *priv = netdev_priv(dev);
3219
	u32 rx_cnt = priv->plat->rx_queues_to_use;
3220
	u32 tx_cnt = priv->plat->tx_queues_to_use;
3221
	bool sph_en;
3222
	u32 chan;
3223 3224 3225 3226 3227
	int ret;

	/* DMA initialization and SW reset */
	ret = stmmac_init_dma_engine(priv);
	if (ret < 0) {
3228 3229
		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
			   __func__);
3230 3231 3232 3233
		return ret;
	}

	/* Copy the MAC addr into the HW  */
3234
	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3235

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	/* PS and related bits will be programmed according to the speed */
	if (priv->hw->pcs) {
		int speed = priv->plat->mac_port_sel_speed;

		if ((speed == SPEED_10) || (speed == SPEED_100) ||
		    (speed == SPEED_1000)) {
			priv->hw->ps = speed;
		} else {
			dev_warn(priv->device, "invalid port speed\n");
			priv->hw->ps = 0;
		}
	}

3249
	/* Initialize the MAC Core */
3250
	stmmac_core_init(priv, priv->hw, dev);
3251

3252
	/* Initialize MTL*/
3253
	stmmac_mtl_configuration(priv);
jpinto's avatar
jpinto committed
3254

3255
	/* Initialize Safety Features */
3256
	stmmac_safety_feat_configuration(priv);
3257

3258
	ret = stmmac_rx_ipc(priv, priv->hw);
3259
	if (!ret) {
3260
		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3261
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3262
		priv->hw->rx_csum = 0;
3263 3264
	}

3265
	/* Enable the MAC Rx/Tx */
3266
	stmmac_mac_set(priv, priv->ioaddr, true);
3267

3268 3269 3270
	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

3271 3272
	stmmac_mmc_setup(priv);

3273
	if (init_ptp) {
3274 3275 3276 3277
		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
		if (ret < 0)
			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);

3278
		ret = stmmac_init_ptp(priv);
3279 3280 3281 3282
		if (ret == -EOPNOTSUPP)
			netdev_warn(priv->dev, "PTP not supported by HW\n");
		else if (ret)
			netdev_warn(priv->dev, "PTP init failed\n");
3283
	}
3284

3285 3286 3287 3288 3289
	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;

	/* Convert the timer from msec to usec */
	if (!priv->tx_lpi_timer)
		priv->tx_lpi_timer = eee_timer * 1000;
3290

3291
	if (priv->use_riwt) {
3292 3293 3294 3295 3296
		u32 queue;

		for (queue = 0; queue < rx_cnt; queue++) {
			if (!priv->rx_riwt[queue])
				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3297

3298 3299 3300
			stmmac_rx_watchdog(priv, priv->ioaddr,
					   priv->rx_riwt[queue], queue);
		}
3301 3302
	}

3303
	if (priv->hw->pcs)
3304
		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3305

3306 3307 3308
	/* set TX and RX rings length */
	stmmac_set_rings_length(priv);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3309
	/* Enable TSO */
3310
	if (priv->tso) {
3311 3312 3313 3314 3315 3316 3317
		for (chan = 0; chan < tx_cnt; chan++) {
			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];

			/* TSO and TBS cannot co-exist */
			if (tx_q->tbs & STMMAC_TBS_AVAIL)
				continue;

3318
			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3319
		}
3320
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3321

3322
	/* Enable Split Header */
3323 3324 3325 3326
	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
	for (chan = 0; chan < rx_cnt; chan++)
		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);

3327

3328 3329 3330 3331
	/* VLAN Tag Insertion */
	if (priv->dma_cap.vlins)
		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);

3332 3333 3334 3335 3336 3337 3338 3339
	/* TBS */
	for (chan = 0; chan < tx_cnt; chan++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;

		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
	}

3340 3341 3342 3343
	/* Configure real RX and TX queues */
	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);

3344 3345 3346
	/* Start the ball rolling... */
	stmmac_start_all_dma(priv);

3347 3348 3349 3350 3351 3352 3353
	if (priv->dma_cap.fpesel) {
		stmmac_fpe_start_wq(priv);

		if (priv->plat->fpe_cfg->enable)
			stmmac_fpe_handshake(priv, true);
	}

3354 3355 3356
	return 0;
}

3357 3358 3359 3360 3361 3362 3363
static void stmmac_hw_teardown(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	clk_disable_unprepare(priv->plat->clk_ptp_ref);
}

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
static void stmmac_free_irq(struct net_device *dev,
			    enum request_irq_err irq_err, int irq_idx)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int j;

	switch (irq_err) {
	case REQ_IRQ_ERR_ALL:
		irq_idx = priv->plat->tx_queues_to_use;
		fallthrough;
	case REQ_IRQ_ERR_TX:
		for (j = irq_idx - 1; j >= 0; j--) {
3376 3377
			if (priv->tx_irq[j] > 0) {
				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3378
				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3379
			}
3380 3381 3382 3383 3384
		}
		irq_idx = priv->plat->rx_queues_to_use;
		fallthrough;
	case REQ_IRQ_ERR_RX:
		for (j = irq_idx - 1; j >= 0; j--) {
3385 3386
			if (priv->rx_irq[j] > 0) {
				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3387
				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3388
			}
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		}

		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
			free_irq(priv->sfty_ue_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_SFTY_UE:
		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
			free_irq(priv->sfty_ce_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_SFTY_CE:
		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
			free_irq(priv->lpi_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_LPI:
		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
			free_irq(priv->wol_irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_WOL:
		free_irq(dev->irq, dev);
		fallthrough;
	case REQ_IRQ_ERR_MAC:
	case REQ_IRQ_ERR_NO:
		/* If MAC IRQ request error, no more IRQ to free */
		break;
	}
}

static int stmmac_request_irq_multi_msi(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
3419
	enum request_irq_err irq_err;
3420
	cpumask_t cpu_mask;
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	int irq_idx = 0;
	char *int_name;
	int ret;
	int i;

	/* For common interrupt */
	int_name = priv->int_name_mac;
	sprintf(int_name, "%s:%s", dev->name, "mac");
	ret = request_irq(dev->irq, stmmac_mac_interrupt,
			  0, int_name, dev);
	if (unlikely(ret < 0)) {
		netdev_err(priv->dev,
			   "%s: alloc mac MSI %d (error: %d)\n",
			   __func__, dev->irq, ret);
		irq_err = REQ_IRQ_ERR_MAC;
		goto irq_error;
	}

	/* Request the Wake IRQ in case of another line
	 * is used for WoL
	 */
	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
		int_name = priv->int_name_wol;
		sprintf(int_name, "%s:%s", dev->name, "wol");
		ret = request_irq(priv->wol_irq,
				  stmmac_mac_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc wol MSI %d (error: %d)\n",
				   __func__, priv->wol_irq, ret);
			irq_err = REQ_IRQ_ERR_WOL;
			goto irq_error;
		}
	}

	/* Request the LPI IRQ in case of another line
	 * is used for LPI
	 */
	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
		int_name = priv->int_name_lpi;
		sprintf(int_name, "%s:%s", dev->name, "lpi");
		ret = request_irq(priv->lpi_irq,
				  stmmac_mac_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc lpi MSI %d (error: %d)\n",
				   __func__, priv->lpi_irq, ret);
			irq_err = REQ_IRQ_ERR_LPI;
			goto irq_error;
		}
	}

	/* Request the Safety Feature Correctible Error line in
	 * case of another line is used
	 */
	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
		int_name = priv->int_name_sfty_ce;
		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
		ret = request_irq(priv->sfty_ce_irq,
				  stmmac_safety_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc sfty ce MSI %d (error: %d)\n",
				   __func__, priv->sfty_ce_irq, ret);
			irq_err = REQ_IRQ_ERR_SFTY_CE;
			goto irq_error;
		}
	}

	/* Request the Safety Feature Uncorrectible Error line in
	 * case of another line is used
	 */
	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
		int_name = priv->int_name_sfty_ue;
		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
		ret = request_irq(priv->sfty_ue_irq,
				  stmmac_safety_interrupt,
				  0, int_name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc sfty ue MSI %d (error: %d)\n",
				   __func__, priv->sfty_ue_irq, ret);
			irq_err = REQ_IRQ_ERR_SFTY_UE;
			goto irq_error;
		}
	}

	/* Request Rx MSI irq */
	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
		if (priv->rx_irq[i] == 0)
			continue;

		int_name = priv->int_name_rx_irq[i];
		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
		ret = request_irq(priv->rx_irq[i],
				  stmmac_msi_intr_rx,
				  0, int_name, &priv->rx_queue[i]);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
				   __func__, i, priv->rx_irq[i], ret);
			irq_err = REQ_IRQ_ERR_RX;
			irq_idx = i;
			goto irq_error;
		}
3529 3530 3531
		cpumask_clear(&cpu_mask);
		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	}

	/* Request Tx MSI irq */
	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
		if (priv->tx_irq[i] == 0)
			continue;

		int_name = priv->int_name_tx_irq[i];
		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
		ret = request_irq(priv->tx_irq[i],
				  stmmac_msi_intr_tx,
				  0, int_name, &priv->tx_queue[i]);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
				   __func__, i, priv->tx_irq[i], ret);
			irq_err = REQ_IRQ_ERR_TX;
			irq_idx = i;
			goto irq_error;
		}
3552 3553 3554
		cpumask_clear(&cpu_mask);
		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	}

	return 0;

irq_error:
	stmmac_free_irq(dev, irq_err, irq_idx);
	return ret;
}

static int stmmac_request_irq_single(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
3567
	enum request_irq_err irq_err;
3568 3569 3570 3571 3572 3573 3574 3575 3576
	int ret;

	ret = request_irq(dev->irq, stmmac_interrupt,
			  IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		netdev_err(priv->dev,
			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
			   __func__, dev->irq, ret);
		irq_err = REQ_IRQ_ERR_MAC;
3577
		goto irq_error;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	}

	/* Request the Wake IRQ in case of another line
	 * is used for WoL
	 */
	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
				   __func__, priv->wol_irq, ret);
			irq_err = REQ_IRQ_ERR_WOL;
3591
			goto irq_error;
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
		}
	}

	/* Request the IRQ lines */
	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			netdev_err(priv->dev,
				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
				   __func__, priv->lpi_irq, ret);
			irq_err = REQ_IRQ_ERR_LPI;
			goto irq_error;
		}
	}

	return 0;

irq_error:
	stmmac_free_irq(dev, irq_err, 0);
	return ret;
}

static int stmmac_request_irq(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

	/* Request the IRQ lines */
	if (priv->plat->multi_msi_en)
		ret = stmmac_request_irq_multi_msi(dev);
	else
		ret = stmmac_request_irq_single(dev);

	return ret;
}

3629 3630 3631 3632 3633 3634 3635 3636 3637
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
3638
int stmmac_open(struct net_device *dev)
3639 3640
{
	struct stmmac_priv *priv = netdev_priv(dev);
3641
	int mode = priv->plat->phy_interface;
3642
	int bfsize = 0;
3643
	u32 chan;
3644 3645
	int ret;

3646 3647 3648 3649 3650 3651
	ret = pm_runtime_get_sync(priv->device);
	if (ret < 0) {
		pm_runtime_put_noidle(priv->device);
		return ret;
	}

3652
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3653
	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3654
	    (!priv->hw->xpcs ||
3655
	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3656 3657
		ret = stmmac_init_phy(dev);
		if (ret) {
3658 3659 3660
			netdev_err(priv->dev,
				   "%s: Cannot attach to PHY (error: %d)\n",
				   __func__, ret);
3661
			goto init_phy_error;
3662
		}
3663
	}
3664

3665 3666 3667 3668
	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
	if (bfsize < 0)
		bfsize = 0;

	if (bfsize < BUF_SIZE_16KiB)
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);

	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

3679
	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3680

3681 3682 3683 3684 3685
	if (!priv->dma_tx_size)
		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
	if (!priv->dma_rx_size)
		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;

3686 3687 3688 3689 3690
	/* Earlier check for TBS */
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;

3691
		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3692 3693 3694
		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
	}

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
	ret = alloc_dma_desc_resources(priv);
	if (ret < 0) {
		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
			   __func__);
		goto dma_desc_error;
	}

	ret = init_dma_desc_rings(dev, GFP_KERNEL);
	if (ret < 0) {
		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
			   __func__);
		goto init_error;
	}

3709
	ret = stmmac_hw_setup(dev, true);
3710
	if (ret < 0) {
3711
		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3712
		goto init_error;
3713 3714
	}

3715
	stmmac_init_coalesce(priv);
3716

3717
	phylink_start(priv->phylink);
3718 3719
	/* We may have called phylink_speed_down before */
	phylink_speed_up(priv->phylink);
3720

3721 3722
	ret = stmmac_request_irq(dev);
	if (ret)
3723
		goto irq_error;
3724

3725
	stmmac_enable_all_queues(priv);
3726
	netif_tx_start_all_queues(priv->dev);
3727

3728
	return 0;
3729

3730
irq_error:
3731
	phylink_stop(priv->phylink);
3732

3733
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3734
		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3735

3736
	stmmac_hw_teardown(dev);
3737 3738
init_error:
	free_dma_desc_resources(priv);
3739
dma_desc_error:
3740
	phylink_disconnect_phy(priv->phylink);
3741 3742
init_phy_error:
	pm_runtime_put(priv->device);
3743
	return ret;
3744 3745
}

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
{
	set_bit(__FPE_REMOVING, &priv->fpe_task_state);

	if (priv->fpe_wq)
		destroy_workqueue(priv->fpe_wq);

	netdev_info(priv->dev, "FPE workqueue stop");
}

3756 3757 3758 3759 3760 3761
/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
3762
int stmmac_release(struct net_device *dev)
3763 3764
{
	struct stmmac_priv *priv = netdev_priv(dev);
3765
	u32 chan;
3766

3767 3768
	if (device_may_wakeup(priv->device))
		phylink_speed_down(priv->phylink, false);
3769
	/* Stop and disconnect the PHY */
3770 3771
	phylink_stop(priv->phylink);
	phylink_disconnect_phy(priv->phylink);
3772

3773
	stmmac_disable_all_queues(priv);
3774

3775
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3776
		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3777

3778
	/* Free the IRQ lines */
3779
	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3780

3781 3782 3783 3784 3785
	if (priv->eee_enabled) {
		priv->tx_path_in_lpi_mode = false;
		del_timer_sync(&priv->eee_ctrl_timer);
	}

3786
	/* Stop TX/RX DMA and clear the descriptors */
3787
	stmmac_stop_all_dma(priv);
3788 3789 3790 3791

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

3792
	/* Disable the MAC Rx/Tx */
3793
	stmmac_mac_set(priv, priv->ioaddr, false);
3794 3795 3796

	netif_carrier_off(dev);

3797 3798
	stmmac_release_ptp(priv);

3799 3800
	pm_runtime_put(priv->device);

3801 3802 3803
	if (priv->dma_cap.fpesel)
		stmmac_fpe_stop_wq(priv);

3804 3805 3806
	return 0;
}

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
			       struct stmmac_tx_queue *tx_q)
{
	u16 tag = 0x0, inner_tag = 0x0;
	u32 inner_type = 0x0;
	struct dma_desc *p;

	if (!priv->dma_cap.vlins)
		return false;
	if (!skb_vlan_tag_present(skb))
		return false;
	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
		inner_tag = skb_vlan_tag_get(skb);
		inner_type = STMMAC_VLAN_INSERT;
	}

	tag = skb_vlan_tag_get(skb);

3825 3826 3827 3828 3829
	if (tx_q->tbs & STMMAC_TBS_AVAIL)
		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
	else
		p = &tx_q->dma_tx[tx_q->cur_tx];

3830 3831 3832 3833
	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
		return false;

	stmmac_set_tx_owner(priv, p);
3834
	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3835 3836 3837
	return true;
}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3838 3839 3840 3841 3842
/**
 *  stmmac_tso_allocator - close entry point of the driver
 *  @priv: driver private structure
 *  @des: buffer start address
 *  @total_len: total length to fill in descriptors
3843
 *  @last_segment: condition for the last descriptor
3844
 *  @queue: TX queue index
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3845 3846 3847 3848
 *  Description:
 *  This function fills descriptor and request new descriptors according to
 *  buffer length to fill
 */
3849
static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3850
				 int total_len, bool last_segment, u32 queue)
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3851
{
3852
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3853
	struct dma_desc *desc;
3854
	u32 buff_size;
3855
	int tmp_len;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3856 3857 3858 3859

	tmp_len = total_len;

	while (tmp_len > 0) {
3860 3861
		dma_addr_t curr_addr;

3862 3863
		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
						priv->dma_tx_size);
3864
		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3865 3866 3867 3868 3869

		if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
		else
			desc = &tx_q->dma_tx[tx_q->cur_tx];
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3870

3871 3872 3873 3874 3875 3876
		curr_addr = des + (total_len - tmp_len);
		if (priv->dma_cap.addr64 <= 32)
			desc->des0 = cpu_to_le32(curr_addr);
		else
			stmmac_set_desc_addr(priv, desc, curr_addr);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3877 3878 3879
		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
			    TSO_MAX_BUFF_SIZE : tmp_len;

3880 3881 3882 3883
		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
				0, 1,
				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
				0, 0);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3884 3885 3886 3887 3888

		tmp_len -= TSO_MAX_BUFF_SIZE;
	}
}

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	int desc_size;

	if (likely(priv->extend_desc))
		desc_size = sizeof(struct dma_extended_desc);
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		desc_size = sizeof(struct dma_edesc);
	else
		desc_size = sizeof(struct dma_desc);

	/* The own bit must be the latest setting done when prepare the
	 * descriptor and then barrier is needed to make sure that
	 * all is coherent before granting the DMA engine.
	 */
	wmb();

	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
/**
 *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description: this is the transmit function that is called on TSO frames
 *  (support available on GMAC4 and newer chips).
 *  Diagram below show the ring programming in case of TSO frames:
 *
 *  First Descriptor
 *   --------
 *   | DES0 |---> buffer1 = L2/L3/L4 header
 *   | DES1 |---> TCP Payload (can continue on next descr...)
 *   | DES2 |---> buffer 1 and 2 len
 *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
 *   --------
 *	|
 *     ...
 *	|
 *   --------
 *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
 *   | DES1 | --|
 *   | DES2 | --> buffer 1 and 2 len
 *   | DES3 |
 *   --------
 *
 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
 */
static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
{
3940
	struct dma_desc *desc, *first, *mss_desc = NULL;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3941 3942
	struct stmmac_priv *priv = netdev_priv(dev);
	int nfrags = skb_shinfo(skb)->nr_frags;
3943
	u32 queue = skb_get_queue_mapping(skb);
3944
	unsigned int first_entry, tx_packets;
3945
	int tmp_pay_len = 0, first_tx;
3946
	struct stmmac_tx_queue *tx_q;
3947
	bool has_vlan, set_ic;
3948
	u8 proto_hdr_len, hdr;
3949
	u32 pay_len, mss;
3950
	dma_addr_t des;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3951 3952
	int i;

3953
	tx_q = &priv->tx_queue[queue];
3954
	first_tx = tx_q->cur_tx;
3955

Alexandre TORGUE's avatar
Alexandre TORGUE committed
3956
	/* Compute header lengths */
3957 3958 3959 3960 3961 3962 3963
	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
		hdr = sizeof(struct udphdr);
	} else {
		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
		hdr = tcp_hdrlen(skb);
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3964 3965

	/* Desc availability based on threshold should be enough safe */
3966
	if (unlikely(stmmac_tx_avail(priv, queue) <
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3967
		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3968 3969 3970
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
								queue));
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3971
			/* This is a hard error, log it. */
3972 3973 3974
			netdev_err(priv->dev,
				   "%s: Tx Ring full when queue awake\n",
				   __func__);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3975 3976 3977 3978 3979 3980 3981 3982 3983
		}
		return NETDEV_TX_BUSY;
	}

	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */

	mss = skb_shinfo(skb)->gso_size;

	/* set new MSS value if needed */
3984
	if (mss != tx_q->mss) {
3985 3986 3987 3988 3989
		if (tx_q->tbs & STMMAC_TBS_AVAIL)
			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
		else
			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];

3990
		stmmac_set_mss(priv, mss_desc, mss);
3991
		tx_q->mss = mss;
3992 3993
		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
						priv->dma_tx_size);
3994
		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
3995 3996 3997
	}

	if (netif_msg_tx_queued(priv)) {
3998 3999
		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
			__func__, hdr, proto_hdr_len, pay_len, mss);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4000 4001 4002 4003
		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
			skb->data_len);
	}

4004 4005 4006
	/* Check if VLAN can be inserted by HW */
	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);

4007
	first_entry = tx_q->cur_tx;
4008
	WARN_ON(tx_q->tx_skbuff[first_entry]);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4009

4010 4011 4012 4013
	if (tx_q->tbs & STMMAC_TBS_AVAIL)
		desc = &tx_q->dma_entx[first_entry].basic;
	else
		desc = &tx_q->dma_tx[first_entry];
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4014 4015
	first = desc;

4016 4017 4018
	if (has_vlan)
		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4019 4020 4021 4022 4023 4024
	/* first descriptor: fill Headers on Buf1 */
	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
			     DMA_TO_DEVICE);
	if (dma_mapping_error(priv->device, des))
		goto dma_map_err;

4025 4026
	tx_q->tx_skbuff_dma[first_entry].buf = des;
	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4027 4028
	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4029

4030 4031
	if (priv->dma_cap.addr64 <= 32) {
		first->des0 = cpu_to_le32(des);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4032

4033 4034 4035
		/* Fill start of payload in buff2 of first descriptor */
		if (pay_len)
			first->des1 = cpu_to_le32(des + proto_hdr_len);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4036

4037 4038 4039 4040 4041
		/* If needed take extra descriptors to fill the remaining payload */
		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
	} else {
		stmmac_set_desc_addr(priv, first, des);
		tmp_pay_len = pay_len;
4042
		des += proto_hdr_len;
4043
		pay_len = 0;
4044
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4045

4046
	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4047 4048 4049 4050 4051 4052 4053 4054

	/* Prepare fragments */
	for (i = 0; i < nfrags; i++) {
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		des = skb_frag_dma_map(priv->device, frag, 0,
				       skb_frag_size(frag),
				       DMA_TO_DEVICE);
4055 4056
		if (dma_mapping_error(priv->device, des))
			goto dma_map_err;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4057 4058

		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4059
				     (i == nfrags - 1), queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4060

4061 4062 4063
		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4064
		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4065 4066
	}

4067
	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4068

4069 4070
	/* Only the last descriptor gets to point to the skb. */
	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4071
	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4072

4073
	/* Manage tx mitigation */
4074 4075 4076 4077 4078
	tx_packets = (tx_q->cur_tx + 1) - first_tx;
	tx_q->tx_count_frames += tx_packets;

	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
		set_ic = true;
4079
	else if (!priv->tx_coal_frames[queue])
4080
		set_ic = false;
4081
	else if (tx_packets > priv->tx_coal_frames[queue])
4082
		set_ic = true;
4083 4084
	else if ((tx_q->tx_count_frames %
		  priv->tx_coal_frames[queue]) < tx_packets)
4085 4086 4087 4088 4089
		set_ic = true;
	else
		set_ic = false;

	if (set_ic) {
4090 4091 4092 4093 4094
		if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
		else
			desc = &tx_q->dma_tx[tx_q->cur_tx];

4095 4096 4097 4098 4099
		tx_q->tx_count_frames = 0;
		stmmac_set_tx_ic(priv, desc);
		priv->xstats.tx_set_ic_bit++;
	}

4100 4101 4102 4103 4104
	/* We've used all descriptors we need for this skb, however,
	 * advance cur_tx so that it references a fresh descriptor.
	 * ndo_start_xmit will fill this descriptor the next time it's
	 * called and stmmac_tx_clean may clean up to this descriptor.
	 */
4105
	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4106

4107
	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4108 4109
		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
			  __func__);
4110
		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4111 4112 4113 4114 4115 4116
	}

	dev->stats.tx_bytes += skb->len;
	priv->xstats.tx_tso_frames++;
	priv->xstats.tx_tso_nfrags += nfrags;

4117 4118 4119
	if (priv->sarc_type)
		stmmac_set_desc_sarc(priv, first, priv->sarc_type);

4120
	skb_tx_timestamp(skb);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4121 4122 4123 4124 4125

	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     priv->hwts_tx_en)) {
		/* declare that device is doing timestamping */
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4126
		stmmac_enable_tx_timestamp(priv, first);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4127 4128 4129
	}

	/* Complete the first descriptor before granting the DMA */
4130
	stmmac_prepare_tso_tx_desc(priv, first, 1,
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4131 4132
			proto_hdr_len,
			pay_len,
4133
			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4134
			hdr / 4, (skb->len - proto_hdr_len));
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4135 4136

	/* If context desc is used to change MSS */
4137 4138 4139 4140 4141 4142 4143
	if (mss_desc) {
		/* Make sure that first descriptor has been completely
		 * written, including its own bit. This is because MSS is
		 * actually before first descriptor, so we need to make
		 * sure that MSS's own bit is the last thing written.
		 */
		dma_wmb();
4144
		stmmac_set_tx_owner(priv, mss_desc);
4145
	}
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4146 4147 4148

	if (netif_msg_pktdata(priv)) {
		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4149 4150
			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
			tx_q->cur_tx, first, nfrags);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4151 4152 4153 4154
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb_headlen(skb));
	}

4155
	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4156

4157
	stmmac_flush_tx_descriptors(priv, queue);
4158
	stmmac_tx_timer_arm(priv, queue);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

	return NETDEV_TX_OK;

dma_map_err:
	dev_err(priv->device, "Tx dma map failed\n");
	dev_kfree_skb(skb);
	priv->dev->stats.tx_dropped++;
	return NETDEV_TX_OK;
}

4169
/**
4170
 *  stmmac_xmit - Tx entry point of the driver
4171 4172
 *  @skb : the socket buffer
 *  @dev : device pointer
4173 4174 4175
 *  Description : this is the tx entry point of the driver.
 *  It programs the chain or the ring and supports oversized frames
 *  and SG feature.
4176 4177 4178
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
4179
	unsigned int first_entry, tx_packets, enh_desc;
4180
	struct stmmac_priv *priv = netdev_priv(dev);
4181
	unsigned int nopaged_len = skb_headlen(skb);
4182
	int i, csum_insertion = 0, is_jumbo = 0;
4183
	u32 queue = skb_get_queue_mapping(skb);
4184
	int nfrags = skb_shinfo(skb)->nr_frags;
4185
	int gso = skb_shinfo(skb)->gso_type;
4186
	struct dma_edesc *tbs_desc = NULL;
4187
	struct dma_desc *desc, *first;
4188
	struct stmmac_tx_queue *tx_q;
4189
	bool has_vlan, set_ic;
4190
	int entry, first_tx;
4191
	dma_addr_t des;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4192

4193
	tx_q = &priv->tx_queue[queue];
4194
	first_tx = tx_q->cur_tx;
4195

4196
	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4197 4198
		stmmac_disable_eee_mode(priv);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4199 4200
	/* Manage oversized TCP frames for GMAC4 device */
	if (skb_is_gso(skb) && priv->tso) {
4201 4202 4203
		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
			return stmmac_tso_xmit(skb, dev);
		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4204 4205
			return stmmac_tso_xmit(skb, dev);
	}
4206

4207
	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4208 4209 4210
		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
								queue));
4211
			/* This is a hard error, log it. */
4212 4213 4214
			netdev_err(priv->dev,
				   "%s: Tx Ring full when queue awake\n",
				   __func__);
4215 4216 4217 4218
		}
		return NETDEV_TX_BUSY;
	}

4219 4220 4221
	/* Check if VLAN can be inserted by HW */
	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);

4222
	entry = tx_q->cur_tx;
4223
	first_entry = entry;
4224
	WARN_ON(tx_q->tx_skbuff[first_entry]);
4225

4226
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4227

4228
	if (likely(priv->extend_desc))
4229
		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4230 4231
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		desc = &tx_q->dma_entx[entry].basic;
4232
	else
4233
		desc = tx_q->dma_tx + entry;
4234

4235 4236
	first = desc;

4237 4238 4239
	if (has_vlan)
		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);

4240
	enh_desc = priv->plat->enh_desc;
4241
	/* To program the descriptors according to the size of the frame */
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
4242
	if (enh_desc)
4243
		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
4244

4245
	if (unlikely(is_jumbo)) {
4246
		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4247
		if (unlikely(entry < 0) && (entry != -EINVAL))
4248
			goto dma_map_err;
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
4249
	}
4250 4251

	for (i = 0; i < nfrags; i++) {
4252 4253
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
4254
		bool last_segment = (i == (nfrags - 1));
4255

4256
		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4257
		WARN_ON(tx_q->tx_skbuff[entry]);
4258

4259
		if (likely(priv->extend_desc))
4260
			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4261 4262
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[entry].basic;
4263
		else
4264
			desc = tx_q->dma_tx + entry;
4265

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4266 4267 4268
		des = skb_frag_dma_map(priv->device, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->device, des))
4269 4270
			goto dma_map_err; /* should reuse desc w/o issues */

4271
		tx_q->tx_skbuff_dma[entry].buf = des;
4272 4273

		stmmac_set_desc_addr(priv, desc, des);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4274

4275 4276 4277
		tx_q->tx_skbuff_dma[entry].map_as_page = true;
		tx_q->tx_skbuff_dma[entry].len = len;
		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4278
		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4279 4280

		/* Prepare the descriptor and set the own bit too */
4281 4282
		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
				priv->mode, 1, last_segment, skb->len);
4283 4284
	}

4285 4286
	/* Only the last descriptor gets to point to the skb. */
	tx_q->tx_skbuff[entry] = skb;
4287
	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4288

4289 4290 4291 4292 4293
	/* According to the coalesce parameter the IC bit for the latest
	 * segment is reset and the timer re-started to clean the tx status.
	 * This approach takes care about the fragments: desc is the first
	 * element in case of no SG.
	 */
4294 4295 4296 4297 4298
	tx_packets = (entry + 1) - first_tx;
	tx_q->tx_count_frames += tx_packets;

	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
		set_ic = true;
4299
	else if (!priv->tx_coal_frames[queue])
4300
		set_ic = false;
4301
	else if (tx_packets > priv->tx_coal_frames[queue])
4302
		set_ic = true;
4303 4304
	else if ((tx_q->tx_count_frames %
		  priv->tx_coal_frames[queue]) < tx_packets)
4305 4306 4307 4308 4309
		set_ic = true;
	else
		set_ic = false;

	if (set_ic) {
4310 4311
		if (likely(priv->extend_desc))
			desc = &tx_q->dma_etx[entry].basic;
4312 4313
		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
			desc = &tx_q->dma_entx[entry].basic;
4314 4315 4316 4317 4318 4319 4320 4321
		else
			desc = &tx_q->dma_tx[entry];

		tx_q->tx_count_frames = 0;
		stmmac_set_tx_ic(priv, desc);
		priv->xstats.tx_set_ic_bit++;
	}

4322 4323 4324 4325 4326
	/* We've used all descriptors we need for this skb, however,
	 * advance cur_tx so that it references a fresh descriptor.
	 * ndo_start_xmit will fill this descriptor the next time it's
	 * called and stmmac_tx_clean may clean up to this descriptor.
	 */
4327
	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4328
	tx_q->cur_tx = entry;
4329 4330

	if (netif_msg_pktdata(priv)) {
4331 4332
		netdev_dbg(priv->dev,
			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4333
			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4334
			   entry, first, nfrags);
4335

4336
		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4337 4338
		print_pkt(skb->data, skb->len);
	}
4339

4340
	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4341 4342
		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
			  __func__);
4343
		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4344 4345 4346 4347
	}

	dev->stats.tx_bytes += skb->len;

4348 4349 4350
	if (priv->sarc_type)
		stmmac_set_desc_sarc(priv, first, priv->sarc_type);

4351
	skb_tx_timestamp(skb);
4352

4353 4354 4355 4356 4357 4358 4359
	/* Ready to fill the first descriptor and set the OWN bit w/o any
	 * problems because all the descriptors are actually ready to be
	 * passed to the DMA engine.
	 */
	if (likely(!is_jumbo)) {
		bool last_segment = (nfrags == 0);

Alexandre TORGUE's avatar
Alexandre TORGUE committed
4360 4361 4362
		des = dma_map_single(priv->device, skb->data,
				     nopaged_len, DMA_TO_DEVICE);
		if (dma_mapping_error(priv->device, des))
4363 4364
			goto dma_map_err;

4365
		tx_q->tx_skbuff_dma[first_entry].buf = des;
4366 4367
		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4368 4369

		stmmac_set_desc_addr(priv, first, des);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4370

4371 4372
		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4373 4374 4375 4376 4377

		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
			     priv->hwts_tx_en)) {
			/* declare that device is doing timestamping */
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4378
			stmmac_enable_tx_timestamp(priv, first);
4379 4380 4381
		}

		/* Prepare the first descriptor setting the OWN bit too */
4382
		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4383
				csum_insertion, priv->mode, 0, last_segment,
4384
				skb->len);
4385 4386
	}

4387 4388 4389 4390 4391 4392 4393 4394 4395
	if (tx_q->tbs & STMMAC_TBS_EN) {
		struct timespec64 ts = ns_to_timespec64(skb->tstamp);

		tbs_desc = &tx_q->dma_entx[first_entry];
		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
	}

	stmmac_set_tx_owner(priv, first);

4396
	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4397

4398
	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4399

4400
	stmmac_flush_tx_descriptors(priv, queue);
4401
	stmmac_tx_timer_arm(priv, queue);
4402

4403
	return NETDEV_TX_OK;
4404

4405
dma_map_err:
4406
	netdev_err(priv->dev, "Tx DMA map failed\n");
4407 4408
	dev_kfree_skb(skb);
	priv->dev->stats.tx_dropped++;
4409 4410 4411
	return NETDEV_TX_OK;
}

4412 4413
static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
{
4414 4415
	struct vlan_ethhdr *veth;
	__be16 vlan_proto;
4416 4417
	u16 vlanid;

4418 4419 4420 4421 4422 4423 4424
	veth = (struct vlan_ethhdr *)skb->data;
	vlan_proto = veth->h_vlan_proto;

	if ((vlan_proto == htons(ETH_P_8021Q) &&
	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
	    (vlan_proto == htons(ETH_P_8021AD) &&
	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4425
		/* pop the vlan tag */
4426 4427
		vlanid = ntohs(veth->h_vlan_TCI);
		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4428
		skb_pull(skb, VLAN_HLEN);
4429
		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4430 4431 4432
	}
}

4433
/**
4434
 * stmmac_rx_refill - refill used skb preallocated buffers
4435
 * @priv: driver private structure
4436
 * @queue: RX queue index
4437 4438 4439
 * Description : this is to reallocate the skb for the reception process
 * that is based on zero-copy.
 */
4440
static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4441
{
4442
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4443
	int dirty = stmmac_rx_dirty(priv, queue);
4444 4445
	unsigned int entry = rx_q->dirty_rx;

4446
	while (dirty-- > 0) {
4447
		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4448
		struct dma_desc *p;
4449
		bool use_rx_wd;
4450 4451

		if (priv->extend_desc)
4452
			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4453
		else
4454
			p = rx_q->dma_rx + entry;
4455

4456 4457 4458
		if (!buf->page) {
			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
			if (!buf->page)
4459
				break;
4460
		}
4461

4462 4463 4464 4465 4466 4467 4468 4469
		if (priv->sph && !buf->sec_page) {
			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
			if (!buf->sec_page)
				break;

			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
		}

4470
		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4471

4472
		stmmac_set_desc_addr(priv, p, buf->addr);
4473 4474 4475 4476
		if (priv->sph)
			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
		else
			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4477
		stmmac_refill_desc3(priv, rx_q, p);
Alexandre TORGUE's avatar
Alexandre TORGUE committed
4478

4479
		rx_q->rx_count_frames++;
4480 4481
		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4482
			rx_q->rx_count_frames = 0;
4483

4484
		use_rx_wd = !priv->rx_coal_frames[queue];
4485 4486 4487
		use_rx_wd |= rx_q->rx_count_frames > 0;
		if (!priv->use_riwt)
			use_rx_wd = false;
4488

Pavel Machek's avatar
Pavel Machek committed
4489
		dma_wmb();
4490
		stmmac_set_rx_owner(priv, p, use_rx_wd);
4491

4492
		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4493
	}
4494
	rx_q->dirty_rx = entry;
4495 4496
	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4497
	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4498 4499
}

Jose Abreu's avatar
Jose Abreu committed
4500 4501 4502 4503 4504
static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
				       struct dma_desc *p,
				       int status, unsigned int len)
{
	unsigned int plen = 0, hlen = 0;
4505
	int coe = priv->hw->rx_csum;
Jose Abreu's avatar
Jose Abreu committed
4506 4507 4508 4509 4510 4511

	/* Not first descriptor, buffer is always zero */
	if (priv->sph && len)
		return 0;

	/* First descriptor, get split header length */
4512
	stmmac_get_rx_header_len(priv, p, &hlen);
Jose Abreu's avatar
Jose Abreu committed
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	if (priv->sph && hlen) {
		priv->xstats.rx_split_hdr_pkt_n++;
		return hlen;
	}

	/* First descriptor, not last descriptor and not split header */
	if (status & rx_not_ls)
		return priv->dma_buf_sz;

	plen = stmmac_get_rx_frame_len(priv, p, coe);

	/* First descriptor and last descriptor and not split header */
	return min_t(unsigned int, priv->dma_buf_sz, plen);
}

static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
				       struct dma_desc *p,
				       int status, unsigned int len)
{
	int coe = priv->hw->rx_csum;
	unsigned int plen = 0;

	/* Not split header, buffer is not available */
	if (!priv->sph)
		return 0;

	/* Not last descriptor */
	if (status & rx_not_ls)
		return priv->dma_buf_sz;

	plen = stmmac_get_rx_frame_len(priv, p, coe);

	/* Last descriptor */
	return plen - len;
}

4549
static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4550
				struct xdp_frame *xdpf, bool dma_map)
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	unsigned int entry = tx_q->cur_tx;
	struct dma_desc *tx_desc;
	dma_addr_t dma_addr;
	bool set_ic;

	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
		return STMMAC_XDP_CONSUMED;

	if (likely(priv->extend_desc))
		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
		tx_desc = &tx_q->dma_entx[entry].basic;
	else
		tx_desc = tx_q->dma_tx + entry;

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	if (dma_map) {
		dma_addr = dma_map_single(priv->device, xdpf->data,
					  xdpf->len, DMA_TO_DEVICE);
		if (dma_mapping_error(priv->device, dma_addr))
			return STMMAC_XDP_CONSUMED;

		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
	} else {
		struct page *page = virt_to_page(xdpf->data);

		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
			   xdpf->headroom;
		dma_sync_single_for_device(priv->device, dma_addr,
					   xdpf->len, DMA_BIDIRECTIONAL);
4582

4583 4584
		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
	}
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653

	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
	tx_q->tx_skbuff_dma[entry].map_as_page = false;
	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
	tx_q->tx_skbuff_dma[entry].last_segment = true;
	tx_q->tx_skbuff_dma[entry].is_jumbo = false;

	tx_q->xdpf[entry] = xdpf;

	stmmac_set_desc_addr(priv, tx_desc, dma_addr);

	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
			       true, priv->mode, true, true,
			       xdpf->len);

	tx_q->tx_count_frames++;

	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
		set_ic = true;
	else
		set_ic = false;

	if (set_ic) {
		tx_q->tx_count_frames = 0;
		stmmac_set_tx_ic(priv, tx_desc);
		priv->xstats.tx_set_ic_bit++;
	}

	stmmac_enable_dma_transmission(priv, priv->ioaddr);

	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
	tx_q->cur_tx = entry;

	return STMMAC_XDP_TX;
}

static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
				   int cpu)
{
	int index = cpu;

	if (unlikely(index < 0))
		index = 0;

	while (index >= priv->plat->tx_queues_to_use)
		index -= priv->plat->tx_queues_to_use;

	return index;
}

static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
				struct xdp_buff *xdp)
{
	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
	int cpu = smp_processor_id();
	struct netdev_queue *nq;
	int queue;
	int res;

	if (unlikely(!xdpf))
		return STMMAC_XDP_CONSUMED;

	queue = stmmac_xdp_get_tx_queue(priv, cpu);
	nq = netdev_get_tx_queue(priv->dev, queue);

	__netif_tx_lock(nq, cpu);
	/* Avoids TX time-out as we are sharing with slow path */
	nq->trans_start = jiffies;

4654
	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4655 4656 4657 4658 4659 4660 4661 4662
	if (res == STMMAC_XDP_TX)
		stmmac_flush_tx_descriptors(priv, queue);

	__netif_tx_unlock(nq);

	return res;
}

4663 4664 4665
static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
				 struct bpf_prog *prog,
				 struct xdp_buff *xdp)
4666 4667
{
	u32 act;
4668
	int res;
4669 4670 4671 4672 4673 4674

	act = bpf_prog_run_xdp(prog, xdp);
	switch (act) {
	case XDP_PASS:
		res = STMMAC_XDP_PASS;
		break;
4675 4676 4677
	case XDP_TX:
		res = stmmac_xdp_xmit_back(priv, xdp);
		break;
4678 4679 4680 4681 4682 4683
	case XDP_REDIRECT:
		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
			res = STMMAC_XDP_CONSUMED;
		else
			res = STMMAC_XDP_REDIRECT;
		break;
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	default:
		bpf_warn_invalid_xdp_action(act);
		fallthrough;
	case XDP_ABORTED:
		trace_xdp_exception(priv->dev, prog, act);
		fallthrough;
	case XDP_DROP:
		res = STMMAC_XDP_CONSUMED;
		break;
	}

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	return res;
}

static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
					   struct xdp_buff *xdp)
{
	struct bpf_prog *prog;
	int res;

	prog = READ_ONCE(priv->xdp_prog);
	if (!prog) {
		res = STMMAC_XDP_PASS;
4707
		goto out;
4708 4709 4710
	}

	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4711
out:
4712 4713 4714
	return ERR_PTR(-res);
}

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
				   int xdp_status)
{
	int cpu = smp_processor_id();
	int queue;

	queue = stmmac_xdp_get_tx_queue(priv, cpu);

	if (xdp_status & STMMAC_XDP_TX)
		stmmac_tx_timer_arm(priv, queue);
4725 4726 4727

	if (xdp_status & STMMAC_XDP_REDIRECT)
		xdp_do_flush();
4728 4729
}

4730 4731 4732 4733 4734 4735 4736
static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
					       struct xdp_buff *xdp)
{
	unsigned int metasize = xdp->data - xdp->data_meta;
	unsigned int datasize = xdp->data_end - xdp->data;
	struct sk_buff *skb;

4737
	skb = __napi_alloc_skb(&ch->rxtx_napi,
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
			       xdp->data_end - xdp->data_hard_start,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	skb_reserve(skb, xdp->data - xdp->data_hard_start);
	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
	if (metasize)
		skb_metadata_set(skb, metasize);

	return skb;
}

static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
				   struct dma_desc *p, struct dma_desc *np,
				   struct xdp_buff *xdp)
{
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned int len = xdp->data_end - xdp->data;
	enum pkt_hash_types hash_type;
	int coe = priv->hw->rx_csum;
	struct sk_buff *skb;
	u32 hash;

	skb = stmmac_construct_skb_zc(ch, xdp);
	if (!skb) {
		priv->dev->stats.rx_dropped++;
		return;
	}

	stmmac_get_rx_hwtstamp(priv, p, np, skb);
	stmmac_rx_vlan(priv->dev, skb);
	skb->protocol = eth_type_trans(skb, priv->dev);

	if (unlikely(!coe))
		skb_checksum_none_assert(skb);
	else
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
		skb_set_hash(skb, hash, hash_type);

	skb_record_rx_queue(skb, queue);
4781
	napi_gro_receive(&ch->rxtx_napi, skb);
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925

	priv->dev->stats.rx_packets++;
	priv->dev->stats.rx_bytes += len;
}

static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	unsigned int entry = rx_q->dirty_rx;
	struct dma_desc *rx_desc = NULL;
	bool ret = true;

	budget = min(budget, stmmac_rx_dirty(priv, queue));

	while (budget-- > 0 && entry != rx_q->cur_rx) {
		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
		dma_addr_t dma_addr;
		bool use_rx_wd;

		if (!buf->xdp) {
			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
			if (!buf->xdp) {
				ret = false;
				break;
			}
		}

		if (priv->extend_desc)
			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
		else
			rx_desc = rx_q->dma_rx + entry;

		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
		stmmac_refill_desc3(priv, rx_q, rx_desc);

		rx_q->rx_count_frames++;
		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
			rx_q->rx_count_frames = 0;

		use_rx_wd = !priv->rx_coal_frames[queue];
		use_rx_wd |= rx_q->rx_count_frames > 0;
		if (!priv->use_riwt)
			use_rx_wd = false;

		dma_wmb();
		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);

		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
	}

	if (rx_desc) {
		rx_q->dirty_rx = entry;
		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
				     (rx_q->dirty_rx * sizeof(struct dma_desc));
		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
	}

	return ret;
}

static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	unsigned int count = 0, error = 0, len = 0;
	int dirty = stmmac_rx_dirty(priv, queue);
	unsigned int next_entry = rx_q->cur_rx;
	unsigned int desc_size;
	struct bpf_prog *prog;
	bool failure = false;
	int xdp_status = 0;
	int status = 0;

	if (netif_msg_rx_status(priv)) {
		void *rx_head;

		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
		if (priv->extend_desc) {
			rx_head = (void *)rx_q->dma_erx;
			desc_size = sizeof(struct dma_extended_desc);
		} else {
			rx_head = (void *)rx_q->dma_rx;
			desc_size = sizeof(struct dma_desc);
		}

		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
				    rx_q->dma_rx_phy, desc_size);
	}
	while (count < limit) {
		struct stmmac_rx_buffer *buf;
		unsigned int buf1_len = 0;
		struct dma_desc *np, *p;
		int entry;
		int res;

		if (!count && rx_q->state_saved) {
			error = rx_q->state.error;
			len = rx_q->state.len;
		} else {
			rx_q->state_saved = false;
			error = 0;
			len = 0;
		}

		if (count >= limit)
			break;

read_again:
		buf1_len = 0;
		entry = next_entry;
		buf = &rx_q->buf_pool[entry];

		if (dirty >= STMMAC_RX_FILL_BATCH) {
			failure = failure ||
				  !stmmac_rx_refill_zc(priv, queue, dirty);
			dirty = 0;
		}

		if (priv->extend_desc)
			p = (struct dma_desc *)(rx_q->dma_erx + entry);
		else
			p = rx_q->dma_rx + entry;

		/* read the status of the incoming frame */
		status = stmmac_rx_status(priv, &priv->dev->stats,
					  &priv->xstats, p);
		/* check if managed by the DMA otherwise go ahead */
		if (unlikely(status & dma_own))
			break;

		/* Prefetch the next RX descriptor */
		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
						priv->dma_rx_size);
		next_entry = rx_q->cur_rx;

		if (priv->extend_desc)
			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
		else
			np = rx_q->dma_rx + next_entry;

		prefetch(np);

4926 4927 4928 4929
		/* Ensure a valid XSK buffer before proceed */
		if (!buf->xdp)
			break;

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
		if (priv->extend_desc)
			stmmac_rx_extended_status(priv, &priv->dev->stats,
						  &priv->xstats,
						  rx_q->dma_erx + entry);
		if (unlikely(status == discard_frame)) {
			xsk_buff_free(buf->xdp);
			buf->xdp = NULL;
			dirty++;
			error = 1;
			if (!priv->hwts_rx_en)
				priv->dev->stats.rx_errors++;
		}

		if (unlikely(error && (status & rx_not_ls)))
			goto read_again;
		if (unlikely(error)) {
			count++;
			continue;
		}

		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
		if (likely(status & rx_not_ls)) {
			xsk_buff_free(buf->xdp);
			buf->xdp = NULL;
			dirty++;
			count++;
			goto read_again;
		}

		/* XDP ZC Frame only support primary buffers for now */
		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
		len += buf1_len;

		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
		 * Type frames (LLC/LLC-SNAP)
		 *
		 * llc_snap is never checked in GMAC >= 4, so this ACS
		 * feature is always disabled and packets need to be
		 * stripped manually.
		 */
		if (likely(!(status & rx_not_ls)) &&
		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
		     unlikely(status != llc_snap))) {
			buf1_len -= ETH_FCS_LEN;
			len -= ETH_FCS_LEN;
		}

		/* RX buffer is good and fit into a XSK pool buffer */
		buf->xdp->data_end = buf->xdp->data + buf1_len;
		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);

		prog = READ_ONCE(priv->xdp_prog);
		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);

		switch (res) {
		case STMMAC_XDP_PASS:
			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
			xsk_buff_free(buf->xdp);
			break;
		case STMMAC_XDP_CONSUMED:
			xsk_buff_free(buf->xdp);
			priv->dev->stats.rx_dropped++;
			break;
		case STMMAC_XDP_TX:
		case STMMAC_XDP_REDIRECT:
			xdp_status |= res;
			break;
		}

		buf->xdp = NULL;
		dirty++;
		count++;
	}

	if (status & rx_not_ls) {
		rx_q->state_saved = true;
		rx_q->state.error = error;
		rx_q->state.len = len;
	}

	stmmac_finalize_xdp_rx(priv, xdp_status);

5012 5013 5014
	priv->xstats.rx_pkt_n += count;
	priv->xstats.rxq_stats[queue].rx_pkt_n += count;

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
		if (failure || stmmac_rx_dirty(priv, queue) > 0)
			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
		else
			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);

		return (int)count;
	}

	return failure ? limit : (int)count;
}

5027
/**
5028
 * stmmac_rx - manage the receive process
5029
 * @priv: driver private structure
5030 5031
 * @limit: napi bugget
 * @queue: RX queue index.
5032 5033 5034
 * Description :  this the function called by the napi poll method.
 * It gets all the frames inside the ring.
 */
5035
static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5036
{
5037
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5038
	struct stmmac_channel *ch = &priv->channel[queue];
5039 5040
	unsigned int count = 0, error = 0, len = 0;
	int status = 0, coe = priv->hw->rx_csum;
5041
	unsigned int next_entry = rx_q->cur_rx;
5042
	enum dma_data_direction dma_dir;
5043
	unsigned int desc_size;
5044
	struct sk_buff *skb = NULL;
5045
	struct xdp_buff xdp;
5046
	int xdp_status = 0;
5047 5048 5049 5050
	int buf_sz;

	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5051

5052
	if (netif_msg_rx_status(priv)) {
5053 5054
		void *rx_head;

5055
		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5056
		if (priv->extend_desc) {
5057
			rx_head = (void *)rx_q->dma_erx;
5058 5059
			desc_size = sizeof(struct dma_extended_desc);
		} else {
5060
			rx_head = (void *)rx_q->dma_rx;
5061 5062
			desc_size = sizeof(struct dma_desc);
		}
5063

5064 5065
		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
				    rx_q->dma_rx_phy, desc_size);
5066
	}
5067
	while (count < limit) {
Jose Abreu's avatar
Jose Abreu committed
5068
		unsigned int buf1_len = 0, buf2_len = 0;
5069
		enum pkt_hash_types hash_type;
5070 5071
		struct stmmac_rx_buffer *buf;
		struct dma_desc *np, *p;
5072 5073
		int entry;
		u32 hash;
5074

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
		if (!count && rx_q->state_saved) {
			skb = rx_q->state.skb;
			error = rx_q->state.error;
			len = rx_q->state.len;
		} else {
			rx_q->state_saved = false;
			skb = NULL;
			error = 0;
			len = 0;
		}

		if (count >= limit)
			break;

read_again:
Jose Abreu's avatar
Jose Abreu committed
5090 5091
		buf1_len = 0;
		buf2_len = 0;
5092
		entry = next_entry;
5093
		buf = &rx_q->buf_pool[entry];
5094

5095
		if (priv->extend_desc)
5096
			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5097
		else
5098
			p = rx_q->dma_rx + entry;
5099

5100
		/* read the status of the incoming frame */
5101 5102
		status = stmmac_rx_status(priv, &priv->dev->stats,
				&priv->xstats, p);
5103 5104
		/* check if managed by the DMA otherwise go ahead */
		if (unlikely(status & dma_own))
5105 5106
			break;

5107 5108
		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
						priv->dma_rx_size);
5109
		next_entry = rx_q->cur_rx;
5110

5111
		if (priv->extend_desc)
5112
			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5113
		else
5114
			np = rx_q->dma_rx + next_entry;
5115 5116

		prefetch(np);
5117

5118 5119 5120
		if (priv->extend_desc)
			stmmac_rx_extended_status(priv, &priv->dev->stats,
					&priv->xstats, rx_q->dma_erx + entry);
5121
		if (unlikely(status == discard_frame)) {
5122 5123
			page_pool_recycle_direct(rx_q->page_pool, buf->page);
			buf->page = NULL;
5124
			error = 1;
5125 5126
			if (!priv->hwts_rx_en)
				priv->dev->stats.rx_errors++;
5127 5128 5129 5130 5131
		}

		if (unlikely(error && (status & rx_not_ls)))
			goto read_again;
		if (unlikely(error)) {
5132
			dev_kfree_skb(skb);
Jose Abreu's avatar
Jose Abreu committed
5133
			skb = NULL;
5134
			count++;
5135 5136 5137 5138 5139
			continue;
		}

		/* Buffer is good. Go on. */

Matteo Croce's avatar
Matteo Croce committed
5140
		prefetch(page_address(buf->page) + buf->page_offset);
Jose Abreu's avatar
Jose Abreu committed
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
		if (buf->sec_page)
			prefetch(page_address(buf->sec_page));

		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
		len += buf1_len;
		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
		len += buf2_len;

		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
		 * Type frames (LLC/LLC-SNAP)
		 *
		 * llc_snap is never checked in GMAC >= 4, so this ACS
		 * feature is always disabled and packets need to be
		 * stripped manually.
		 */
5156 5157 5158
		if (likely(!(status & rx_not_ls)) &&
		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
		     unlikely(status != llc_snap))) {
Jose Abreu's avatar
Jose Abreu committed
5159 5160 5161 5162 5163 5164
			if (buf2_len)
				buf2_len -= ETH_FCS_LEN;
			else
				buf1_len -= ETH_FCS_LEN;

			len -= ETH_FCS_LEN;
5165
		}
5166

5167
		if (!skb) {
5168 5169
			unsigned int pre_len, sync_len;

5170 5171 5172
			dma_sync_single_for_cpu(priv->device, buf->addr,
						buf1_len, dma_dir);

Matteo Croce's avatar
Matteo Croce committed
5173 5174 5175
			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
			xdp_prepare_buff(&xdp, page_address(buf->page),
					 buf->page_offset, buf1_len, false);
5176

5177 5178
			pre_len = xdp.data_end - xdp.data_hard_start -
				  buf->page_offset;
5179
			skb = stmmac_xdp_run_prog(priv, &xdp);
5180 5181 5182 5183 5184 5185
			/* Due xdp_adjust_tail: DMA sync for_device
			 * cover max len CPU touch
			 */
			sync_len = xdp.data_end - xdp.data_hard_start -
				   buf->page_offset;
			sync_len = max(sync_len, pre_len);
5186 5187 5188 5189 5190 5191

			/* For Not XDP_PASS verdict */
			if (IS_ERR(skb)) {
				unsigned int xdp_res = -PTR_ERR(skb);

				if (xdp_res & STMMAC_XDP_CONSUMED) {
5192 5193 5194
					page_pool_put_page(rx_q->page_pool,
							   virt_to_head_page(xdp.data),
							   sync_len, true);
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
					buf->page = NULL;
					priv->dev->stats.rx_dropped++;

					/* Clear skb as it was set as
					 * status by XDP program.
					 */
					skb = NULL;

					if (unlikely((status & rx_not_ls)))
						goto read_again;

					count++;
					continue;
5208 5209
				} else if (xdp_res & (STMMAC_XDP_TX |
						      STMMAC_XDP_REDIRECT)) {
5210 5211 5212 5213 5214
					xdp_status |= xdp_res;
					buf->page = NULL;
					skb = NULL;
					count++;
					continue;
5215 5216 5217 5218 5219 5220 5221 5222
				}
			}
		}

		if (!skb) {
			/* XDP program may expand or reduce tail */
			buf1_len = xdp.data_end - xdp.data;

Jose Abreu's avatar
Jose Abreu committed
5223
			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5224
			if (!skb) {
5225
				priv->dev->stats.rx_dropped++;
5226
				count++;
Jose Abreu's avatar
Jose Abreu committed
5227
				goto drain_data;
5228 5229
			}

5230 5231
			/* XDP program may adjust header */
			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
Jose Abreu's avatar
Jose Abreu committed
5232
			skb_put(skb, buf1_len);
5233

5234 5235 5236
			/* Data payload copied into SKB, page ready for recycle */
			page_pool_recycle_direct(rx_q->page_pool, buf->page);
			buf->page = NULL;
Jose Abreu's avatar
Jose Abreu committed
5237
		} else if (buf1_len) {
5238
			dma_sync_single_for_cpu(priv->device, buf->addr,
5239
						buf1_len, dma_dir);
5240
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5241
					buf->page, buf->page_offset, buf1_len,
5242
					priv->dma_buf_sz);
5243

5244 5245 5246 5247
			/* Data payload appended into SKB */
			page_pool_release_page(rx_q->page_pool, buf->page);
			buf->page = NULL;
		}
5248

Jose Abreu's avatar
Jose Abreu committed
5249
		if (buf2_len) {
5250
			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5251
						buf2_len, dma_dir);
5252
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
Jose Abreu's avatar
Jose Abreu committed
5253
					buf->sec_page, 0, buf2_len,
5254 5255 5256 5257 5258 5259 5260
					priv->dma_buf_sz);

			/* Data payload appended into SKB */
			page_pool_release_page(rx_q->page_pool, buf->sec_page);
			buf->sec_page = NULL;
		}

Jose Abreu's avatar
Jose Abreu committed
5261
drain_data:
5262 5263
		if (likely(status & rx_not_ls))
			goto read_again;
Jose Abreu's avatar
Jose Abreu committed
5264 5265
		if (!skb)
			continue;
5266

5267
		/* Got entire packet into SKB. Finish it. */
5268

5269 5270 5271
		stmmac_get_rx_hwtstamp(priv, p, np, skb);
		stmmac_rx_vlan(priv->dev, skb);
		skb->protocol = eth_type_trans(skb, priv->dev);
5272

5273 5274 5275 5276
		if (unlikely(!coe))
			skb_checksum_none_assert(skb);
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
5277

5278 5279 5280 5281 5282
		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
			skb_set_hash(skb, hash, hash_type);

		skb_record_rx_queue(skb, queue);
		napi_gro_receive(&ch->rx_napi, skb);
Jose Abreu's avatar
Jose Abreu committed
5283
		skb = NULL;
5284 5285 5286

		priv->dev->stats.rx_packets++;
		priv->dev->stats.rx_bytes += len;
5287
		count++;
5288 5289
	}

Jose Abreu's avatar
Jose Abreu committed
5290
	if (status & rx_not_ls || skb) {
5291 5292 5293 5294
		rx_q->state_saved = true;
		rx_q->state.skb = skb;
		rx_q->state.error = error;
		rx_q->state.len = len;
5295 5296
	}

5297 5298
	stmmac_finalize_xdp_rx(priv, xdp_status);

5299
	stmmac_rx_refill(priv, queue);
5300 5301

	priv->xstats.rx_pkt_n += count;
5302
	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5303 5304 5305 5306

	return count;
}

5307
static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5308
{
5309
	struct stmmac_channel *ch =
5310
		container_of(napi, struct stmmac_channel, rx_napi);
5311 5312
	struct stmmac_priv *priv = ch->priv_data;
	u32 chan = ch->index;
5313
	int work_done;
5314

5315
	priv->xstats.napi_poll++;
5316

5317
	work_done = stmmac_rx(priv, budget, chan);
5318 5319 5320 5321 5322 5323 5324 5325
	if (work_done < budget && napi_complete_done(napi, work_done)) {
		unsigned long flags;

		spin_lock_irqsave(&ch->lock, flags);
		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
		spin_unlock_irqrestore(&ch->lock, flags);
	}

5326 5327
	return work_done;
}
5328

5329 5330 5331 5332 5333 5334 5335
static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
{
	struct stmmac_channel *ch =
		container_of(napi, struct stmmac_channel, tx_napi);
	struct stmmac_priv *priv = ch->priv_data;
	u32 chan = ch->index;
	int work_done;
5336

5337 5338
	priv->xstats.napi_poll++;

5339
	work_done = stmmac_tx_clean(priv, budget, chan);
5340
	work_done = min(work_done, budget);
5341

5342 5343
	if (work_done < budget && napi_complete_done(napi, work_done)) {
		unsigned long flags;
5344

5345 5346 5347
		spin_lock_irqsave(&ch->lock, flags);
		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
		spin_unlock_irqrestore(&ch->lock, flags);
5348
	}
5349

5350 5351 5352
	return work_done;
}

5353 5354 5355 5356 5357
static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
{
	struct stmmac_channel *ch =
		container_of(napi, struct stmmac_channel, rxtx_napi);
	struct stmmac_priv *priv = ch->priv_data;
5358
	int rx_done, tx_done, rxtx_done;
5359 5360 5361 5362 5363 5364 5365 5366 5367
	u32 chan = ch->index;

	priv->xstats.napi_poll++;

	tx_done = stmmac_tx_clean(priv, budget, chan);
	tx_done = min(tx_done, budget);

	rx_done = stmmac_rx_zc(priv, budget, chan);

5368 5369
	rxtx_done = max(tx_done, rx_done);

5370 5371 5372
	/* If either TX or RX work is not complete, return budget
	 * and keep pooling
	 */
5373
	if (rxtx_done >= budget)
5374 5375 5376
		return budget;

	/* all work done, exit the polling mode */
5377
	if (napi_complete_done(napi, rxtx_done)) {
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
		unsigned long flags;

		spin_lock_irqsave(&ch->lock, flags);
		/* Both RX and TX work done are compelte,
		 * so enable both RX & TX IRQs.
		 */
		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
		spin_unlock_irqrestore(&ch->lock, flags);
	}

5388
	return min(rxtx_done, budget - 1);
5389 5390
}

5391 5392 5393
/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
5394
 *  @txqueue: the index of the hanging transmit queue
5395
 *  Description: this function is called when a packet transmission fails to
5396
 *   complete within a reasonable time. The driver will mark the error in the
5397 5398 5399
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
5400
static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5401 5402 5403
{
	struct stmmac_priv *priv = netdev_priv(dev);

5404
	stmmac_global_err(priv);
5405 5406 5407
}

/**
5408
 *  stmmac_set_rx_mode - entry point for multicast addressing
5409 5410 5411 5412 5413 5414 5415
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
5416
static void stmmac_set_rx_mode(struct net_device *dev)
5417 5418 5419
{
	struct stmmac_priv *priv = netdev_priv(dev);

5420
	stmmac_set_filter(priv, priv->hw, dev);
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
5436
	struct stmmac_priv *priv = netdev_priv(dev);
5437
	int txfifosz = priv->plat->tx_fifo_size;
5438
	const int mtu = new_mtu;
5439 5440 5441 5442 5443

	if (txfifosz == 0)
		txfifosz = priv->dma_cap.tx_fifo_size;

	txfifosz /= priv->plat->tx_queues_to_use;
5444

5445
	if (netif_running(dev)) {
5446
		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5447 5448 5449
		return -EBUSY;
	}

5450 5451 5452 5453 5454
	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
		return -EINVAL;
	}

5455 5456 5457 5458 5459 5460
	new_mtu = STMMAC_ALIGN(new_mtu);

	/* If condition true, FIFO is too small or MTU too large */
	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
		return -EINVAL;

5461
	dev->mtu = mtu;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
5462

5463 5464 5465 5466 5467
	netdev_update_features(dev);

	return 0;
}

5468
static netdev_features_t stmmac_fix_features(struct net_device *dev,
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5469
					     netdev_features_t features)
5470 5471 5472
{
	struct stmmac_priv *priv = netdev_priv(dev);

5473
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5474
		features &= ~NETIF_F_RXCSUM;
5475

5476
	if (!priv->plat->tx_coe)
5477
		features &= ~NETIF_F_CSUM_MASK;
5478

5479 5480 5481
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
5482
	 * the TX csum insertion in the TDES and not use SF.
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5483
	 */
5484
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5485
		features &= ~NETIF_F_CSUM_MASK;
5486

Alexandre TORGUE's avatar
Alexandre TORGUE committed
5487 5488 5489 5490 5491 5492 5493 5494
	/* Disable tso if asked by ethtool */
	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
		if (features & NETIF_F_TSO)
			priv->tso = true;
		else
			priv->tso = false;
	}

5495
	return features;
5496 5497
}

5498 5499 5500 5501
static int stmmac_set_features(struct net_device *netdev,
			       netdev_features_t features)
{
	struct stmmac_priv *priv = netdev_priv(netdev);
5502 5503
	bool sph_en;
	u32 chan;
5504 5505 5506 5507 5508 5509 5510 5511 5512

	/* Keep the COE Type in case of csum is supporting */
	if (features & NETIF_F_RXCSUM)
		priv->hw->rx_csum = priv->plat->rx_coe;
	else
		priv->hw->rx_csum = 0;
	/* No check needed because rx_coe has been set before and it will be
	 * fixed in case of issue.
	 */
5513
	stmmac_rx_ipc(priv, priv->hw);
5514

5515
	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5516

5517 5518 5519
	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);

5520 5521 5522
	return 0;
}

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
{
	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
	bool *hs_enable = &fpe_cfg->hs_enable;

	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
		return;

	/* If LP has sent verify mPacket, LP is FPE capable */
	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
		if (*lp_state < FPE_STATE_CAPABLE)
			*lp_state = FPE_STATE_CAPABLE;

		/* If user has requested FPE enable, quickly response */
		if (*hs_enable)
			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
						MPACKET_RESPONSE);
	}

	/* If Local has sent verify mPacket, Local is FPE capable */
	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
		if (*lo_state < FPE_STATE_CAPABLE)
			*lo_state = FPE_STATE_CAPABLE;
	}

	/* If LP has sent response mPacket, LP is entering FPE ON */
	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
		*lp_state = FPE_STATE_ENTERING_ON;

	/* If Local has sent response mPacket, Local is entering FPE ON */
	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
		*lo_state = FPE_STATE_ENTERING_ON;

	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
	    priv->fpe_wq) {
		queue_work(priv->fpe_wq, &priv->fpe_task);
	}
}

5565
static void stmmac_common_interrupt(struct stmmac_priv *priv)
5566
{
5567 5568 5569 5570
	u32 rx_cnt = priv->plat->rx_queues_to_use;
	u32 tx_cnt = priv->plat->tx_queues_to_use;
	u32 queues_count;
	u32 queue;
5571
	bool xmac;
5572

5573
	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5574
	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5575

5576 5577 5578
	if (priv->irq_wake)
		pm_wakeup_event(priv->device, 0);

5579
	if (priv->dma_cap.estsel)
5580 5581
		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
				      &priv->xstats, tx_cnt);
5582

5583 5584 5585 5586 5587 5588 5589
	if (priv->dma_cap.fpesel) {
		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
						   priv->dev);

		stmmac_fpe_event_status(priv, status);
	}

5590
	/* To handle GMAC own interrupts */
5591
	if ((priv->plat->has_gmac) || xmac) {
5592
		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5593

5594 5595
		if (unlikely(status)) {
			/* For LPI we need to save the tx status */
5596
			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5597
				priv->tx_path_in_lpi_mode = true;
5598
			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5599
				priv->tx_path_in_lpi_mode = false;
5600 5601
		}

5602
		for (queue = 0; queue < queues_count; queue++) {
5603 5604
			status = stmmac_host_mtl_irq_status(priv, priv->hw,
							    queue);
5605
		}
5606 5607

		/* PCS link status */
5608
		if (priv->hw->pcs) {
5609
			if (priv->xstats.pcs_link)
5610
				netif_carrier_on(priv->dev);
5611
			else
5612
				netif_carrier_off(priv->dev);
5613
		}
5614 5615

		stmmac_timestamp_interrupt(priv, priv);
5616
	}
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
}

/**
 *  stmmac_interrupt - main ISR
 *  @irq: interrupt number.
 *  @dev_id: to pass the net device pointer.
 *  Description: this is the main driver interrupt service routine.
 *  It can call:
 *  o DMA service routine (to manage incoming frame reception and transmission
 *    status)
 *  o Core interrupts to manage: remote wake-up, management counter, LPI
 *    interrupts.
 */
static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	/* Check if a fatal error happened */
	if (stmmac_safety_feat_interrupt(priv))
		return IRQ_HANDLED;

	/* To handle Common interrupts */
	stmmac_common_interrupt(priv);
5645

5646
	/* To handle DMA interrupts */
5647
	stmmac_dma_interrupt(priv);
5648 5649 5650 5651

	return IRQ_HANDLED;
}

5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	/* To handle Common interrupts */
	stmmac_common_interrupt(priv);

	return IRQ_HANDLED;
}

static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	/* Check if a fatal error happened */
	stmmac_safety_feat_interrupt(priv);

	return IRQ_HANDLED;
}

static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
{
	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
	int chan = tx_q->queue_index;
	struct stmmac_priv *priv;
	int status;

	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);

	if (unlikely(!data)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);

	if (unlikely(status & tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
		    tc <= 256) {
			tc += 64;
			if (priv->plat->force_thresh_dma_mode)
				stmmac_set_dma_operation_mode(priv,
							      tc,
							      tc,
							      chan);
			else
				stmmac_set_dma_operation_mode(priv,
							      tc,
							      SF_DMA_MODE,
							      chan);
			priv->xstats.threshold = tc;
		}
	} else if (unlikely(status == tx_hard_error)) {
		stmmac_tx_err(priv, chan);
	}

	return IRQ_HANDLED;
}

static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
{
	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
	int chan = rx_q->queue_index;
	struct stmmac_priv *priv;

	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);

	if (unlikely(!data)) {
		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	/* Check if adapter is up */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return IRQ_HANDLED;

	stmmac_napi_check(priv, chan, DMA_DIR_RX);

	return IRQ_HANDLED;
}

5758 5759
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5760 5761
 * to allow network I/O with interrupts disabled.
 */
5762 5763
static void stmmac_poll_controller(struct net_device *dev)
{
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
	struct stmmac_priv *priv = netdev_priv(dev);
	int i;

	/* If adapter is down, do nothing */
	if (test_bit(STMMAC_DOWN, &priv->state))
		return;

	if (priv->plat->multi_msi_en) {
		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);

		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
	} else {
		disable_irq(dev->irq);
		stmmac_interrupt(dev->irq, dev);
		enable_irq(dev->irq);
	}
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
5792
 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5793 5794 5795
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
5796
	struct stmmac_priv *priv = netdev_priv (dev);
5797
	int ret = -EOPNOTSUPP;
5798 5799 5800 5801

	if (!netif_running(dev))
		return -EINVAL;

5802 5803 5804 5805
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
5806
		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5807 5808
		break;
	case SIOCSHWTSTAMP:
5809 5810 5811 5812
		ret = stmmac_hwtstamp_set(dev, rq);
		break;
	case SIOCGHWTSTAMP:
		ret = stmmac_hwtstamp_get(dev, rq);
5813 5814 5815 5816
		break;
	default:
		break;
	}
5817

5818 5819 5820
	return ret;
}

5821 5822 5823 5824 5825 5826
static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
				    void *cb_priv)
{
	struct stmmac_priv *priv = cb_priv;
	int ret = -EOPNOTSUPP;

5827 5828 5829
	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
		return ret;

5830
	__stmmac_disable_all_queues(priv);
5831 5832 5833

	switch (type) {
	case TC_SETUP_CLSU32:
5834 5835 5836 5837
		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
		break;
	case TC_SETUP_CLSFLOWER:
		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5838 5839 5840 5841 5842 5843 5844 5845 5846
		break;
	default:
		break;
	}

	stmmac_enable_all_queues(priv);
	return ret;
}

5847 5848
static LIST_HEAD(stmmac_block_cb_list);

5849 5850 5851 5852 5853 5854 5855
static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
			   void *type_data)
{
	struct stmmac_priv *priv = netdev_priv(ndev);

	switch (type) {
	case TC_SETUP_BLOCK:
5856 5857
		return flow_block_cb_setup_simple(type_data,
						  &stmmac_block_cb_list,
5858 5859
						  stmmac_setup_tc_block_cb,
						  priv, priv, true);
5860 5861
	case TC_SETUP_QDISC_CBS:
		return stmmac_tc_setup_cbs(priv, priv, type_data);
5862 5863
	case TC_SETUP_QDISC_TAPRIO:
		return stmmac_tc_setup_taprio(priv, priv, type_data);
5864 5865
	case TC_SETUP_QDISC_ETF:
		return stmmac_tc_setup_etf(priv, priv, type_data);
5866 5867 5868 5869 5870
	default:
		return -EOPNOTSUPP;
	}
}

5871 5872 5873
static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
			       struct net_device *sb_dev)
{
5874 5875 5876
	int gso = skb_shinfo(skb)->gso_type;

	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5877
		/*
5878
		 * There is no way to determine the number of TSO/USO
5879
		 * capable Queues. Let's use always the Queue 0
5880
		 * because if TSO/USO is supported then at least this
5881 5882 5883 5884 5885 5886 5887 5888
		 * one will be capable.
		 */
		return 0;
	}

	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
}

5889 5890 5891 5892 5893
static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
{
	struct stmmac_priv *priv = netdev_priv(ndev);
	int ret = 0;

5894 5895 5896 5897 5898 5899
	ret = pm_runtime_get_sync(priv->device);
	if (ret < 0) {
		pm_runtime_put_noidle(priv->device);
		return ret;
	}

5900 5901
	ret = eth_mac_addr(ndev, addr);
	if (ret)
5902
		goto set_mac_error;
5903

5904
	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5905

5906 5907 5908
set_mac_error:
	pm_runtime_put(priv->device);

5909 5910 5911
	return ret;
}

5912
#ifdef CONFIG_DEBUG_FS
5913 5914
static struct dentry *stmmac_fs_dir;

5915
static void sysfs_display_ring(void *head, int size, int extend_desc,
5916
			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5917 5918
{
	int i;
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
5919 5920
	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
	struct dma_desc *p = (struct dma_desc *)head;
5921
	dma_addr_t dma_addr;
5922

5923 5924
	for (i = 0; i < size; i++) {
		if (extend_desc) {
5925 5926 5927
			dma_addr = dma_phy_addr + i * sizeof(*ep);
			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, &dma_addr,
5928 5929 5930 5931
				   le32_to_cpu(ep->basic.des0),
				   le32_to_cpu(ep->basic.des1),
				   le32_to_cpu(ep->basic.des2),
				   le32_to_cpu(ep->basic.des3));
5932 5933
			ep++;
		} else {
5934 5935 5936
			dma_addr = dma_phy_addr + i * sizeof(*p);
			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
				   i, &dma_addr,
5937 5938
				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5939 5940
			p++;
		}
5941 5942
		seq_printf(seq, "\n");
	}
5943
}
5944

5945
static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5946 5947 5948
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);
5949
	u32 rx_count = priv->plat->rx_queues_to_use;
5950
	u32 tx_count = priv->plat->tx_queues_to_use;
5951 5952
	u32 queue;

5953 5954 5955
	if ((dev->flags & IFF_UP) == 0)
		return 0;

5956 5957 5958 5959 5960 5961 5962 5963
	for (queue = 0; queue < rx_count; queue++) {
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

		seq_printf(seq, "RX Queue %d:\n", queue);

		if (priv->extend_desc) {
			seq_printf(seq, "Extended descriptor ring:\n");
			sysfs_display_ring((void *)rx_q->dma_erx,
5964
					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5965 5966 5967
		} else {
			seq_printf(seq, "Descriptor ring:\n");
			sysfs_display_ring((void *)rx_q->dma_rx,
5968
					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5969 5970
		}
	}
5971

5972 5973 5974 5975 5976 5977 5978 5979
	for (queue = 0; queue < tx_count; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

		seq_printf(seq, "TX Queue %d:\n", queue);

		if (priv->extend_desc) {
			seq_printf(seq, "Extended descriptor ring:\n");
			sysfs_display_ring((void *)tx_q->dma_etx,
5980
					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5981
		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5982 5983
			seq_printf(seq, "Descriptor ring:\n");
			sysfs_display_ring((void *)tx_q->dma_tx,
5984
					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5985
		}
5986 5987 5988 5989
	}

	return 0;
}
5990
DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5991

5992
static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5993 5994 5995 5996
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

5997
	if (!priv->hw_cap_support) {
5998 5999 6000 6001 6002 6003 6004 6005
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

6006
	seq_printf(seq, "\t10/100 Mbps: %s\n",
6007
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6008
	seq_printf(seq, "\t1000 Mbps: %s\n",
6009
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6010
	seq_printf(seq, "\tHalf duplex: %s\n",
6011 6012 6013 6014 6015
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6016
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6028
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6029
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6030
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6031 6032 6033 6034
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6035 6036 6037 6038 6039 6040 6041 6042 6043
	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
			   (priv->dma_cap.rx_coe) ? "Y" : "N");
	} else {
		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	}
6044 6045 6046 6047 6048 6049
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
6050 6051 6052 6053
	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
		   priv->dma_cap.number_rx_queues);
	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
		   priv->dma_cap.number_tx_queues);
6054 6055
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
		   priv->dma_cap.pps_out_num);
	seq_printf(seq, "\tSafety Features: %s\n",
		   priv->dma_cap.asp ? "Y" : "N");
	seq_printf(seq, "\tFlexible RX Parser: %s\n",
		   priv->dma_cap.frpsel ? "Y" : "N");
	seq_printf(seq, "\tEnhanced Addressing: %d\n",
		   priv->dma_cap.addr64);
	seq_printf(seq, "\tReceive Side Scaling: %s\n",
		   priv->dma_cap.rssen ? "Y" : "N");
	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
		   priv->dma_cap.vlhash ? "Y" : "N");
	seq_printf(seq, "\tSplit Header: %s\n",
		   priv->dma_cap.sphen ? "Y" : "N");
	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
		   priv->dma_cap.vlins ? "Y" : "N");
	seq_printf(seq, "\tDouble VLAN: %s\n",
		   priv->dma_cap.dvlan ? "Y" : "N");
	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
		   priv->dma_cap.l3l4fnum);
	seq_printf(seq, "\tARP Offloading: %s\n",
		   priv->dma_cap.arpoffsel ? "Y" : "N");
6082 6083 6084 6085 6086 6087
	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
		   priv->dma_cap.estsel ? "Y" : "N");
	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
		   priv->dma_cap.fpesel ? "Y" : "N");
	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
		   priv->dma_cap.tbssel ? "Y" : "N");
6088 6089
	return 0;
}
6090
DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6091

6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
/* Use network device events to rename debugfs file entries.
 */
static int stmmac_device_event(struct notifier_block *unused,
			       unsigned long event, void *ptr)
{
	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
	struct stmmac_priv *priv = netdev_priv(dev);

	if (dev->netdev_ops != &stmmac_netdev_ops)
		goto done;

	switch (event) {
	case NETDEV_CHANGENAME:
		if (priv->dbgfs_dir)
			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
							 priv->dbgfs_dir,
							 stmmac_fs_dir,
							 dev->name);
		break;
	}
done:
	return NOTIFY_DONE;
}

static struct notifier_block stmmac_notifier = {
	.notifier_call = stmmac_device_event,
};

6120
static void stmmac_init_fs(struct net_device *dev)
6121
{
6122 6123
	struct stmmac_priv *priv = netdev_priv(dev);

6124 6125
	rtnl_lock();

6126 6127
	/* Create per netdev entries */
	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6128 6129

	/* Entry to report DMA RX/TX rings */
6130 6131
	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
			    &stmmac_rings_status_fops);
6132

6133
	/* Entry to report the DMA HW features */
6134 6135
	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
			    &stmmac_dma_cap_fops);
6136

6137
	rtnl_unlock();
6138 6139
}

6140
static void stmmac_exit_fs(struct net_device *dev)
6141
{
6142 6143 6144
	struct stmmac_priv *priv = netdev_priv(dev);

	debugfs_remove_recursive(priv->dbgfs_dir);
6145
}
6146
#endif /* CONFIG_DEBUG_FS */
6147

6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
static u32 stmmac_vid_crc32_le(__le16 vid_le)
{
	unsigned char *data = (unsigned char *)&vid_le;
	unsigned char data_byte = 0;
	u32 crc = ~0x0;
	u32 temp = 0;
	int i, bits;

	bits = get_bitmask_order(VLAN_VID_MASK);
	for (i = 0; i < bits; i++) {
		if ((i % 8) == 0)
			data_byte = data[i / 8];

		temp = ((crc & 1) ^ data_byte) & 1;
		crc >>= 1;
		data_byte >>= 1;

		if (temp)
			crc ^= 0xedb88320;
	}

	return crc;
}

static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
{
	u32 crc, hash = 0;
Jose Abreu's avatar
Jose Abreu committed
6175
	__le16 pmatch = 0;
6176 6177
	int count = 0;
	u16 vid = 0;
6178 6179 6180 6181 6182

	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
		__le16 vid_le = cpu_to_le16(vid);
		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
		hash |= (1 << crc);
6183 6184 6185 6186 6187 6188 6189
		count++;
	}

	if (!priv->dma_cap.vlhash) {
		if (count > 2) /* VID = 0 always passes filter */
			return -EOPNOTSUPP;

Jose Abreu's avatar
Jose Abreu committed
6190
		pmatch = cpu_to_le16(vid);
6191
		hash = 0;
6192 6193
	}

Jose Abreu's avatar
Jose Abreu committed
6194
	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
}

static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
	struct stmmac_priv *priv = netdev_priv(ndev);
	bool is_double = false;
	int ret;

	if (be16_to_cpu(proto) == ETH_P_8021AD)
		is_double = true;

	set_bit(vid, priv->active_vlans);
	ret = stmmac_vlan_update(priv, is_double);
	if (ret) {
		clear_bit(vid, priv->active_vlans);
		return ret;
	}

6213 6214 6215 6216 6217
	if (priv->hw->num_vlan) {
		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
		if (ret)
			return ret;
	}
6218

6219
	return 0;
6220 6221 6222 6223 6224 6225
}

static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
	struct stmmac_priv *priv = netdev_priv(ndev);
	bool is_double = false;
6226
	int ret;
6227

6228 6229 6230 6231 6232 6233
	ret = pm_runtime_get_sync(priv->device);
	if (ret < 0) {
		pm_runtime_put_noidle(priv->device);
		return ret;
	}

6234 6235 6236 6237
	if (be16_to_cpu(proto) == ETH_P_8021AD)
		is_double = true;

	clear_bit(vid, priv->active_vlans);
6238 6239 6240 6241

	if (priv->hw->num_vlan) {
		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
		if (ret)
6242
			goto del_vlan_error;
6243
	}
6244

6245 6246 6247 6248 6249 6250
	ret = stmmac_vlan_update(priv, is_double);

del_vlan_error:
	pm_runtime_put(priv->device);

	return ret;
6251 6252
}

6253 6254 6255 6256 6257 6258 6259
static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	switch (bpf->command) {
	case XDP_SETUP_PROG:
		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6260 6261 6262
	case XDP_SETUP_XSK_POOL:
		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
					     bpf->xsk.queue_id);
6263 6264 6265 6266 6267
	default:
		return -EOPNOTSUPP;
	}
}

6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
			   struct xdp_frame **frames, u32 flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int cpu = smp_processor_id();
	struct netdev_queue *nq;
	int i, nxmit = 0;
	int queue;

	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
		return -ENETDOWN;

	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
		return -EINVAL;

	queue = stmmac_xdp_get_tx_queue(priv, cpu);
	nq = netdev_get_tx_queue(priv->dev, queue);

	__netif_tx_lock(nq, cpu);
	/* Avoids TX time-out as we are sharing with slow path */
	nq->trans_start = jiffies;

	for (i = 0; i < num_frames; i++) {
		int res;

		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
		if (res == STMMAC_XDP_CONSUMED)
			break;

		nxmit++;
	}

	if (flags & XDP_XMIT_FLUSH) {
		stmmac_flush_tx_descriptors(priv, queue);
		stmmac_tx_timer_arm(priv, queue);
	}

	__netif_tx_unlock(nq);

	return nxmit;
}

6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
	spin_unlock_irqrestore(&ch->lock, flags);

	stmmac_stop_rx_dma(priv, queue);
	__free_dma_rx_desc_resources(priv, queue);
}

void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;
	u32 buf_size;
	int ret;

	ret = __alloc_dma_rx_desc_resources(priv, queue);
	if (ret) {
		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
		return;
	}

	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
	if (ret) {
		__free_dma_rx_desc_resources(priv, queue);
		netdev_err(priv->dev, "Failed to init RX desc.\n");
		return;
	}

	stmmac_clear_rx_descriptors(priv, queue);

	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
			    rx_q->dma_rx_phy, rx_q->queue_index);

	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
			     sizeof(struct dma_desc));
	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
			       rx_q->rx_tail_addr, rx_q->queue_index);

	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
		stmmac_set_dma_bfsize(priv, priv->ioaddr,
				      buf_size,
				      rx_q->queue_index);
	} else {
		stmmac_set_dma_bfsize(priv, priv->ioaddr,
				      priv->dma_buf_sz,
				      rx_q->queue_index);
	}

	stmmac_start_rx_dma(priv, queue);

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
	spin_unlock_irqrestore(&ch->lock, flags);
}

6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
	spin_unlock_irqrestore(&ch->lock, flags);

	stmmac_stop_tx_dma(priv, queue);
	__free_dma_tx_desc_resources(priv, queue);
}

void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
	struct stmmac_channel *ch = &priv->channel[queue];
	unsigned long flags;
	int ret;

	ret = __alloc_dma_tx_desc_resources(priv, queue);
	if (ret) {
		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
		return;
	}

	ret = __init_dma_tx_desc_rings(priv, queue);
	if (ret) {
		__free_dma_tx_desc_resources(priv, queue);
		netdev_err(priv->dev, "Failed to init TX desc.\n");
		return;
	}

	stmmac_clear_tx_descriptors(priv, queue);

	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
			    tx_q->dma_tx_phy, tx_q->queue_index);

	if (tx_q->tbs & STMMAC_TBS_AVAIL)
		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);

	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
			       tx_q->tx_tail_addr, tx_q->queue_index);

	stmmac_start_tx_dma(priv, queue);

	spin_lock_irqsave(&ch->lock, flags);
	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
	spin_unlock_irqrestore(&ch->lock, flags);
}

6424 6425 6426 6427
int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct stmmac_rx_queue *rx_q;
6428
	struct stmmac_tx_queue *tx_q;
6429 6430 6431 6432 6433 6434 6435 6436 6437
	struct stmmac_channel *ch;

	if (test_bit(STMMAC_DOWN, &priv->state) ||
	    !netif_carrier_ok(priv->dev))
		return -ENETDOWN;

	if (!stmmac_xdp_is_enabled(priv))
		return -ENXIO;

6438 6439
	if (queue >= priv->plat->rx_queues_to_use ||
	    queue >= priv->plat->tx_queues_to_use)
6440 6441 6442
		return -EINVAL;

	rx_q = &priv->rx_queue[queue];
6443
	tx_q = &priv->tx_queue[queue];
6444 6445
	ch = &priv->channel[queue];

6446
	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6447 6448
		return -ENXIO;

6449
	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6450 6451 6452
		/* EQoS does not have per-DMA channel SW interrupt,
		 * so we schedule RX Napi straight-away.
		 */
6453 6454
		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
			__napi_schedule(&ch->rxtx_napi);
6455 6456 6457 6458 6459
	}

	return 0;
}

6460 6461 6462 6463 6464
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
6465
	.ndo_fix_features = stmmac_fix_features,
6466
	.ndo_set_features = stmmac_set_features,
6467
	.ndo_set_rx_mode = stmmac_set_rx_mode,
6468
	.ndo_tx_timeout = stmmac_tx_timeout,
6469
	.ndo_eth_ioctl = stmmac_ioctl,
6470
	.ndo_setup_tc = stmmac_setup_tc,
6471
	.ndo_select_queue = stmmac_select_queue,
6472 6473 6474
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
6475
	.ndo_set_mac_address = stmmac_set_mac_address,
6476 6477
	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6478
	.ndo_bpf = stmmac_bpf,
6479
	.ndo_xdp_xmit = stmmac_xdp_xmit,
6480
	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6481 6482
};

6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
static void stmmac_reset_subtask(struct stmmac_priv *priv)
{
	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
		return;
	if (test_bit(STMMAC_DOWN, &priv->state))
		return;

	netdev_err(priv->dev, "Reset adapter.\n");

	rtnl_lock();
	netif_trans_update(priv->dev);
	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
		usleep_range(1000, 2000);

	set_bit(STMMAC_DOWN, &priv->state);
	dev_close(priv->dev);
6499
	dev_open(priv->dev, NULL);
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	clear_bit(STMMAC_DOWN, &priv->state);
	clear_bit(STMMAC_RESETING, &priv->state);
	rtnl_unlock();
}

static void stmmac_service_task(struct work_struct *work)
{
	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
			service_task);

	stmmac_reset_subtask(priv);
	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
}

6514 6515
/**
 *  stmmac_hw_init - Init the MAC device
6516
 *  @priv: driver private structure
6517 6518 6519 6520
 *  Description: this function is to configure the MAC device according to
 *  some platform parameters or the HW capability register. It prepares the
 *  driver to use either ring or chain modes and to setup either enhanced or
 *  normal descriptors.
6521 6522 6523
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
6524
	int ret;
6525

6526 6527 6528
	/* dwmac-sun8i only work in chain mode */
	if (priv->plat->has_sun8i)
		chain_mode = 1;
6529
	priv->chain_mode = chain_mode;
6530

6531 6532 6533 6534
	/* Initialize HW Interface */
	ret = stmmac_hwif_init(priv);
	if (ret)
		return ret;
6535

6536 6537 6538
	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
6539
		dev_info(priv->device, "DMA HW capability register supported\n");
6540 6541 6542 6543 6544 6545 6546

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6547 6548
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
				!priv->plat->use_phy_wol;
6549
		priv->hw->pmt = priv->plat->pmt;
6550 6551 6552 6553 6554 6555
		if (priv->dma_cap.hash_tb_sz) {
			priv->hw->multicast_filter_bins =
					(BIT(priv->dma_cap.hash_tb_sz) << 5);
			priv->hw->mcast_bits_log2 =
					ilog2(priv->hw->multicast_filter_bins);
		}
6556

6557 6558 6559 6560 6561 6562
		/* TXCOE doesn't work in thresh DMA mode */
		if (priv->plat->force_thresh_dma_mode)
			priv->plat->tx_coe = 0;
		else
			priv->plat->tx_coe = priv->dma_cap.tx_coe;

Alexandre TORGUE's avatar
Alexandre TORGUE committed
6563 6564
		/* In case of GMAC4 rx_coe is from HW cap register. */
		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6565 6566 6567 6568 6569 6570

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

6571 6572 6573
	} else {
		dev_info(priv->device, "No HW DMA feature register supported\n");
	}
6574

6575 6576
	if (priv->plat->rx_coe) {
		priv->hw->rx_csum = priv->plat->rx_coe;
6577
		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6578
		if (priv->synopsys_id < DWMAC_CORE_4_00)
6579
			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6580
	}
6581
	if (priv->plat->tx_coe)
6582
		dev_info(priv->device, "TX Checksum insertion supported\n");
6583 6584

	if (priv->plat->pmt) {
6585
		dev_info(priv->device, "Wake-Up On Lan supported\n");
6586 6587 6588
		device_set_wakeup_capable(priv->device, 1);
	}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
6589
	if (priv->dma_cap.tsoen)
6590
		dev_info(priv->device, "TSO supported\n");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6591

6592 6593 6594
	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;

6595 6596 6597 6598 6599 6600 6601
	/* Run HW quirks, if any */
	if (priv->hwif_quirks) {
		ret = priv->hwif_quirks(priv);
		if (ret)
			return ret;
	}

6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
	/* Rx Watchdog is available in the COREs newer than the 3.40.
	 * In some case, for example on bugged HW this feature
	 * has to be disable and this can be done by passing the
	 * riwt_off field from the platform.
	 */
	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
		priv->use_riwt = 1;
		dev_info(priv->device,
			 "Enable RX Mitigation via HW Watchdog Timer\n");
	}

6614
	return 0;
6615 6616
}

6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
static void stmmac_napi_add(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 queue, maxq;

	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);

	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];

		ch->priv_data = priv;
		ch->index = queue;
6629
		spin_lock_init(&ch->lock);
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639

		if (queue < priv->plat->rx_queues_to_use) {
			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
				       NAPI_POLL_WEIGHT);
		}
		if (queue < priv->plat->tx_queues_to_use) {
			netif_tx_napi_add(dev, &ch->tx_napi,
					  stmmac_napi_poll_tx,
					  NAPI_POLL_WEIGHT);
		}
6640 6641 6642 6643 6644 6645
		if (queue < priv->plat->rx_queues_to_use &&
		    queue < priv->plat->tx_queues_to_use) {
			netif_napi_add(dev, &ch->rxtx_napi,
				       stmmac_napi_poll_rxtx,
				       NAPI_POLL_WEIGHT);
		}
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
	}
}

static void stmmac_napi_del(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	u32 queue, maxq;

	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);

	for (queue = 0; queue < maxq; queue++) {
		struct stmmac_channel *ch = &priv->channel[queue];

		if (queue < priv->plat->rx_queues_to_use)
			netif_napi_del(&ch->rx_napi);
		if (queue < priv->plat->tx_queues_to_use)
			netif_napi_del(&ch->tx_napi);
6663 6664 6665 6666
		if (queue < priv->plat->rx_queues_to_use &&
		    queue < priv->plat->tx_queues_to_use) {
			netif_napi_del(&ch->rxtx_napi);
		}
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
	}
}

int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret = 0;

	if (netif_running(dev))
		stmmac_release(dev);

	stmmac_napi_del(dev);

	priv->plat->rx_queues_to_use = rx_cnt;
	priv->plat->tx_queues_to_use = tx_cnt;

	stmmac_napi_add(dev);

	if (netif_running(dev))
		ret = stmmac_open(dev);

	return ret;
}

6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret = 0;

	if (netif_running(dev))
		stmmac_release(dev);

	priv->dma_rx_size = rx_size;
	priv->dma_tx_size = tx_size;

	if (netif_running(dev))
		ret = stmmac_open(dev);

	return ret;
}

6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
#define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
static void stmmac_fpe_lp_task(struct work_struct *work)
{
	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
						fpe_task);
	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
	bool *hs_enable = &fpe_cfg->hs_enable;
	bool *enable = &fpe_cfg->enable;
	int retries = 20;

	while (retries-- > 0) {
		/* Bail out immediately if FPE handshake is OFF */
		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
			break;

		if (*lo_state == FPE_STATE_ENTERING_ON &&
		    *lp_state == FPE_STATE_ENTERING_ON) {
			stmmac_fpe_configure(priv, priv->ioaddr,
					     priv->plat->tx_queues_to_use,
					     priv->plat->rx_queues_to_use,
					     *enable);

			netdev_info(priv->dev, "configured FPE\n");

			*lo_state = FPE_STATE_ON;
			*lp_state = FPE_STATE_ON;
			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
			break;
		}

		if ((*lo_state == FPE_STATE_CAPABLE ||
		     *lo_state == FPE_STATE_ENTERING_ON) &&
		     *lp_state != FPE_STATE_ON) {
			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
				    *lo_state, *lp_state);
			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
						MPACKET_VERIFY);
		}
		/* Sleep then retry */
		msleep(500);
	}

	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
}

void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
{
	if (priv->plat->fpe_cfg->hs_enable != enable) {
		if (enable) {
			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
						MPACKET_VERIFY);
		} else {
			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
		}

		priv->plat->fpe_cfg->hs_enable = enable;
	}
}

6770
/**
6771 6772
 * stmmac_dvr_probe
 * @device: device pointer
6773
 * @plat_dat: platform data pointer
6774
 * @res: stmmac resource pointer
6775 6776
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
6777
 * Return:
6778
 * returns 0 on success, otherwise errno.
6779
 */
6780 6781 6782
int stmmac_dvr_probe(struct device *device,
		     struct plat_stmmacenet_data *plat_dat,
		     struct stmmac_resources *res)
6783
{
6784 6785
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
6786
	u32 rxq;
6787
	int i, ret = 0;
6788

6789 6790
	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6791
	if (!ndev)
6792
		return -ENOMEM;
6793 6794 6795 6796 6797 6798

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
6799

6800
	stmmac_set_ethtool_ops(ndev);
6801 6802
	priv->pause = pause;
	priv->plat = plat_dat;
6803 6804
	priv->ioaddr = res->addr;
	priv->dev->base_addr = (unsigned long)res->addr;
6805
	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6806 6807 6808 6809

	priv->dev->irq = res->irq;
	priv->wol_irq = res->wol_irq;
	priv->lpi_irq = res->lpi_irq;
6810 6811 6812 6813 6814 6815
	priv->sfty_ce_irq = res->sfty_ce_irq;
	priv->sfty_ue_irq = res->sfty_ue_irq;
	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
		priv->rx_irq[i] = res->rx_irq[i];
	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
		priv->tx_irq[i] = res->tx_irq[i];
6816

6817
	if (!is_zero_ether_addr(res->mac))
6818
		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6819

6820
	dev_set_drvdata(device, priv->dev);
6821

6822 6823
	/* Verify driver arguments */
	stmmac_verify_args();
6824

6825 6826 6827 6828
	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
	if (!priv->af_xdp_zc_qps)
		return -ENOMEM;

6829 6830 6831 6832
	/* Allocate workqueue */
	priv->wq = create_singlethread_workqueue("stmmac_wq");
	if (!priv->wq) {
		dev_err(priv->device, "failed to create workqueue\n");
6833
		return -ENOMEM;
6834 6835 6836 6837
	}

	INIT_WORK(&priv->service_task, stmmac_service_task);

6838 6839 6840
	/* Initialize Link Partner FPE workqueue */
	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);

6841
	/* Override with kernel parameters if supplied XXX CRS XXX
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
6842 6843
	 * this needs to have multiple instances
	 */
6844 6845 6846
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

6847 6848
	if (priv->plat->stmmac_rst) {
		ret = reset_control_assert(priv->plat->stmmac_rst);
6849
		reset_control_deassert(priv->plat->stmmac_rst);
6850 6851 6852 6853 6854 6855
		/* Some reset controllers have only reset callback instead of
		 * assert + deassert callbacks pair.
		 */
		if (ret == -ENOTSUPP)
			reset_control_reset(priv->plat->stmmac_rst);
	}
6856

6857 6858 6859 6860 6861
	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
	if (ret == -ENOTSUPP)
		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
			ERR_PTR(ret));

6862
	/* Init MAC and get the capabilities */
6863 6864
	ret = stmmac_hw_init(priv);
	if (ret)
6865
		goto error_hw_init;
6866

6867 6868 6869 6870 6871
	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
	 */
	if (priv->synopsys_id < DWMAC_CORE_5_20)
		priv->plat->dma_cfg->dche = false;

6872 6873
	stmmac_check_ether_addr(priv);

6874
	ndev->netdev_ops = &stmmac_netdev_ops;
6875

6876 6877
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6878

6879 6880 6881 6882 6883
	ret = stmmac_tc_init(priv, priv);
	if (!ret) {
		ndev->hw_features |= NETIF_F_HW_TC;
	}

Alexandre TORGUE's avatar
Alexandre TORGUE committed
6884
	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6885
		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6886 6887
		if (priv->plat->has_gmac4)
			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6888
		priv->tso = true;
6889
		dev_info(priv->device, "TSO feature enabled\n");
Alexandre TORGUE's avatar
Alexandre TORGUE committed
6890
	}
6891

6892 6893
	if (priv->dma_cap.sphen) {
		ndev->hw_features |= NETIF_F_GRO;
6894 6895
		priv->sph_cap = true;
		priv->sph = priv->sph_cap;
6896 6897 6898
		dev_info(priv->device, "SPH feature enabled\n");
	}

6899 6900 6901 6902 6903 6904 6905 6906
	/* The current IP register MAC_HW_Feature1[ADDR64] only define
	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
	 * So overwrite dma_cap.addr64 according to HW real design.
	 */
	if (priv->plat->addr64)
		priv->dma_cap.addr64 = priv->plat->addr64;

6907 6908 6909 6910 6911 6912
	if (priv->dma_cap.addr64) {
		ret = dma_set_mask_and_coherent(device,
				DMA_BIT_MASK(priv->dma_cap.addr64));
		if (!ret) {
			dev_info(priv->device, "Using %d bits DMA width\n",
				 priv->dma_cap.addr64);
6913 6914 6915 6916 6917 6918 6919

			/*
			 * If more than 32 bits can be addressed, make sure to
			 * enable enhanced addressing mode.
			 */
			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
				priv->plat->dma_cfg->eame = true;
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
		} else {
			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
			if (ret) {
				dev_err(priv->device, "Failed to set DMA Mask\n");
				goto error_hw_init;
			}

			priv->dma_cap.addr64 = 32;
		}
	}

6931 6932
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6933 6934
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
6935
	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6936 6937 6938 6939
	if (priv->dma_cap.vlhash) {
		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
	}
6940 6941 6942 6943 6944
	if (priv->dma_cap.vlins) {
		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
		if (priv->dma_cap.dvlan)
			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
	}
6945 6946 6947
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

6948 6949 6950 6951 6952 6953 6954 6955 6956
	/* Initialize RSS */
	rxq = priv->plat->rx_queues_to_use;
	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);

	if (priv->dma_cap.rssen && priv->plat->rss_en)
		ndev->features |= NETIF_F_RXHASH;

6957 6958
	/* MTU range: 46 - hw-specific max */
	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6959
	if (priv->plat->has_xgmac)
6960
		ndev->max_mtu = XGMAC_JUMBO_LEN;
6961 6962
	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
		ndev->max_mtu = JUMBO_LEN;
6963 6964
	else
		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6965 6966 6967 6968 6969
	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
	 */
	if ((priv->plat->maxmtu < ndev->max_mtu) &&
	    (priv->plat->maxmtu >= ndev->min_mtu))
6970
		ndev->max_mtu = priv->plat->maxmtu;
6971
	else if (priv->plat->maxmtu < ndev->min_mtu)
6972 6973 6974
		dev_warn(priv->device,
			 "%s: warning: maxmtu having invalid value (%d)\n",
			 __func__, priv->plat->maxmtu);
6975

6976 6977 6978
	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

6979
	/* Setup channels NAPI */
6980
	stmmac_napi_add(ndev);
6981

6982
	mutex_init(&priv->lock);
6983

6984 6985 6986 6987 6988 6989
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
6990
	if (priv->plat->clk_csr >= 0)
6991
		priv->clk_csr = priv->plat->clk_csr;
6992 6993
	else
		stmmac_clk_csr_set(priv);
6994

6995 6996
	stmmac_check_pcs_mode(priv);

6997 6998 6999 7000
	pm_runtime_get_noresume(device);
	pm_runtime_set_active(device);
	pm_runtime_enable(device);

7001
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7002
	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7003 7004 7005
		/* MDIO bus Registration */
		ret = stmmac_mdio_register(ndev);
		if (ret < 0) {
7006 7007 7008
			dev_err(priv->device,
				"%s: MDIO bus (id: %d) registration failed",
				__func__, priv->plat->bus_id);
7009 7010
			goto error_mdio_register;
		}
7011 7012
	}

7013 7014 7015
	if (priv->plat->speed_mode_2500)
		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);

7016 7017 7018 7019
	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
		ret = stmmac_xpcs_setup(priv->mii);
		if (ret)
			goto error_xpcs_setup;
7020 7021
	}

7022 7023 7024 7025 7026 7027
	ret = stmmac_phy_setup(priv);
	if (ret) {
		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
		goto error_phy_setup;
	}

7028
	ret = register_netdev(ndev);
7029
	if (ret) {
7030 7031
		dev_err(priv->device, "%s: ERROR %i registering the device\n",
			__func__, ret);
7032 7033
		goto error_netdev_register;
	}
7034

7035 7036 7037 7038 7039
	if (priv->plat->serdes_powerup) {
		ret = priv->plat->serdes_powerup(ndev,
						 priv->plat->bsp_priv);

		if (ret < 0)
7040
			goto error_serdes_powerup;
7041 7042
	}

7043
#ifdef CONFIG_DEBUG_FS
7044
	stmmac_init_fs(ndev);
7045 7046
#endif

7047 7048 7049 7050 7051
	/* Let pm_runtime_put() disable the clocks.
	 * If CONFIG_PM is not enabled, the clocks will stay powered.
	 */
	pm_runtime_put(device);

7052
	return ret;
7053

7054 7055
error_serdes_powerup:
	unregister_netdev(ndev);
7056
error_netdev_register:
7057
	phylink_destroy(priv->phylink);
7058
error_xpcs_setup:
7059
error_phy_setup:
7060
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7061 7062
	    priv->hw->pcs != STMMAC_PCS_RTBI)
		stmmac_mdio_unregister(ndev);
7063
error_mdio_register:
7064
	stmmac_napi_del(ndev);
7065
error_hw_init:
7066
	destroy_workqueue(priv->wq);
7067
	bitmap_free(priv->af_xdp_zc_qps);
7068

7069
	return ret;
7070
}
7071
EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7072 7073 7074

/**
 * stmmac_dvr_remove
7075
 * @dev: device pointer
7076
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7077
 * changes the link status, releases the DMA descriptor rings.
7078
 */
7079
int stmmac_dvr_remove(struct device *dev)
7080
{
7081
	struct net_device *ndev = dev_get_drvdata(dev);
7082
	struct stmmac_priv *priv = netdev_priv(ndev);
7083

7084
	netdev_info(priv->dev, "%s: removing driver", __func__);
7085

7086
	stmmac_stop_all_dma(priv);
7087 7088 7089
	stmmac_mac_set(priv, priv->ioaddr, false);
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
7090

7091 7092 7093
	/* Serdes power down needs to happen after VLAN filter
	 * is deleted that is triggered by unregister_netdev().
	 */
7094 7095 7096
	if (priv->plat->serdes_powerdown)
		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);

7097 7098 7099
#ifdef CONFIG_DEBUG_FS
	stmmac_exit_fs(ndev);
#endif
7100
	phylink_destroy(priv->phylink);
7101 7102
	if (priv->plat->stmmac_rst)
		reset_control_assert(priv->plat->stmmac_rst);
7103
	reset_control_assert(priv->plat->stmmac_ahb_rst);
7104 7105
	pm_runtime_put(dev);
	pm_runtime_disable(dev);
7106
	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7107
	    priv->hw->pcs != STMMAC_PCS_RTBI)
7108
		stmmac_mdio_unregister(ndev);
7109
	destroy_workqueue(priv->wq);
7110
	mutex_destroy(&priv->lock);
7111
	bitmap_free(priv->af_xdp_zc_qps);
7112 7113 7114

	return 0;
}
7115
EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7116

7117 7118
/**
 * stmmac_suspend - suspend callback
7119
 * @dev: device pointer
7120 7121 7122 7123
 * Description: this is the function to suspend the device and it is called
 * by the platform driver to stop the network queue, release the resources,
 * program the PMT register (for WoL), clean and release driver resources.
 */
7124
int stmmac_suspend(struct device *dev)
7125
{
7126
	struct net_device *ndev = dev_get_drvdata(dev);
7127
	struct stmmac_priv *priv = netdev_priv(ndev);
7128
	u32 chan;
7129

7130
	if (!ndev || !netif_running(ndev))
7131 7132
		return 0;

7133
	mutex_lock(&priv->lock);
7134

7135
	netif_device_detach(ndev);
7136

7137
	stmmac_disable_all_queues(priv);
7138

7139
	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7140
		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7141

7142 7143 7144 7145 7146
	if (priv->eee_enabled) {
		priv->tx_path_in_lpi_mode = false;
		del_timer_sync(&priv->eee_ctrl_timer);
	}

7147
	/* Stop TX/RX DMA */
7148
	stmmac_stop_all_dma(priv);
7149

7150 7151 7152
	if (priv->plat->serdes_powerdown)
		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);

7153
	/* Enable Power down mode by programming the PMT regs */
7154
	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7155
		stmmac_pmt(priv, priv->hw, priv->wolopts);
7156 7157
		priv->irq_wake = 1;
	} else {
7158
		stmmac_mac_set(priv, priv->ioaddr, false);
7159
		pinctrl_pm_select_sleep_state(priv->device);
7160
	}
7161

7162
	mutex_unlock(&priv->lock);
7163

7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
	rtnl_lock();
	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
		phylink_suspend(priv->phylink, true);
	} else {
		if (device_may_wakeup(priv->device))
			phylink_speed_down(priv->phylink, false);
		phylink_suspend(priv->phylink, false);
	}
	rtnl_unlock();

7174 7175 7176 7177 7178 7179 7180
	if (priv->dma_cap.fpesel) {
		/* Disable FPE */
		stmmac_fpe_configure(priv, priv->ioaddr,
				     priv->plat->tx_queues_to_use,
				     priv->plat->rx_queues_to_use, false);

		stmmac_fpe_handshake(priv, false);
7181
		stmmac_fpe_stop_wq(priv);
7182 7183
	}

7184
	priv->speed = SPEED_UNKNOWN;
7185 7186
	return 0;
}
7187
EXPORT_SYMBOL_GPL(stmmac_suspend);
7188

7189 7190
/**
 * stmmac_reset_queues_param - reset queue parameters
7191
 * @priv: device pointer
7192 7193 7194 7195
 */
static void stmmac_reset_queues_param(struct stmmac_priv *priv)
{
	u32 rx_cnt = priv->plat->rx_queues_to_use;
7196
	u32 tx_cnt = priv->plat->tx_queues_to_use;
7197 7198 7199 7200 7201 7202 7203 7204 7205
	u32 queue;

	for (queue = 0; queue < rx_cnt; queue++) {
		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];

		rx_q->cur_rx = 0;
		rx_q->dirty_rx = 0;
	}

7206 7207 7208 7209 7210
	for (queue = 0; queue < tx_cnt; queue++) {
		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];

		tx_q->cur_tx = 0;
		tx_q->dirty_tx = 0;
7211
		tx_q->mss = 0;
7212 7213

		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7214
	}
7215 7216
}

7217 7218
/**
 * stmmac_resume - resume callback
7219
 * @dev: device pointer
7220 7221 7222
 * Description: when resume this function is invoked to setup the DMA and CORE
 * in a usable state.
 */
7223
int stmmac_resume(struct device *dev)
7224
{
7225
	struct net_device *ndev = dev_get_drvdata(dev);
7226
	struct stmmac_priv *priv = netdev_priv(ndev);
7227
	int ret;
7228

7229
	if (!netif_running(ndev))
7230 7231 7232 7233 7234 7235
		return 0;

	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
7236 7237
	 * from another devices (e.g. serial console).
	 */
7238
	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7239
		mutex_lock(&priv->lock);
7240
		stmmac_pmt(priv, priv->hw, 0);
7241
		mutex_unlock(&priv->lock);
7242
		priv->irq_wake = 0;
7243
	} else {
7244
		pinctrl_pm_select_default_state(priv->device);
7245 7246 7247 7248
		/* reset the phy so that it's ready */
		if (priv->mii)
			stmmac_mdio_reset(priv->mii);
	}
7249

7250 7251 7252 7253 7254 7255 7256 7257
	if (priv->plat->serdes_powerup) {
		ret = priv->plat->serdes_powerup(ndev,
						 priv->plat->bsp_priv);

		if (ret < 0)
			return ret;
	}

7258 7259 7260 7261 7262 7263 7264
	rtnl_lock();
	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
		phylink_resume(priv->phylink);
	} else {
		phylink_resume(priv->phylink);
		if (device_may_wakeup(priv->device))
			phylink_speed_up(priv->phylink);
7265
	}
7266
	rtnl_unlock();
7267

7268
	rtnl_lock();
7269
	mutex_lock(&priv->lock);
7270

7271
	stmmac_reset_queues_param(priv);
7272

7273
	stmmac_free_tx_skbufs(priv);
7274 7275
	stmmac_clear_descriptors(priv);

7276
	stmmac_hw_setup(ndev, false);
7277
	stmmac_init_coalesce(priv);
7278
	stmmac_set_rx_mode(ndev);
7279

7280 7281
	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);

7282
	stmmac_enable_all_queues(priv);
7283

7284
	mutex_unlock(&priv->lock);
7285
	rtnl_unlock();
7286

7287 7288
	netif_device_attach(ndev);

7289 7290
	return 0;
}
7291
EXPORT_SYMBOL_GPL(stmmac_resume);
7292

7293 7294 7295 7296 7297 7298 7299 7300
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
7301
		if (!strncmp(opt, "debug:", 6)) {
7302
			if (kstrtoint(opt + 6, 0, &debug))
7303 7304
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
7305
			if (kstrtoint(opt + 8, 0, &phyaddr))
7306 7307
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
7308
			if (kstrtoint(opt + 7, 0, &buf_sz))
7309 7310
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
7311
			if (kstrtoint(opt + 3, 0, &tc))
7312 7313
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
7314
			if (kstrtoint(opt + 9, 0, &watchdog))
7315 7316
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7317
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7318 7319
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
7320
			if (kstrtoint(opt + 6, 0, &pause))
7321
				goto err;
7322
		} else if (!strncmp(opt, "eee_timer:", 10)) {
7323 7324
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
7325 7326 7327
		} else if (!strncmp(opt, "chain_mode:", 11)) {
			if (kstrtoint(opt + 11, 0, &chain_mode))
				goto err;
7328
		}
7329 7330
	}
	return 0;
7331 7332 7333 7334

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
7335 7336 7337
}

__setup("stmmaceth=", stmmac_cmdline_opt);
Giuseppe CAVALLARO's avatar
Giuseppe CAVALLARO committed
7338
#endif /* MODULE */
7339

7340 7341 7342 7343
static int __init stmmac_init(void)
{
#ifdef CONFIG_DEBUG_FS
	/* Create debugfs main directory if it doesn't exist yet */
7344
	if (!stmmac_fs_dir)
7345
		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7346
	register_netdevice_notifier(&stmmac_notifier);
7347 7348 7349 7350 7351 7352 7353 7354
#endif

	return 0;
}

static void __exit stmmac_exit(void)
{
#ifdef CONFIG_DEBUG_FS
7355
	unregister_netdevice_notifier(&stmmac_notifier);
7356 7357 7358 7359 7360 7361 7362
	debugfs_remove_recursive(stmmac_fs_dir);
#endif
}

module_init(stmmac_init)
module_exit(stmmac_exit)

7363 7364 7365
MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");