gup.c 90.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
13
#include <linux/secretmem.h>
14

15
#include <linux/sched/signal.h>
16
#include <linux/rwsem.h>
17
#include <linux/hugetlb.h>
18 19 20
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
21

22
#include <asm/mmu_context.h>
23
#include <asm/tlbflush.h>
24

25 26
#include "internal.h"

27 28 29 30 31
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static inline void sanity_check_pinned_pages(struct page **pages,
					     unsigned long npages)
{
	if (!IS_ENABLED(CONFIG_DEBUG_VM))
		return;

	/*
	 * We only pin anonymous pages if they are exclusive. Once pinned, we
	 * can no longer turn them possibly shared and PageAnonExclusive() will
	 * stick around until the page is freed.
	 *
	 * We'd like to verify that our pinned anonymous pages are still mapped
	 * exclusively. The issue with anon THP is that we don't know how
	 * they are/were mapped when pinning them. However, for anon
	 * THP we can assume that either the given page (PTE-mapped THP) or
	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
	 * neither is the case, there is certainly something wrong.
	 */
	for (; npages; npages--, pages++) {
		struct page *page = *pages;
		struct folio *folio = page_folio(page);

		if (!folio_test_anon(folio))
			continue;
		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
		else
			/* Either a PTE-mapped or a PMD-mapped THP. */
			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
				       !PageAnonExclusive(page), page);
	}
}

65
/*
66
 * Return the folio with ref appropriately incremented,
67
 * or NULL if that failed.
68
 */
69
static inline struct folio *try_get_folio(struct page *page, int refs)
70
{
71
	struct folio *folio;
72

73
retry:
74 75
	folio = page_folio(page);
	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76
		return NULL;
77
	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78
		return NULL;
79 80

	/*
81 82 83 84
	 * At this point we have a stable reference to the folio; but it
	 * could be that between calling page_folio() and the refcount
	 * increment, the folio was split, in which case we'd end up
	 * holding a reference on a folio that has nothing to do with the page
85
	 * we were given anymore.
86 87
	 * So now that the folio is stable, recheck that the page still
	 * belongs to this folio.
88
	 */
89
	if (unlikely(page_folio(page) != folio)) {
90 91
		if (!put_devmap_managed_page_refs(&folio->page, refs))
			folio_put_refs(folio, refs);
92
		goto retry;
93 94
	}

95
	return folio;
96 97
}

98
/**
99
 * try_grab_folio() - Attempt to get or pin a folio.
100
 * @page:  pointer to page to be grabbed
101
 * @refs:  the value to (effectively) add to the folio's refcount
102 103
 * @flags: gup flags: these are the FOLL_* flag values.
 *
John Hubbard's avatar
John Hubbard committed
104
 * "grab" names in this file mean, "look at flags to decide whether to use
105
 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
John Hubbard's avatar
John Hubbard committed
106 107 108 109 110
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
111
 *    FOLL_GET: folio's refcount will be incremented by @refs.
112
 *
113 114
 *    FOLL_PIN on large folios: folio's refcount will be incremented by
 *    @refs, and its compound_pincount will be incremented by @refs.
115
 *
116
 *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117
 *    @refs * GUP_PIN_COUNTING_BIAS.
John Hubbard's avatar
John Hubbard committed
118
 *
119 120 121 122
 * Return: The folio containing @page (with refcount appropriately
 * incremented) for success, or NULL upon failure. If neither FOLL_GET
 * nor FOLL_PIN was set, that's considered failure, and furthermore,
 * a likely bug in the caller, so a warning is also emitted.
John Hubbard's avatar
John Hubbard committed
123
 */
124
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
John Hubbard's avatar
John Hubbard committed
125 126
{
	if (flags & FOLL_GET)
127
		return try_get_folio(page, refs);
John Hubbard's avatar
John Hubbard committed
128
	else if (flags & FOLL_PIN) {
129 130
		struct folio *folio;

131
		/*
132 133 134
		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
		 * right zone, so fail and let the caller fall back to the slow
		 * path.
135
		 */
136
		if (unlikely((flags & FOLL_LONGTERM) &&
137
			     !is_longterm_pinnable_page(page)))
138 139
			return NULL;

140 141 142 143
		/*
		 * CAUTION: Don't use compound_head() on the page before this
		 * point, the result won't be stable.
		 */
144 145
		folio = try_get_folio(page, refs);
		if (!folio)
146 147
			return NULL;

148
		/*
149
		 * When pinning a large folio, use an exact count to track it.
150
		 *
151 152
		 * However, be sure to *also* increment the normal folio
		 * refcount field at least once, so that the folio really
153
		 * is pinned.  That's why the refcount from the earlier
154
		 * try_get_folio() is left intact.
155
		 */
156 157
		if (folio_test_large(folio))
			atomic_add(refs, folio_pincount_ptr(folio));
158
		else
159 160 161
			folio_ref_add(folio,
					refs * (GUP_PIN_COUNTING_BIAS - 1));
		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
162

163
		return folio;
John Hubbard's avatar
John Hubbard committed
164 165 166 167 168 169
	}

	WARN_ON_ONCE(1);
	return NULL;
}

170
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
171 172
{
	if (flags & FOLL_PIN) {
173 174 175
		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
		if (folio_test_large(folio))
			atomic_sub(refs, folio_pincount_ptr(folio));
176 177 178 179
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}

180 181
	if (!put_devmap_managed_page_refs(&folio->page, refs))
		folio_put_refs(folio, refs);
182 183
}

John Hubbard's avatar
John Hubbard committed
184 185
/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186 187
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
John Hubbard's avatar
John Hubbard committed
188 189 190 191 192 193 194
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195
 * time. Cases: please see the try_grab_folio() documentation, with
196
 * "refs=1".
John Hubbard's avatar
John Hubbard committed
197 198 199 200 201 202 203
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
204 205
	struct folio *folio = page_folio(page);

206
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 208
	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
		return false;
John Hubbard's avatar
John Hubbard committed
209

210
	if (flags & FOLL_GET)
211
		folio_ref_inc(folio);
212 213
	else if (flags & FOLL_PIN) {
		/*
214
		 * Similar to try_grab_folio(): be sure to *also*
215 216
		 * increment the normal page refcount field at least once,
		 * so that the page really is pinned.
217
		 */
218 219 220
		if (folio_test_large(folio)) {
			folio_ref_add(folio, 1);
			atomic_add(1, folio_pincount_ptr(folio));
221
		} else {
222
			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
223
		}
224

225
		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
226 227 228
	}

	return true;
John Hubbard's avatar
John Hubbard committed
229 230 231 232 233 234 235 236 237 238 239 240 241
}

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
242
	sanity_check_pinned_pages(&page, 1);
243
	gup_put_folio(page_folio(page), 1, FOLL_PIN);
John Hubbard's avatar
John Hubbard committed
244 245 246
}
EXPORT_SYMBOL(unpin_user_page);

247
static inline struct folio *gup_folio_range_next(struct page *start,
248
		unsigned long npages, unsigned long i, unsigned int *ntails)
249
{
250 251
	struct page *next = nth_page(start, i);
	struct folio *folio = page_folio(next);
252 253
	unsigned int nr = 1;

254
	if (folio_test_large(folio))
255
		nr = min_t(unsigned int, npages - i,
256
			   folio_nr_pages(folio) - folio_page_idx(folio, next));
257 258

	*ntails = nr;
259
	return folio;
260 261
}

262
static inline struct folio *gup_folio_next(struct page **list,
263
		unsigned long npages, unsigned long i, unsigned int *ntails)
264
{
265
	struct folio *folio = page_folio(list[i]);
266 267 268
	unsigned int nr;

	for (nr = i + 1; nr < npages; nr++) {
269
		if (page_folio(list[nr]) != folio)
270 271 272 273
			break;
	}

	*ntails = nr - i;
274
	return folio;
275 276
}

277
/**
278
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
280
 * @npages: number of pages in the @pages array.
281
 * @make_dirty: whether to mark the pages dirty
282 283 284 285 286
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
287
 * compound page) dirty, if @make_dirty is true, and if the page was previously
288 289
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
290
 *
291
 * Please see the unpin_user_page() documentation for details.
292
 *
293 294 295
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
296
 * set_page_dirty_lock(), unpin_user_page().
297 298
 *
 */
299 300
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
301
{
302 303 304
	unsigned long i;
	struct folio *folio;
	unsigned int nr;
305 306

	if (!make_dirty) {
307
		unpin_user_pages(pages, npages);
308 309 310
		return;
	}

311
	sanity_check_pinned_pages(pages, npages);
312 313
	for (i = 0; i < npages; i += nr) {
		folio = gup_folio_next(pages, npages, i, &nr);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
334 335 336 337 338 339
		if (!folio_test_dirty(folio)) {
			folio_lock(folio);
			folio_mark_dirty(folio);
			folio_unlock(folio);
		}
		gup_put_folio(folio, nr, FOLL_PIN);
340
	}
341
}
342
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/**
 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 * gup-pinned page range
 *
 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 * @npages: number of consecutive pages to release.
 * @make_dirty: whether to mark the pages dirty
 *
 * "gup-pinned page range" refers to a range of pages that has had one of the
 * pin_user_pages() variants called on that page.
 *
 * For the page ranges defined by [page .. page+npages], make that range (or
 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 * page range was previously listed as clean.
 *
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
 * set_page_dirty_lock(), unpin_user_page().
 *
 */
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
				      bool make_dirty)
{
368 369 370 371 372 373 374 375 376 377 378 379
	unsigned long i;
	struct folio *folio;
	unsigned int nr;

	for (i = 0; i < npages; i += nr) {
		folio = gup_folio_range_next(page, npages, i, &nr);
		if (make_dirty && !folio_test_dirty(folio)) {
			folio_lock(folio);
			folio_mark_dirty(folio);
			folio_unlock(folio);
		}
		gup_put_folio(folio, nr, FOLL_PIN);
380 381 382 383
	}
}
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
{
	unsigned long i;
	struct folio *folio;
	unsigned int nr;

	/*
	 * Don't perform any sanity checks because we might have raced with
	 * fork() and some anonymous pages might now actually be shared --
	 * which is why we're unpinning after all.
	 */
	for (i = 0; i < npages; i += nr) {
		folio = gup_folio_next(pages, npages, i, &nr);
		gup_put_folio(folio, nr, FOLL_PIN);
	}
}

401
/**
402
 * unpin_user_pages() - release an array of gup-pinned pages.
403 404 405
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
406
 * For each page in the @pages array, release the page using unpin_user_page().
407
 *
408
 * Please see the unpin_user_page() documentation for details.
409
 */
410
void unpin_user_pages(struct page **pages, unsigned long npages)
411
{
412 413 414
	unsigned long i;
	struct folio *folio;
	unsigned int nr;
415

416 417 418 419 420 421 422
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
423

424
	sanity_check_pinned_pages(pages, npages);
425 426 427
	for (i = 0; i < npages; i += nr) {
		folio = gup_folio_next(pages, npages, i, &nr);
		gup_put_folio(folio, nr, FOLL_PIN);
428
	}
429
}
430
EXPORT_SYMBOL(unpin_user_pages);
431

432 433 434 435 436 437 438 439 440 441 442
/*
 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 * cache bouncing on large SMP machines for concurrent pinned gups.
 */
static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
{
	if (!test_bit(MMF_HAS_PINNED, mm_flags))
		set_bit(MMF_HAS_PINNED, mm_flags);
}

443
#ifdef CONFIG_MMU
444 445
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
446
{
447 448 449 450 451 452 453 454
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
455 456
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 458 459
		return ERR_PTR(-EFAULT);
	return NULL;
}
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

481 482 483 484
/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
static inline bool can_follow_write_pte(pte_t pte, struct page *page,
					struct vm_area_struct *vma,
					unsigned int flags)
485
{
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	/* If the pte is writable, we can write to the page. */
	if (pte_write(pte))
		return true;

	/* Maybe FOLL_FORCE is set to override it? */
	if (!(flags & FOLL_FORCE))
		return false;

	/* But FOLL_FORCE has no effect on shared mappings */
	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
		return false;

	/* ... or read-only private ones */
	if (!(vma->vm_flags & VM_MAYWRITE))
		return false;

	/* ... or already writable ones that just need to take a write fault */
	if (vma->vm_flags & VM_WRITE)
		return false;

	/*
	 * See can_change_pte_writable(): we broke COW and could map the page
	 * writable if we have an exclusive anonymous page ...
	 */
	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
		return false;

	/* ... and a write-fault isn't required for other reasons. */
	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
		return false;
	return !userfaultfd_pte_wp(vma, pte);
517 518
}

519
static struct page *follow_page_pte(struct vm_area_struct *vma,
520 521
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
522 523 524 525 526
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
527
	int ret;
528

529 530 531 532
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
533
retry:
534
	if (unlikely(pmd_bad(*pmd)))
535
		return no_page_table(vma, flags);
536 537 538 539 540 541 542 543 544 545 546 547

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
548
		if (pte_none(pte))
549 550 551 552 553 554
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
555
		goto retry;
556
	}
557
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
558 559 560
		goto no_page;

	page = vm_normal_page(vma, address, pte);
561 562 563 564 565 566 567 568 569 570 571

	/*
	 * We only care about anon pages in can_follow_write_pte() and don't
	 * have to worry about pte_devmap() because they are never anon.
	 */
	if ((flags & FOLL_WRITE) &&
	    !can_follow_write_pte(pte, page, vma, flags)) {
		page = NULL;
		goto out;
	}

John Hubbard's avatar
John Hubbard committed
572
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
573
		/*
John Hubbard's avatar
John Hubbard committed
574 575 576
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
577
		 */
578 579
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
580 581 582 583
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
584 585 586 587 588 589 590 591 592 593 594 595 596
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
597 598
	}

599 600 601 602
	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
		page = ERR_PTR(-EMLINK);
		goto out;
	}
603 604 605 606

	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
		       !PageAnonExclusive(page), page);

John Hubbard's avatar
John Hubbard committed
607 608 609 610
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
611
	}
612 613 614 615 616 617 618 619 620 621 622 623 624
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
625 626 627 628 629 630 631 632 633 634 635
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
636
out:
637 638 639 640 641
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
642 643 644 645
		return NULL;
	return no_page_table(vma, flags);
}

646 647
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
648 649
				    unsigned int flags,
				    struct follow_page_context *ctx)
650
{
651
	pmd_t *pmd, pmdval;
652 653 654 655
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

656
	pmd = pmd_offset(pudp, address);
657 658 659 660 661 662
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
663
		return no_page_table(vma, flags);
664
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
665 666 667 668
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
669
	}
670
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
671
		page = follow_huge_pd(vma, address,
672
				      __hugepd(pmd_val(pmdval)), flags,
673 674 675 676 677
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
678
retry:
679
	if (!pmd_present(pmdval)) {
680 681 682 683 684 685 686
		/*
		 * Should never reach here, if thp migration is not supported;
		 * Otherwise, it must be a thp migration entry.
		 */
		VM_BUG_ON(!thp_migration_supported() ||
				  !is_pmd_migration_entry(pmdval));

687 688
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
689 690

		pmd_migration_entry_wait(mm, pmd);
691 692 693
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
694
		 * mmap_lock is held in read mode
695 696 697
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
698 699
		goto retry;
	}
700
	if (pmd_devmap(pmdval)) {
701
		ptl = pmd_lock(mm, pmd);
702
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
703 704 705 706
		spin_unlock(ptl);
		if (page)
			return page;
	}
707
	if (likely(!pmd_trans_huge(pmdval)))
708
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
709

710
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
711 712
		return no_page_table(vma, flags);

713
retry_locked:
714
	ptl = pmd_lock(mm, pmd);
715 716 717 718
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
719 720 721 722 723 724 725
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
726 727
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
728
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
729
	}
Yang Shi's avatar
Yang Shi committed
730
	if (flags & FOLL_SPLIT_PMD) {
731 732 733 734 735
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
736
			split_huge_pmd(vma, pmd, address);
737 738
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
Yang Shi's avatar
Yang Shi committed
739
		} else {
Song Liu's avatar
Song Liu committed
740 741 742
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
743 744 745
		}

		return ret ? ERR_PTR(ret) :
746
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
747
	}
748 749
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
750
	ctx->page_mask = HPAGE_PMD_NR - 1;
751
	return page;
752 753
}

754 755
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
756 757
				    unsigned int flags,
				    struct follow_page_context *ctx)
758 759 760 761 762 763 764 765 766
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
767
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
768 769 770 771 772
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
773 774 775 776 777 778 779 780
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
781 782
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
783
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
784 785 786 787 788 789 790
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

791
	return follow_pmd_mask(vma, address, pud, flags, ctx);
792 793 794 795
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
796 797
				    unsigned int flags,
				    struct follow_page_context *ctx)
798 799
{
	p4d_t *p4d;
800
	struct page *page;
801 802 803 804 805 806 807 808

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

809 810 811 812 813 814 815 816
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
817
	return follow_pud_mask(vma, address, p4d, flags, ctx);
818 819 820 821 822 823 824
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
825 826
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
827 828 829
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
830 831 832
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
833 834 835 836 837
 * When getting an anonymous page and the caller has to trigger unsharing
 * of a shared anonymous page first, -EMLINK is returned. The caller should
 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
 * relevant with FOLL_PIN and !FOLL_WRITE.
 *
838 839 840
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
841 842 843
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
844
static struct page *follow_page_mask(struct vm_area_struct *vma,
845
			      unsigned long address, unsigned int flags,
846
			      struct follow_page_context *ctx)
847 848 849 850 851
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

852
	ctx->page_mask = 0;
853 854 855 856

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
John Hubbard's avatar
John Hubbard committed
857
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
858 859 860 861 862 863 864 865
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

866 867 868 869 870 871
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
872 873 874 875 876 877 878 879
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
880

881 882 883 884 885 886 887 888 889
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

890 891 892
	if (vma_is_secretmem(vma))
		return NULL;

893 894 895
	if (foll_flags & FOLL_PIN)
		return NULL;

896 897 898 899
	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
900 901
}

902 903 904 905 906
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
907
	p4d_t *p4d;
908 909 910 911 912 913 914 915 916 917 918 919
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
920 921
	if (pgd_none(*pgd))
		return -EFAULT;
922
	p4d = p4d_offset(pgd, address);
923 924
	if (p4d_none(*p4d))
		return -EFAULT;
925
	pud = pud_offset(p4d, address);
926 927
	if (pud_none(*pud))
		return -EFAULT;
928
	pmd = pmd_offset(pud, address);
929
	if (!pmd_present(*pmd))
930 931 932 933 934 935 936 937 938 939 940 941 942 943
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
944
	if (unlikely(!try_grab_page(*page, gup_flags))) {
945 946 947
		ret = -ENOMEM;
		goto unmap;
	}
948 949 950 951 952 953 954
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

955
/*
956 957
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
958
 * is, *@locked will be set to 0 and -EBUSY returned.
959
 */
960
static int faultin_page(struct vm_area_struct *vma,
961 962
		unsigned long address, unsigned int *flags, bool unshare,
		int *locked)
963 964
{
	unsigned int fault_flags = 0;
965
	vm_fault_t ret;
966

967 968
	if (*flags & FOLL_NOFAULT)
		return -EFAULT;
969 970
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
971 972
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
973
	if (locked)
974
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
975 976
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
977
	if (*flags & FOLL_TRIED) {
978 979 980 981
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
982 983
		fault_flags |= FAULT_FLAG_TRIED;
	}
984 985 986 987 988
	if (unshare) {
		fault_flags |= FAULT_FLAG_UNSHARE;
		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
	}
989

990
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	if (ret & VM_FAULT_COMPLETED) {
		/*
		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
		 * mmap lock in the page fault handler. Sanity check this.
		 */
		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
		if (locked)
			*locked = 0;
		/*
		 * We should do the same as VM_FAULT_RETRY, but let's not
		 * return -EBUSY since that's not reflecting the reality of
		 * what has happened - we've just fully completed a page
		 * fault, with the mmap lock released.  Use -EAGAIN to show
		 * that we want to take the mmap lock _again_.
		 */
		return -EAGAIN;
	}

1010
	if (ret & VM_FAULT_ERROR) {
1011 1012 1013 1014
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
1015 1016 1017 1018
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
1019 1020
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
1021 1022 1023 1024 1025 1026
		return -EBUSY;
	}

	return 0;
}

1027 1028 1029
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
1030 1031
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
1032 1033 1034 1035

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

1036 1037 1038
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

1039 1040 1041
	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
		return -EOPNOTSUPP;

1042 1043 1044
	if (vma_is_secretmem(vma))
		return -EFAULT;

1045
	if (write) {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
1058
			if (!is_cow_mapping(vm_flags))
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
1071 1072 1073 1074 1075
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1076
		return -EFAULT;
1077 1078 1079
	return 0;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
1091
 * @locked:     whether we're still with the mmap_lock held
1092
 *
1093 1094 1095 1096 1097 1098 1099
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
1100
 * -- 0 return value is possible when the fault would need to be retried.
1101 1102 1103
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1104
 * @vmas are valid only as long as mmap_lock is held.
1105
 *
1106
 * Must be called with mmap_lock held.  It may be released.  See below.
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1127
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1128 1129
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1130
 *
1131
 * A caller using such a combination of @locked and @gup_flags
1132
 * must therefore hold the mmap_lock for reading only, and recognize
1133 1134
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1135 1136 1137 1138 1139
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1140
static long __get_user_pages(struct mm_struct *mm,
1141 1142
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1143
		struct vm_area_struct **vmas, int *locked)
1144
{
1145
	long ret = 0, i = 0;
1146
	struct vm_area_struct *vma = NULL;
1147
	struct follow_page_context ctx = { NULL };
1148 1149 1150 1151

	if (!nr_pages)
		return 0;

1152 1153
	start = untagged_addr(start);

1154
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1177
					goto out;
1178
				ctx.page_mask = 0;
1179 1180
				goto next_page;
			}
1181

1182
			if (!vma) {
1183 1184 1185
				ret = -EFAULT;
				goto out;
			}
1186 1187 1188 1189
			ret = check_vma_flags(vma, gup_flags);
			if (ret)
				goto out;

1190 1191 1192
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1193
						gup_flags, locked);
1194 1195 1196
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1197
					 * and we've lost mmap_lock.
1198 1199 1200 1201 1202
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					goto out;
				}
1203
				continue;
1204
			}
1205 1206 1207 1208 1209 1210
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1211
		if (fatal_signal_pending(current)) {
1212
			ret = -EINTR;
1213 1214
			goto out;
		}
1215
		cond_resched();
1216 1217

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1218 1219 1220
		if (!page || PTR_ERR(page) == -EMLINK) {
			ret = faultin_page(vma, start, &foll_flags,
					   PTR_ERR(page) == -EMLINK, locked);
1221 1222 1223
			switch (ret) {
			case 0:
				goto retry;
1224
			case -EBUSY:
1225
			case -EAGAIN:
1226
				ret = 0;
Joe Perches's avatar
Joe Perches committed
1227
				fallthrough;
1228 1229 1230
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1231
				goto out;
1232
			}
1233
			BUG();
1234 1235 1236
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
1237 1238 1239
			 * struct page. If the caller expects **pages to be
			 * filled in, bail out now, because that can't be done
			 * for this page.
1240
			 */
1241 1242 1243 1244 1245
			if (pages) {
				ret = PTR_ERR(page);
				goto out;
			}

1246 1247
			goto next_page;
		} else if (IS_ERR(page)) {
1248 1249
			ret = PTR_ERR(page);
			goto out;
1250
		}
1251 1252 1253 1254
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1255
			ctx.page_mask = 0;
1256 1257
		}
next_page:
1258 1259
		if (vmas) {
			vmas[i] = vma;
1260
			ctx.page_mask = 0;
1261
		}
1262
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1263 1264 1265 1266 1267
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1268
	} while (nr_pages);
1269 1270 1271 1272
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1273 1274
}

1275 1276
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1277
{
1278 1279
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1280
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1281 1282 1283 1284

	if (!(vm_flags & vma->vm_flags))
		return false;

1285 1286
	/*
	 * The architecture might have a hardware protection
1287
	 * mechanism other than read/write that can deny access.
1288 1289 1290
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1291
	 */
1292
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1293 1294
		return false;

1295 1296 1297
	return true;
}

1298
/**
1299 1300 1301 1302
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1303
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1304 1305
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1317
 * get_user_pages() only guarantees to update these in the struct page.
1318 1319 1320 1321 1322 1323
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1324 1325
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1326
 */
1327
int fixup_user_fault(struct mm_struct *mm,
1328 1329
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1330 1331
{
	struct vm_area_struct *vma;
1332
	vm_fault_t ret;
1333

1334 1335
	address = untagged_addr(address);

1336
	if (unlocked)
1337
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1338

1339
retry:
1340 1341 1342 1343
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1344
	if (!vma_permits_fault(vma, fault_flags))
1345 1346
		return -EFAULT;

1347 1348 1349 1350
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1351
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

	if (ret & VM_FAULT_COMPLETED) {
		/*
		 * NOTE: it's a pity that we need to retake the lock here
		 * to pair with the unlock() in the callers. Ideally we
		 * could tell the callers so they do not need to unlock.
		 */
		mmap_read_lock(mm);
		*unlocked = true;
		return 0;
	}

1364
	if (ret & VM_FAULT_ERROR) {
1365 1366 1367 1368
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1369 1370
		BUG();
	}
1371 1372

	if (ret & VM_FAULT_RETRY) {
1373
		mmap_read_lock(mm);
1374 1375 1376
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1377 1378
	}

1379 1380
	return 0;
}
1381
EXPORT_SYMBOL_GPL(fixup_user_fault);
1382

1383 1384 1385 1386
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1387
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1388 1389 1390 1391
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1392
						int *locked,
1393
						unsigned int flags)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

1405 1406
	if (flags & FOLL_PIN)
		mm_set_has_pinned_flag(&mm->flags);
Peter Xu's avatar
Peter Xu committed
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1418 1419 1420 1421 1422
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1423
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1424 1425 1426 1427 1428
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

1429
		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1442 1443 1444 1445
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1446 1447 1448 1449
			if (!pages_done)
				pages_done = ret;
			break;
		}
1450 1451 1452 1453 1454 1455
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1456
		start += ret << PAGE_SHIFT;
1457
		lock_dropped = true;
1458

1459
retry:
1460 1461
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1462 1463 1464 1465
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1466
		 */
1467

1468 1469 1470
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1471
			break;
1472
		}
1473

1474
		ret = mmap_read_lock_killable(mm);
1475 1476 1477 1478 1479 1480
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1481

1482
		*locked = 1;
1483
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1484 1485 1486 1487 1488 1489
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1500 1501
		if (likely(pages))
			pages++;
1502 1503
		start += PAGE_SIZE;
	}
1504
	if (lock_dropped && *locked) {
1505 1506 1507 1508
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1509
		mmap_read_unlock(mm);
1510 1511 1512 1513 1514
		*locked = 0;
	}
	return pages_done;
}

1515 1516 1517 1518 1519
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1520
 * @locked: whether the mmap_lock is still held
1521 1522 1523
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1524 1525
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1526
 *
1527
 * vma->vm_mm->mmap_lock must be held.
1528
 *
1529
 * If @locked is NULL, it may be held for read or write and will
1530 1531
 * be unperturbed.
 *
1532 1533
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1534 1535
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1536
		unsigned long start, unsigned long end, int *locked)
1537 1538 1539 1540
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;
1541
	long ret;
1542

1543 1544
	VM_BUG_ON(!PAGE_ALIGNED(start));
	VM_BUG_ON(!PAGE_ALIGNED(end));
1545 1546
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1547
	mmap_assert_locked(mm);
1548

1549 1550 1551 1552
	/*
	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
	 * faultin_page() to break COW, so it has no work to do here.
	 */
1553
	if (vma->vm_flags & VM_LOCKONFAULT)
1554 1555 1556
		return nr_pages;

	gup_flags = FOLL_TOUCH;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1569
	if (vma_is_accessible(vma))
1570 1571 1572 1573 1574 1575
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1576
	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1577
				NULL, NULL, locked);
1578 1579
	lru_add_drain();
	return ret;
1580 1581
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/*
 * faultin_vma_page_range() - populate (prefault) page tables inside the
 *			      given VMA range readable/writable
 *
 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
 *
 * @vma: target vma
 * @start: start address
 * @end: end address
 * @write: whether to prefault readable or writable
 * @locked: whether the mmap_lock is still held
 *
 * Returns either number of processed pages in the vma, or a negative error
 * code on error (see __get_user_pages()).
 *
 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
 * covered by the VMA.
 *
 * If @locked is NULL, it may be held for read or write and will be unperturbed.
 *
 * If @locked is non-NULL, it must held for read only and may be released.  If
 * it's released, *@locked will be set to 0.
 */
long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end, bool write, int *locked)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;
1611
	long ret;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	VM_BUG_ON(!PAGE_ALIGNED(start));
	VM_BUG_ON(!PAGE_ALIGNED(end));
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end > vma->vm_end, vma);
	mmap_assert_locked(mm);

	/*
	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
	 *	       difference with !FOLL_FORCE, because the page is writable
	 *	       in the page table.
	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
	 *		  a poisoned page.
	 * !FOLL_FORCE: Require proper access permissions.
	 */
1628
	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1629 1630 1631 1632
	if (write)
		gup_flags |= FOLL_WRITE;

	/*
1633 1634
	 * We want to report -EINVAL instead of -EFAULT for any permission
	 * problems or incompatible mappings.
1635
	 */
1636 1637 1638
	if (check_vma_flags(vma, gup_flags))
		return -EINVAL;

1639
	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1640
				NULL, NULL, locked);
1641 1642
	lru_add_drain();
	return ret;
1643 1644
}

1645 1646 1647 1648 1649
/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1650
 * mmap_lock must not be held.
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1669
			mmap_read_lock(mm);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1701
		mmap_read_unlock(mm);
1702 1703
	return ret;	/* 0 or negative error code */
}
1704
#else /* CONFIG_MMU */
1705
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1706 1707 1708 1709 1710 1711
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
1712
	long i;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
1733
			pages[i] = virt_to_page((void *)start);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
/**
 * fault_in_writeable - fault in userspace address range for writing
 * @uaddr: start of address range
 * @size: size of address range
 *
 * Returns the number of bytes not faulted in (like copy_to_user() and
 * copy_from_user()).
 */
size_t fault_in_writeable(char __user *uaddr, size_t size)
{
	char __user *start = uaddr, *end;

	if (unlikely(size == 0))
		return 0;
1763 1764
	if (!user_write_access_begin(uaddr, size))
		return size;
1765
	if (!PAGE_ALIGNED(uaddr)) {
1766
		unsafe_put_user(0, uaddr, out);
1767 1768 1769 1770 1771 1772
		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
	}
	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
	if (unlikely(end < start))
		end = NULL;
	while (uaddr != end) {
1773
		unsafe_put_user(0, uaddr, out);
1774 1775 1776 1777
		uaddr += PAGE_SIZE;
	}

out:
1778
	user_write_access_end();
1779 1780 1781 1782 1783 1784
	if (size > uaddr - start)
		return size - (uaddr - start);
	return 0;
}
EXPORT_SYMBOL(fault_in_writeable);

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/**
 * fault_in_subpage_writeable - fault in an address range for writing
 * @uaddr: start of address range
 * @size: size of address range
 *
 * Fault in a user address range for writing while checking for permissions at
 * sub-page granularity (e.g. arm64 MTE). This function should be used when
 * the caller cannot guarantee forward progress of a copy_to_user() loop.
 *
 * Returns the number of bytes not faulted in (like copy_to_user() and
 * copy_from_user()).
 */
size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
{
	size_t faulted_in;

	/*
	 * Attempt faulting in at page granularity first for page table
	 * permission checking. The arch-specific probe_subpage_writeable()
	 * functions may not check for this.
	 */
	faulted_in = size - fault_in_writeable(uaddr, size);
	if (faulted_in)
		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);

	return size - faulted_in;
}
EXPORT_SYMBOL(fault_in_subpage_writeable);

1814 1815 1816 1817 1818
/*
 * fault_in_safe_writeable - fault in an address range for writing
 * @uaddr: start of address range
 * @size: length of address range
 *
1819 1820 1821
 * Faults in an address range for writing.  This is primarily useful when we
 * already know that some or all of the pages in the address range aren't in
 * memory.
1822
 *
1823
 * Unlike fault_in_writeable(), this function is non-destructive.
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
 *
 * Note that we don't pin or otherwise hold the pages referenced that we fault
 * in.  There's no guarantee that they'll stay in memory for any duration of
 * time.
 *
 * Returns the number of bytes not faulted in, like copy_to_user() and
 * copy_from_user().
 */
size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
{
1834
	unsigned long start = (unsigned long)uaddr, end;
1835
	struct mm_struct *mm = current->mm;
1836
	bool unlocked = false;
1837

1838 1839
	if (unlikely(size == 0))
		return 0;
1840
	end = PAGE_ALIGN(start + size);
1841
	if (end < start)
1842 1843
		end = 0;

1844 1845 1846
	mmap_read_lock(mm);
	do {
		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1847
			break;
1848 1849 1850 1851 1852 1853 1854
		start = (start + PAGE_SIZE) & PAGE_MASK;
	} while (start != end);
	mmap_read_unlock(mm);

	if (size > (unsigned long)uaddr - start)
		return size - ((unsigned long)uaddr - start);
	return 0;
1855 1856 1857
}
EXPORT_SYMBOL(fault_in_safe_writeable);

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/**
 * fault_in_readable - fault in userspace address range for reading
 * @uaddr: start of user address range
 * @size: size of user address range
 *
 * Returns the number of bytes not faulted in (like copy_to_user() and
 * copy_from_user()).
 */
size_t fault_in_readable(const char __user *uaddr, size_t size)
{
	const char __user *start = uaddr, *end;
	volatile char c;

	if (unlikely(size == 0))
		return 0;
1873 1874
	if (!user_read_access_begin(uaddr, size))
		return size;
1875
	if (!PAGE_ALIGNED(uaddr)) {
1876
		unsafe_get_user(c, uaddr, out);
1877 1878 1879 1880 1881 1882
		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
	}
	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
	if (unlikely(end < start))
		end = NULL;
	while (uaddr != end) {
1883
		unsafe_get_user(c, uaddr, out);
1884 1885 1886 1887
		uaddr += PAGE_SIZE;
	}

out:
1888
	user_read_access_end();
1889 1890 1891 1892 1893 1894 1895
	(void)c;
	if (size > uaddr - start)
		return size - (uaddr - start);
	return 0;
}
EXPORT_SYMBOL(fault_in_readable);

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
Ingo Molnar's avatar
Ingo Molnar committed
1906
 * allowing a hole to be left in the corefile to save disk space.
1907
 *
1908
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1909 1910 1911 1912
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1913
	struct mm_struct *mm = current->mm;
1914
	struct page *page;
1915 1916
	int locked = 1;
	int ret;
1917

1918
	if (mmap_read_lock_killable(mm))
1919
		return NULL;
1920 1921 1922 1923 1924
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
	return (ret == 1) ? page : NULL;
1925 1926 1927
}
#endif /* CONFIG_ELF_CORE */

1928
#ifdef CONFIG_MIGRATION
1929 1930 1931 1932 1933 1934 1935
/*
 * Check whether all pages are pinnable, if so return number of pages.  If some
 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
 * pages were migrated, or if some pages were not successfully isolated.
 * Return negative error if migration fails.
 */
static long check_and_migrate_movable_pages(unsigned long nr_pages,
1936 1937
					    struct page **pages,
					    unsigned int gup_flags)
1938
{
1939
	unsigned long isolation_error_count = 0, i;
1940
	struct folio *prev_folio = NULL;
1941
	LIST_HEAD(movable_page_list);
1942
	bool drain_allow = true, coherent_pages = false;
1943
	int ret = 0;
1944

1945
	for (i = 0; i < nr_pages; i++) {
1946
		struct folio *folio = page_folio(pages[i]);
1947

1948
		if (folio == prev_folio)
1949
			continue;
1950
		prev_folio = folio;
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		/*
		 * Device coherent pages are managed by a driver and should not
		 * be pinned indefinitely as it prevents the driver moving the
		 * page. So when trying to pin with FOLL_LONGTERM instead try
		 * to migrate the page out of device memory.
		 */
		if (folio_is_device_coherent(folio)) {
			/*
			 * We always want a new GUP lookup with device coherent
			 * pages.
			 */
			pages[i] = 0;
			coherent_pages = true;

			/*
			 * Migration will fail if the page is pinned, so convert
			 * the pin on the source page to a normal reference.
			 */
			if (gup_flags & FOLL_PIN) {
				get_page(&folio->page);
				unpin_user_page(&folio->page);
			}

			ret = migrate_device_coherent_page(&folio->page);
			if (ret)
				goto unpin_pages;

1979
			continue;
1980
		}
1981

1982 1983
		if (folio_is_longterm_pinnable(folio))
			continue;
1984
		/*
1985
		 * Try to move out any movable page before pinning the range.
1986
		 */
1987
		if (folio_test_hugetlb(folio)) {
1988
			if (isolate_hugetlb(&folio->page,
1989
						&movable_page_list))
1990 1991 1992
				isolation_error_count++;
			continue;
		}
1993

1994
		if (!folio_test_lru(folio) && drain_allow) {
1995 1996 1997 1998
			lru_add_drain_all();
			drain_allow = false;
		}

1999
		if (folio_isolate_lru(folio)) {
2000 2001
			isolation_error_count++;
			continue;
2002
		}
2003 2004 2005 2006
		list_add_tail(&folio->lru, &movable_page_list);
		node_stat_mod_folio(folio,
				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
				    folio_nr_pages(folio));
2007 2008
	}

2009 2010
	if (!list_empty(&movable_page_list) || isolation_error_count ||
	    coherent_pages)
2011 2012
		goto unpin_pages;

2013 2014 2015 2016
	/*
	 * If list is empty, and no isolation errors, means that all pages are
	 * in the correct zone.
	 */
2017
	return nr_pages;
2018

2019
unpin_pages:
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	/*
	 * pages[i] might be NULL if any device coherent pages were found.
	 */
	for (i = 0; i < nr_pages; i++) {
		if (!pages[i])
			continue;

		if (gup_flags & FOLL_PIN)
			unpin_user_page(pages[i]);
		else
2030 2031
			put_page(pages[i]);
	}
2032

2033
	if (!list_empty(&movable_page_list)) {
2034 2035 2036 2037 2038
		struct migration_target_control mtc = {
			.nid = NUMA_NO_NODE,
			.gfp_mask = GFP_USER | __GFP_NOWARN,
		};

2039
		ret = migrate_pages(&movable_page_list, alloc_migration_target,
2040
				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2041
				    MR_LONGTERM_PIN, NULL);
2042 2043
		if (ret > 0) /* number of pages not migrated */
			ret = -ENOMEM;
2044 2045
	}

2046 2047 2048
	if (ret && !list_empty(&movable_page_list))
		putback_movable_pages(&movable_page_list);
	return ret;
2049 2050
}
#else
2051
static long check_and_migrate_movable_pages(unsigned long nr_pages,
2052 2053
					    struct page **pages,
					    unsigned int gup_flags)
2054 2055 2056
{
	return nr_pages;
}
2057
#endif /* CONFIG_MIGRATION */
2058

2059
/*
2060 2061
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
2062
 */
2063
static long __gup_longterm_locked(struct mm_struct *mm,
2064 2065 2066 2067 2068
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
2069
{
2070
	unsigned int flags;
2071
	long rc;
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	if (!(gup_flags & FOLL_LONGTERM))
		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
					       NULL, gup_flags);
	flags = memalloc_pin_save();
	do {
		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
					     NULL, gup_flags);
		if (rc <= 0)
			break;
		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
	} while (!rc);
	memalloc_pin_restore(flags);
2085 2086 2087

	return rc;
}
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

2108
#ifdef CONFIG_MMU
2109
static long __get_user_pages_remote(struct mm_struct *mm,
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
2128
		return __gup_longterm_locked(mm, start, nr_pages, pages,
2129 2130 2131 2132
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

2133
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2134 2135 2136 2137
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

2138
/**
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
2163
 * @vmas are valid only as long as mmap_lock is held.
2164
 *
2165
 * Must be called with mmap_lock held for read or write.
2166
 *
2167 2168
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
2169 2170 2171 2172
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
2173
 * get_user_pages_remote returns, and there may even be a completely different
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
2185 2186 2187 2188 2189
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2190 2191 2192
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
2193
 * get_user_pages_remote should be phased out in favor of
2194
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2195
 * should use get_user_pages_remote because it cannot pass
2196 2197
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
2198
long get_user_pages_remote(struct mm_struct *mm,
2199 2200 2201 2202
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
2203
	if (!is_valid_gup_flags(gup_flags))
2204 2205
		return -EINVAL;

2206
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2207
				       pages, vmas, locked);
2208 2209 2210
}
EXPORT_SYMBOL(get_user_pages_remote);

2211
#else /* CONFIG_MMU */
2212
long get_user_pages_remote(struct mm_struct *mm,
2213 2214 2215 2216 2217 2218
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
John Hubbard's avatar
John Hubbard committed
2219

2220
static long __get_user_pages_remote(struct mm_struct *mm,
John Hubbard's avatar
John Hubbard committed
2221 2222 2223 2224 2225 2226
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
2227 2228
#endif /* !CONFIG_MMU */

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
2240 2241 2242 2243
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
2244 2245 2246 2247 2248
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
2249
	if (!is_valid_gup_flags(gup_flags))
2250 2251
		return -EINVAL;

2252
	return __gup_longterm_locked(current->mm, start, nr_pages,
2253 2254 2255
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
2256

2257
/*
2258
 * get_user_pages_unlocked() is suitable to replace the form:
2259
 *
2260
 *      mmap_read_lock(mm);
2261
 *      get_user_pages(mm, ..., pages, NULL);
2262
 *      mmap_read_unlock(mm);
2263 2264 2265
 *
 *  with:
 *
2266
 *      get_user_pages_unlocked(mm, ..., pages);
2267 2268 2269 2270
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
2271
 */
2272 2273
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
2274 2275
{
	struct mm_struct *mm = current->mm;
2276 2277
	int locked = 1;
	long ret;
2278

2279 2280 2281 2282 2283 2284 2285 2286
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2287

2288
	mmap_read_lock(mm);
2289
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2290
				      &locked, gup_flags | FOLL_TOUCH);
2291
	if (locked)
2292
		mmap_read_unlock(mm);
2293
	return ret;
2294
}
2295
EXPORT_SYMBOL(get_user_pages_unlocked);
2296 2297

/*
2298
 * Fast GUP
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2319
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2320
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2321 2322 2323 2324 2325 2326 2327 2328 2329
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2330
#ifdef CONFIG_HAVE_FAST_GUP
John Hubbard's avatar
John Hubbard committed
2331

2332
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2333
					    unsigned int flags,
2334
					    struct page **pages)
2335 2336 2337 2338 2339
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
John Hubbard's avatar
John Hubbard committed
2340 2341 2342 2343
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2344 2345 2346
	}
}

2347
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2348
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2349
			 unsigned int flags, struct page **pages, int *nr)
2350
{
2351 2352
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2353 2354 2355 2356
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2357
		pte_t pte = ptep_get_lockless(ptep);
2358 2359
		struct page *page;
		struct folio *folio;
2360 2361 2362

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2363
		 * path using the pte_protnone check.
2364
		 */
2365 2366 2367
		if (pte_protnone(pte))
			goto pte_unmap;

2368
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2369 2370
			goto pte_unmap;

2371
		if (pte_devmap(pte)) {
2372 2373 2374
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2375 2376
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2377
				undo_dev_pagemap(nr, nr_start, flags, pages);
2378 2379 2380
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2381 2382 2383 2384 2385
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

2386 2387
		folio = try_grab_folio(page, 1, flags);
		if (!folio)
2388 2389
			goto pte_unmap;

2390
		if (unlikely(page_is_secretmem(page))) {
2391
			gup_put_folio(folio, 1, flags);
2392 2393 2394
			goto pte_unmap;
		}

2395
		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2396
			gup_put_folio(folio, 1, flags);
2397 2398 2399
			goto pte_unmap;
		}

2400 2401 2402 2403 2404
		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
			gup_put_folio(folio, 1, flags);
			goto pte_unmap;
		}

2405 2406 2407 2408 2409 2410 2411 2412 2413
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
2414
				gup_put_folio(folio, 1, flags);
2415 2416 2417
				goto pte_unmap;
			}
		}
2418
		folio_set_referenced(folio);
2419 2420 2421 2422 2423 2424 2425
		pages[*nr] = page;
		(*nr)++;
	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2426 2427
	if (pgmap)
		put_dev_pagemap(pgmap);
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2439
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2440 2441 2442
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2443
			 unsigned int flags, struct page **pages, int *nr)
2444 2445 2446
{
	return 0;
}
2447
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2448

2449
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2450
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2451 2452
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2453 2454 2455 2456 2457 2458 2459 2460 2461
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2462
			undo_dev_pagemap(nr, nr_start, flags, pages);
2463
			break;
2464 2465 2466
		}
		SetPageReferenced(page);
		pages[*nr] = page;
John Hubbard's avatar
John Hubbard committed
2467 2468
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
2469
			break;
John Hubbard's avatar
John Hubbard committed
2470
		}
2471 2472 2473
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2474

2475
	put_dev_pagemap(pgmap);
2476
	return addr == end;
2477 2478
}

2479
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2480 2481
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2482 2483
{
	unsigned long fault_pfn;
2484 2485 2486
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2487
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2488
		return 0;
2489

2490
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2491
		undo_dev_pagemap(nr, nr_start, flags, pages);
2492 2493 2494
		return 0;
	}
	return 1;
2495 2496
}

2497
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2498 2499
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2500 2501
{
	unsigned long fault_pfn;
2502 2503 2504
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2505
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2506
		return 0;
2507

2508
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2509
		undo_dev_pagemap(nr, nr_start, flags, pages);
2510 2511 2512
		return 0;
	}
	return 1;
2513 2514
}
#else
2515
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2516 2517
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2518 2519 2520 2521 2522
{
	BUILD_BUG();
	return 0;
}

2523
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2524 2525
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2526 2527 2528 2529 2530 2531
{
	BUILD_BUG();
	return 0;
}
#endif

2532 2533 2534 2535 2536
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

2537 2538
	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
		pages[nr] = nth_page(page, nr);
2539 2540 2541 2542

	return nr;
}

2543 2544 2545 2546 2547 2548 2549 2550 2551
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2552 2553
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2554 2555
{
	unsigned long pte_end;
2556 2557
	struct page *page;
	struct folio *folio;
2558 2559 2560 2561 2562 2563 2564
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2565
	pte = huge_ptep_get(ptep);
2566

2567
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2568 2569 2570 2571 2572
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

2573
	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2574
	refs = record_subpages(page, addr, end, pages + *nr);
2575

2576 2577
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2578 2579 2580
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2581
		gup_put_folio(folio, refs, flags);
2582 2583 2584
		return 0;
	}

2585 2586 2587 2588 2589
	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
		gup_put_folio(folio, refs, flags);
		return 0;
	}

2590
	*nr += refs;
2591
	folio_set_referenced(folio);
2592 2593 2594 2595
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2596
		unsigned int pdshift, unsigned long end, unsigned int flags,
2597 2598 2599 2600 2601 2602 2603 2604 2605
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2606
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2607 2608 2609 2610 2611 2612 2613
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2614
		unsigned int pdshift, unsigned long end, unsigned int flags,
2615 2616 2617 2618 2619 2620
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2621
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2622 2623
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2624
{
2625 2626
	struct page *page;
	struct folio *folio;
2627 2628
	int refs;

2629
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2630 2631
		return 0;

2632 2633 2634
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2635 2636
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2637
	}
2638

2639
	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2640
	refs = record_subpages(page, addr, end, pages + *nr);
2641

2642 2643
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2644 2645 2646
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2647
		gup_put_folio(folio, refs, flags);
2648 2649 2650
		return 0;
	}

2651 2652 2653 2654 2655
	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
		gup_put_folio(folio, refs, flags);
		return 0;
	}

2656
	*nr += refs;
2657
	folio_set_referenced(folio);
2658 2659 2660 2661
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2662 2663
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2664
{
2665 2666
	struct page *page;
	struct folio *folio;
2667 2668
	int refs;

2669
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2670 2671
		return 0;

2672 2673 2674
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2675 2676
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2677
	}
2678

2679
	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2680
	refs = record_subpages(page, addr, end, pages + *nr);
2681

2682 2683
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2684 2685 2686
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2687
		gup_put_folio(folio, refs, flags);
2688 2689 2690
		return 0;
	}

2691 2692 2693 2694 2695
	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
		gup_put_folio(folio, refs, flags);
		return 0;
	}

2696
	*nr += refs;
2697
	folio_set_referenced(folio);
2698 2699 2700
	return 1;
}

2701
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2702
			unsigned long end, unsigned int flags,
2703 2704 2705
			struct page **pages, int *nr)
{
	int refs;
2706 2707
	struct page *page;
	struct folio *folio;
2708

2709
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2710 2711
		return 0;

2712
	BUILD_BUG_ON(pgd_devmap(orig));
2713

2714
	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2715
	refs = record_subpages(page, addr, end, pages + *nr);
2716

2717 2718
	folio = try_grab_folio(page, refs, flags);
	if (!folio)
2719 2720 2721
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2722
		gup_put_folio(folio, refs, flags);
2723 2724 2725
		return 0;
	}

2726
	*nr += refs;
2727
	folio_set_referenced(folio);
2728 2729 2730
	return 1;
}

2731
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2732
		unsigned int flags, struct page **pages, int *nr)
2733 2734 2735 2736
{
	unsigned long next;
	pmd_t *pmdp;

2737
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2738
	do {
2739
		pmd_t pmd = READ_ONCE(*pmdp);
2740 2741

		next = pmd_addr_end(addr, end);
2742
		if (!pmd_present(pmd))
2743 2744
			return 0;

Yu Zhao's avatar
Yu Zhao committed
2745 2746
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2747 2748 2749 2750 2751
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2752
			if (pmd_protnone(pmd))
2753 2754
				return 0;

2755
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2756 2757 2758
				pages, nr))
				return 0;

2759 2760 2761 2762 2763 2764
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2765
					 PMD_SHIFT, next, flags, pages, nr))
2766
				return 0;
2767
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2768
			return 0;
2769 2770 2771 2772 2773
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2774
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2775
			 unsigned int flags, struct page **pages, int *nr)
2776 2777 2778 2779
{
	unsigned long next;
	pud_t *pudp;

2780
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2781
	do {
2782
		pud_t pud = READ_ONCE(*pudp);
2783 2784

		next = pud_addr_end(addr, end);
Qiujun Huang's avatar
Qiujun Huang committed
2785
		if (unlikely(!pud_present(pud)))
2786
			return 0;
2787
		if (unlikely(pud_huge(pud))) {
2788
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2789 2790 2791 2792
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2793
					 PUD_SHIFT, next, flags, pages, nr))
2794
				return 0;
2795
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2796 2797 2798 2799 2800 2801
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2802
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2803
			 unsigned int flags, struct page **pages, int *nr)
2804 2805 2806 2807
{
	unsigned long next;
	p4d_t *p4dp;

2808
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2809 2810 2811 2812 2813 2814 2815 2816 2817
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2818
					 P4D_SHIFT, next, flags, pages, nr))
2819
				return 0;
2820
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2821 2822 2823 2824 2825 2826
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2827
static void gup_pgd_range(unsigned long addr, unsigned long end,
2828
		unsigned int flags, struct page **pages, int *nr)
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2841
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2842 2843 2844 2845
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2846
					 PGDIR_SHIFT, next, flags, pages, nr))
2847
				return;
2848
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2849 2850 2851
			return;
	} while (pgdp++, addr = next, addr != end);
}
2852 2853 2854 2855 2856 2857
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2858 2859 2860

#ifndef gup_fast_permitted
/*
2861
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2862 2863
 * we need to fall back to the slow version:
 */
2864
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2865
{
2866
	return true;
2867 2868 2869
}
#endif

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2880
		mmap_read_lock(current->mm);
2881
		ret = __gup_longterm_locked(current->mm,
2882 2883
					    start, nr_pages,
					    pages, NULL, gup_flags);
2884
		mmap_read_unlock(current->mm);
2885 2886 2887 2888 2889 2890 2891 2892
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2893 2894 2895 2896 2897 2898 2899
static unsigned long lockless_pages_from_mm(unsigned long start,
					    unsigned long end,
					    unsigned int gup_flags,
					    struct page **pages)
{
	unsigned long flags;
	int nr_pinned = 0;
2900
	unsigned seq;
2901 2902 2903 2904 2905

	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
	    !gup_fast_permitted(start, end))
		return 0;

2906 2907 2908 2909 2910 2911
	if (gup_flags & FOLL_PIN) {
		seq = raw_read_seqcount(&current->mm->write_protect_seq);
		if (seq & 1)
			return 0;
	}

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	/*
	 * Disable interrupts. The nested form is used, in order to allow full,
	 * general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being freed
	 * from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
	 * that come from THPs splitting.
	 */
	local_irq_save(flags);
	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
	local_irq_restore(flags);
2926 2927 2928 2929 2930 2931 2932

	/*
	 * When pinning pages for DMA there could be a concurrent write protect
	 * from fork() via copy_page_range(), in this case always fail fast GUP.
	 */
	if (gup_flags & FOLL_PIN) {
		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2933
			unpin_user_pages_lockless(pages, nr_pinned);
2934
			return 0;
2935 2936
		} else {
			sanity_check_pinned_pages(pages, nr_pinned);
2937 2938
		}
	}
2939 2940 2941 2942 2943
	return nr_pinned;
}

static int internal_get_user_pages_fast(unsigned long start,
					unsigned long nr_pages,
2944 2945
					unsigned int gup_flags,
					struct page **pages)
2946
{
2947 2948 2949
	unsigned long len, end;
	unsigned long nr_pinned;
	int ret;
2950

2951
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2952
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2953
				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2954 2955
		return -EINVAL;

2956 2957
	if (gup_flags & FOLL_PIN)
		mm_set_has_pinned_flag(&current->mm->flags);
Peter Xu's avatar
Peter Xu committed
2958

2959
	if (!(gup_flags & FOLL_FAST_ONLY))
2960
		might_lock_read(&current->mm->mmap_lock);
2961

2962
	start = untagged_addr(start) & PAGE_MASK;
2963 2964
	len = nr_pages << PAGE_SHIFT;
	if (check_add_overflow(start, len, &end))
2965
		return 0;
2966
	if (unlikely(!access_ok((void __user *)start, len)))
2967
		return -EFAULT;
2968

2969 2970 2971
	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
		return nr_pinned;
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	/* Slow path: try to get the remaining pages with get_user_pages */
	start += nr_pinned << PAGE_SHIFT;
	pages += nr_pinned;
	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
				      pages);
	if (ret < 0) {
		/*
		 * The caller has to unpin the pages we already pinned so
		 * returning -errno is not an option
		 */
		if (nr_pinned)
			return nr_pinned;
		return ret;
2986
	}
2987
	return ret + nr_pinned;
2988
}
2989

2990 2991 2992 2993 2994 2995 2996 2997
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
3010 3011
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
3012
{
3013
	int nr_pinned;
3014 3015 3016
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
3017 3018 3019
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
3020
	 */
3021
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3022

3023 3024
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
3025 3026

	/*
3027 3028 3029 3030
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
3031
	 */
3032 3033
	if (nr_pinned < 0)
		nr_pinned = 0;
3034 3035 3036

	return nr_pinned;
}
3037
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3038

3039 3040
/**
 * get_user_pages_fast() - pin user pages in memory
John Hubbard's avatar
John Hubbard committed
3041 3042 3043 3044 3045
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
3046
 *
3047
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
3058
	if (!is_valid_gup_flags(gup_flags))
3059 3060
		return -EINVAL;

3061 3062 3063 3064 3065 3066 3067
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
3068 3069
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
3070
EXPORT_SYMBOL_GPL(get_user_pages_fast);
3071 3072 3073 3074

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
John Hubbard's avatar
John Hubbard committed
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3086
 * see Documentation/core-api/pin_user_pages.rst for further details.
3087 3088 3089 3090
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
John Hubbard's avatar
John Hubbard committed
3091 3092 3093 3094
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

3095 3096 3097
	if (WARN_ON_ONCE(!pages))
		return -EINVAL;

John Hubbard's avatar
John Hubbard committed
3098 3099
	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3100 3101 3102
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

3103
/*
3104 3105
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
3120 3121 3122

	if (WARN_ON_ONCE(!pages))
		return 0;
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

3142
/**
3143
 * pin_user_pages_remote() - pin pages of a remote process
3144
 *
John Hubbard's avatar
John Hubbard committed
3145 3146 3147 3148 3149
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
3150
 *		Should be at least nr_pages long.
John Hubbard's avatar
John Hubbard committed
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3162
 * see Documentation/core-api/pin_user_pages.rst for details.
3163
 */
3164
long pin_user_pages_remote(struct mm_struct *mm,
3165 3166 3167 3168
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
John Hubbard's avatar
John Hubbard committed
3169 3170 3171 3172
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

3173 3174 3175
	if (WARN_ON_ONCE(!pages))
		return -EINVAL;

John Hubbard's avatar
John Hubbard committed
3176
	gup_flags |= FOLL_PIN;
3177
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
John Hubbard's avatar
John Hubbard committed
3178
				       pages, vmas, locked);
3179 3180 3181 3182 3183 3184
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
John Hubbard's avatar
John Hubbard committed
3185 3186 3187 3188
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
3189
 *		Should be at least nr_pages long.
John Hubbard's avatar
John Hubbard committed
3190 3191 3192 3193 3194 3195 3196
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3197
 * see Documentation/core-api/pin_user_pages.rst for details.
3198 3199 3200 3201 3202
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
John Hubbard's avatar
John Hubbard committed
3203 3204 3205 3206
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

3207 3208 3209
	if (WARN_ON_ONCE(!pages))
		return -EINVAL;

John Hubbard's avatar
John Hubbard committed
3210
	gup_flags |= FOLL_PIN;
3211
	return __gup_longterm_locked(current->mm, start, nr_pages,
John Hubbard's avatar
John Hubbard committed
3212
				     pages, vmas, gup_flags);
3213 3214
}
EXPORT_SYMBOL(pin_user_pages);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

3228 3229 3230
	if (WARN_ON_ONCE(!pages))
		return -EINVAL;

3231 3232 3233 3234
	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);